8
STUDY OF LOCAL EFFECTS INVOLVING INTERACTION BETWEEN THE FILAMENTS AND THE MATRIX IN COMPOSITE MATERIALS: 1 I~. S. Umanskii, E. I. Zaluzhnaya, and S. M. Medovaya UDC 539.4.014 On applying stresses to composition materials reinforced with discontinuous (discrete) filaments or whiskers, a high stress concentration tends to develop; this also happens at breaks in initially continuous filaments. A study of the stressed stale in composition elements is therefore an important problem in the mechanics of reinforced media. We note that, without determining the stressed state of the elements in a structure, such problems as that of establishing the optimum proportions of the components, the optimum relationship between their properties, the dimensions of the reinforcing components, and so forth cannot be properly solved. At the same time, the study of local effects such as the stress distribution in the regions in which stress is trans- mitted from the matrix to the filaments constitutes an extremely complicated problem; at the present time an exact analytical solution is completely impossible. For the simplest cases there are a number of approximate solutions based on extremely idealized models [1]. In this paper we shall consider the plane-stressed state of a plate reinforced with a single central filament and subjected to the action of an arbitrary contour load in an arbitrary temperature field (Fig. la), in order to estimate the local effects involved in the transmission of stresses from the matrix to the fila- ments. We shall assume that strong bonding forces act between the filament and matrix. The edge (boundary) problem for a composite body may be solved in termsof displacements by the finite-difference method. The difference equations are obtained on the basis of the Lagrange variational principle. Let us denote the components of the displacement vector by ff and ~. We shall introduce the dimen- sionless coordinates x= (Y/L); y= (~/L) and the dimensionless displacement-vector components u=~/L; p-- ~/L. For a plane-stressed state the total potential energy of the system, constituting the difference be- tween the work of the internal forces and that of the external loads, takes the form 2(l--v,) [kJx] ~Oy] + 2 ~ , ~ - - } - v,~Oy + ax] 2(1-{- (1) where E is the elastic modulus; u is the Poisson coefficient, ~ is the coefficient of linear thermal expan- sion; T is the temperature; Xv, Yv are the stress components applied to the contour (kg/cm2); s is a dimen- sionless section of the contour, s = ~'/L; and t is the thickness of the plate. The contour integral is taken along the boundary of the plate in the x, y plane. According to the principle of virtual displacements, the actual displacements u and • will be such as will ensure a stationary state of the potential energy: 6~ = O. (2) Institute of Strength Problems, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Problemy Prochnosti, No. 7, pp. 11-17, July, 1971. Original article submitted June 23, 1970. 1972 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. All rights reserved. This article cannot be reproduced [or any purpose whatsoever without permission o[ the publisher. A copy o[ this article is available from the publisher [or $15.00. 764

Study of local effects involving interaction between the filaments and the matrix in composite materials: 1

Embed Size (px)

Citation preview

Page 1: Study of local effects involving interaction between the filaments and the matrix in composite materials: 1

S T U D Y O F L O C A L E F F E C T S I N V O L V I N G I N T E R A C T I O N

B E T W E E N T H E F I L A M E N T S A N D T H E M A T R I X IN

C O M P O S I T E M A T E R I A L S : 1

I~. S. U m a n s k i i , E . I. Z a l u z h n a y a , a n d S. M. M e d o v a y a

UDC 539.4.014

On applying s t r e s s e s to composi t ion m a t e r i a l s r e in fo rced with discont inuous (discrete) f i laments o r whiskers , a high s t r e s s concentra t ion tends to develop; this a l so happens at b reaks in in i t ia l ly continuous f i laments . A study of the s t r e s s e d s t a l e in composi t ion e lements is t h e r e f o r e an impor tan t p rob lem in the mechanics of r e in fo rced media .

We note that, without de t e rmin ing the s t r e s s e d s ta te of the e lements in a s t ruc tu re , such p r o b l e m s as that of e s t ab l i sh ing the opt imum propor t ions of the components , the opt imum re l a t ionsh ip between t h e i r p r o p e r t i e s , the d imensions of the r e in fo rc ing components , and so forth cannot be p r o p e r l y solved. At the same t ime, the study of local effects such as the s t r e s s d i s t r ibu t ion in the reg ions in which s t r e s s is t r a n s - mit ted f rom the m a t r i x to the f i laments const i tu tes an e x t r e m e l y compl ica ted problem; at the p r e s e n t t ime an exact ana ly t ica l solution is comple te ly imposs ib le .

Fo r the s imp les t cases the re a r e a number of approx imate solut ions based on e x t r e m e l y idea l ized models [1].

In this p a p e r we shall cons ide r the p l a n e - s t r e s s e d s ta te of a p la te r e in fo rced with a s ingle cen t ra l f i lament and subjected to the action of an a r b i t r a r y contour load in an a r b i t r a r y t e m p e r a t u r e field (Fig. la) , in o r d e r to e s t ima te the local effects involved in the t r a n s m i s s i o n of s t r e s s e s f rom the m a t r i x to the f i l a - ments . We shal l a s sume that s t rong bonding fo rces act between the f i lament and ma t r ix .

The edge (boundary) p rob lem for a compos i t e body may be solved in t e r m s o f d i sp l acemen t s by the f in i t e -d i f fe rence method. The d i f ference equations a r e obtained on the bas i s of the Lagrange va r i a t iona l p r inc ip le .

Let us denote the components of the d i sp lacement vec tor by ff and ~. We shall int roduce the d imen- s ion less coord ina tes x= (Y/L); y= (~/L) and the d imens ion les s d i s p l a c e m e n t - v e c t o r components u = ~ / L ; p-- ~ / L .

F o r a p l a n e - s t r e s s e d s ta te the total potent ia l energy of the sys t em, const i tut ing the d i f ference be- tween the work of the in ternal fo rces and that of the external loads, t akes the form

2(l--v,) [kJx] ~Oy] + 2 ~ , ~ - - } - v,~Oy + ax ] 2(1-{-

(1)

where E is the e las t i c modulus; u is the Poisson coefficient , ~ is the coeff ic ient of l i nea r t h e r m a l expan- sion; T is the t e m p e r a t u r e ; Xv, Yv a re the s t r e s s components appl ied to the contour (kg/cm2); s is a d imen- s ion less sect ion of the contour, s = ~ ' / L ; and t is the th ickness of the plate .

The contour in tegra l is taken along the boundary of the plate in the x, y plane.

Accord ing to the p r inc ip le of v i r tua l d i sp l acemen t s , the actual d i s p l a c e m e n t s u and • wil l be such as will ensure a s t a t iona ry s ta te of the potent ia l energy:

6~ = O. (2) Inst i tute of Strength P r o b l e m s , Academy of Sciences of the Ukrainian SSR, Kiev. T rans l a t ed f rom

P r o b l e m y Prochnos t i , No. 7, pp. 11-17, July, 1971. Original a r t i c l e submit ted June 23, 1970.

�9 1972 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. All rights reserved. This article cannot be reproduced [or any purpose whatsoever without permission o[ the publisher. A copy o[ this article is available from the publisher [or $15.00.

764

Page 2: Study of local effects involving interaction between the filaments and the matrix in composite materials: 1

B

Matrix

a

2C . i - 4 l - z

3

�9 ! O

i-7, 2 5

5

f%,,

i . i - r i.1,/~-z I

7 r- "'~I

0 I tz I i . / ,2

9 I 12 ...:.,

- - - -~ - - - - - ""%1

I ' " , , ' "

h i , [ P l _ I

Fig. 1. Plate re inforced with one filament and ca r ry ing a contour load (a); quar te r of the plate with an a rb i t ra r i ly -drawn rectangular mesh (b); a r rangement of meshes around the point i, j (c).

It is well known that Eq. (2) contains the conditions of equilibrium and the boundary conditions; thus the displacements obtained f rom the s tat ionary (steady-state) condition anti the s t r e s ses deduced therefrom constitute the solution to the problem in hand.

The s t r e s s components are expressed in t e rms of the displacements in the following manner:

2G [au ~ 0v--(1 + v ) a T ] ;

20 fc)v Ou 1 o'u = ~ [ ~ -k- v ~x - - ( 1 -I- v) aT., ; (3)

r.u = 6 ~ + N .

The condition of s tat ionary potential energy is satisfied if

06 0; O~ a-Y = ~ = 0, 14)

f rom which the values of u and v may be determined.

For s implici ty of solution we suppose that the load is symmetr ica l with respect to the coordinates of the axes. In this way we need only consider the quar ter of the plate lying in the f i rs t quadrant.

The potential energy ~ may be calculated by an approximate method described ear l ie r [2]. The con- tour of the region (Fig. lb) is divided into a finite number of sections by drawing a rectangular mesh on the region in question. The points of intersection of this grid or mesh we call nodes. We have also drawn an auxiliary (broken-line) mesh, the lines of this dividing the sections of the main mesh into equal parts .

Let us consider the node formed by the lines i and j (Fig. lc). The regions formed by the lines of the main and auxiliary meshes are called cells and numbered as shown in Fig. lc.

In the potent ia l -energy expression (1), the integration over the whole a rea of the plate is replaced by summation of the energies over all the cells composing the plate; the f i rs t derivatives are replaced by the corresponding difference expressions, while condition (4), originally formulated relative to the continuous variables u(x, y) and v(x, y), is replaced by a corresponding set of conditions applied to the discrete values of uij, ~ij at the nodes of the mesh.

We thus obtain 2n conditions

~6' 06' 0,fis - 0; Ov:i - O, (5)

where n is the number of nodes.

765

Page 3: Study of local effects involving interaction between the filaments and the matrix in composite materials: 1

T A B L E 1

0.134 O,L2L 0.083 0,032

0,136 0,122 0,083 0.031

0,139 0,123 Q.080 0,046

0,141 0,121 0.067 0,002

Values ofox/%for j, equal to

tl 13

0,147 0,230 ----0,571 0,110 0,112 --0,097 0,003 -'0.039 --0. I01

--0,005 --0,026 --0,007

15

0,311 0.298 0,108 0,027

17

--0,066 --0,028

0.062 0,039

--0,138 --0,120 --0,055 --0,005

21

--0,203 --0,203 - - 0 , 1 4 9

--0,058

Read the program and initial data into the arithmetical unit

Regenerate variable orders

Write a "1" into the iine-number counter O)

Write a "1" into the column-num- ber counter (i)

Increased i by "1"

No [ Check condition i > ima x

Choose conditions from Pl-Pl0 for i , j

I Calculate size of steps for point i, j using a logical scale

Calculate the coefficients of the system of equations and write into the matrix

l q.

]

Clear counter J

[ Increase by "1"

[ Fig. 3.

.Check condition j >Jmax

i Write matrix and column of free I

I terms on magnetic tape

Write program for solving the system of equations by the Gauss method from magne-

tic tape into arithmetical un it

I 8olve system of equations by the Gauses method

l, Print results

, Calculate stresses

Print remits, Stop. [ J

B l o c k d i a g r a m o f t h e p r o g r a m .

~ o

766

Page 4: Study of local effects involving interaction between the filaments and the matrix in composite materials: 1

2;

1

b

5

~PrAII

~ 1 1 Ic~l I I

g l ~ l l I g,t~t I I

ltPl~t I I ~,tll

~/I r.,rA i i

I I I I

'e i i i i to IIII

IJll IIII IIII

t

7 Y t! i I I

O , q

c

Fig. 2. E x a m p l e s of the d ispos i t ion of a node: a) The point i, j l ies at the boundary between the m a t r i x and the f i lament; b) the point l ies on the con tour of the plate y = cons t , c) Q u a r t e r of the plate with one p a r t i c u l a r type of mesh .

~ 8 " " - -

On di f fe ren t ia t ing the e x p r e s s i o n s in Eqs . (5) non- z e r o t e r m s will only a r i s e f r o m the numbered ce i ls adjacent to the point under cons ide ra t ion (Fig. lc) . We shal l t h e r e f o r e only cons ide r these ce l ls in subsequent

12 ca lcu ln t ions , us ing e ' t o denote the ene rgy sum e= ~ ek

te-~--t

Since the de r iva t ive of a sum is equal to the sum of the de r iva t ives , Eq. (5) may be r e w r i t t e n as

12 12 "

. . -= o . ( 6 )

k ~ | # = 1

In o r d e r to c o m p a r e the d i f fe rence equat ions, we mus t c o m p a r e the e n e r g y e x p r e s s i o n s for each cell , r e - m e m b e r i n g that within the cel t art funct ions and d e r i v a - t i ve s r e m a i n cons tan t . The de r iva t ives a r e r ep laced by d i f f e rence exp re s s ions . Thus , fo r example , in the eighth cel l

Ou ui4-I,i - - ul I . Ov vii - - v i , j - I

Ox h i , / t . I ' Oy h i _ l , i

The e x p r e s s i o n s for the potential ene rgy of the eighth cel l and its de r iva t ives with r e s p e c t to uij and vii take the f o r m

)' z O - , ~ ) I.\ h~.~+t / -I- ~ -I-2~,~ h~.i_~ ~ nj..j_~ I (I-: . vs) u~i--ui'J--~l-V~+Li--v~

vii - - vi . i ._l " ] - - " l 'Ui '4"l ' l - -ul i "1" ~ 4 ; --2(I-l-Vs) I. ~ ) asTs -F 2(I 'F vs) (anTs) ' hi'i+' h i ' i ' (7)

0r s EsL ~t [

5u~s - 20-v~ , ) I 1 u i + J , i - - u I i 1 1 2 h~+, l'ii-~ - 7 vs(vi i--vi . i -~) + - 4 -(1 -- ~a)(uiJ--u~.J -I)

_ _ _ I ) ~'~+~ t- "4- ( 1 -- '~a) tv~+~./-- vii) + --~ ( 1 I- v8) %T~hjj_ ~ ; (8) hi . i -- 1

Oe~ e,L~t [ + ~h~.i+, I - - - + ( 1 Va) -----~ (1 - - v )h;.i_~ a~'i~ 2 ~ ) (v. - v:.;_ ,. h;j_ L + T vs(u.-, .J-- %) -- ( % - - u~.j_:) - - '~s)(%,.i ." h~.i+,

21 (1 - - Va) asTsh i,i ~.l ] . ('9)

Since the s u m m a t i o n is c a r r i e d out o v e r individual ce l l s , we may suppose that the mechan ica l c h a r a c - t e r i s t i c s of the m a t e r i a l change on pass ing f r o m one cell to another ; the method in ques t ion may thus be s u c c e s s f u l l y applied to s t r u c t u r e s composed of in_homogeneous m a t e r i a l s such as the compos i t ion m a t e r i a l s of p r e sen t in te res t , in p a r t i c u l a r the p la te r e in fo rced by a single f i lament .

We shal l t h e r e f o r e h e n c e f o r w a r d a t tach indices indicat ing the number of the cell to the e las t ic modu- lus, P o i s s o n coeff ic ient , and t h e r m a l - e x p a n s i o n coeff ic ient , r e g a r d i n g these charactelZist ics as only r e - main ing cons tant within the bounds of one p a r t i c u l a r cell .

In the p r o b l e m under cons ide ra t ion the phys i comechan i ca l c h a r a c t e r i s t i c s may take e i the r one of two va lues , r e s p e c t i v e l y r e l a t ing to the f i lament and ma t r i x ma te r i a l . We shall a t tach the index f to the f o r m e r (El, uf, a f), and leave the second without indices (E, u, ~).

In Eq. (6) we divide all the t e r m s by the quant i ty EL2t /2(1 - v2). Then in the exp re s s ions for the d e r i - va t ives such as (8) and (9) we shal l have a f ac to r 6 k, in each cell capable of taking the fol lowing va lues : 6 k = 1, if the cell belongs to the m a t r i x ; 6k = 4, if the cel l belongs to the f i lament ; and 6 k = 0, if the cell t ies outs ide the reg ion in quest ion, whe re

767

Page 5: Study of local effects involving interaction between the filaments and the matrix in composite materials: 1

o,a

0,0

az

ol

/ 3 .~ 7 9 // lZ~ t7 lg 21 ;"

F i g . 4 . D i s t r i b u t i o n o f t a n g e n t i a l s t r e s s e s r x y a l o n g l i n e s p a r a l l e l t o t h e f i l a m e n t .

X -- Ef( I --v=) _ �9 (1 o)

A f t e r s u m m a t i o n a n d t h e c o l l e c t i o n o f s i m i l a r t e r m s , E q s . (6) m a y be w r i t t e n in t h e f o l l o w i n g m a n n e r in d i f f e r e n c e f o r m :

uiiAii - ul,i_xA~.i_ ~ - - ul, i+lAt,l+ t - -U~_l , iA i_ t , i

- - utq_LiAi.H,i - - o t_L i_ lB t_ t , i_ t Jr v t_LiB t_l, I

-]-- v i_Li+tBr_ i , i+ t -~ v i , i_ tBi , t_ t -1- oqBq

[-- oi,l+lBi,i+ t Jr v i+t , i_~B,+t , i_t Jr ot+t,iBi+L i

- - oi+t,i+~Bl+Li+t - - Aq - - B r = O. (11)

viiCii - - ~ - - ~ - - r ')t-t , iCi-l, i - - vi+t. iCt+Li - - u z -~ , i - tD ~-] ,i-~ + u i - t , i D i - I ,I Jr t l i--l , iq-IDi-l, i+t

-~ Ul , i_ lDi j_ l "Jr u q D q - - b l i , / t.iDi,i+l-~ - Ui4.1d_lD i4_lj_ I "Jr- t t i+idDi+l. i - - u l t_Ij4_IDi+I,i+I - - Cq - - D r = 0, (12)

w h e r e

Aq = Ai . i_ ~ F Ai,i+ I ~ Ai_l , i 4- A~+Li;

- - 1 - - v,t p~ 1 - - "v 7 1 - - v 8 A i , i _ l : : 1 ~av36a+ ~ 4 J r " ~ 7 Jr- ~ 6 a ;

I - - v ~ , l - - ' v . ~ 6 o + l - - v z o , ~ Ai,i_i. I -- ,-~ -6~ n ~ 80 q- ~ v l o ;

Ai_t. i = a(61 + 64 ) + b(62 + 85);

A,4_Li = c(6 s 4- 6it) 4- d(6 o + 612);

, I - -v3 =v2&, j r ~ ~6, LJi 14 I : V l ( 5 1 ~ " ~ 6a; B~-t. l+l

B,. xi .gt6L - - v~ 6', 1 - - ",,4 J r ~ �9 . .- . ~ 64 65;

I - - ",.':3 Bi.i_ l - -~ - 6 a - v 4 6 a - ~ - ~ 6 7 J r v a 6 a ;

, 4-,., 5 l +,'~. L . ~ 6 s + . L ~ , . ' Bii = Di i" " ~ a ~ O a - -

l - -v s ,~ l - - v i e ,~ . Bi.i4 t vS6~ - - -......"'~-- v~ - - Va6ojr ~ "-'to,

I - - 'v7 67 _}_ ~lx6xl; 1 - - rio 61 ~ Jr V 1 ~ 8 1 2 ; Bi+l . i_ l ~ o - Bi+t;i+t - - 2

.__ l - - v a & _ _ l - - v 9 Bi.t_l, j -- ~ ~a ~ 69 --- "911611 -]- Vaz612;

Aq == 2 ~ - ~ [qx(q) (hi , i - t64 "-}- hi,i+t65) -11- Ty(q) (hLf:_164 + ht,~+16e)l;

B r : [(1 + "90 atTt61 Jr (1 + 'v 4) %T464 - - (1 + "%) aaT86 s - - (1 + 'vtt) auTt t6t t l hi , l_ j

-4- [( 1 -4- v2) a.,T,.,6~. Jr (I -~- "gs) %T~6e, - - (1 4- '%) agT~6 e - - ( 1 + 'v~2 ) a~2Tr9612] hi,i+l;

Cq = Ct,i_ 1 4- Ci, i+ t Jr- Cl_l, I Jr Cl+~,l;

I C~a_~ =~ -~.(63 + 64) + -;- ((57 + 6~);

' - " + + bs, Jr C~-t,I ~- ~ a61 1 - - %

I - - v s 1 - - V x l 1 - - v g 1 - - v 1 Ct+l,I = " - ' - E ' - c6s + ~ c 6 . + ~ d69 4- ~ d6~;

768

Page 6: Study of local effects involving interaction between the filaments and the matrix in composite materials: 1

2

1 3 5 6 7 o 9 I0 a

0

2

0 t . . .v 3 ~ 6 7 d 9 lO

b

Fig . 5. D i s t r i b u t i o n of the t a n g e n - t i a l s t r e s s e s Zxy (a ) ; and n o r m a l s t r e s s e s 6y (b) ; a long l i n e s p e r p e n d i - c u l a r to the f i l a m e n t .

~z = 68 = ~9 = 610 : = 6i t ~ 612 :~- I ; v I = v,~ :-= Va = v4 = v5 = vo ~ ~'/;

| - - 'V 1 D l - t , i - t = 2 6t + vaSa;

I - - ~ 2

Dt_, /+t ~ ~ 62 + v J S ~ ;

1 - - v 1 l - - ~ 2

D i - t , l ~ "2 61 2 82__ .V l64 .qt_ .~585;

D t , l _ l = ~383 I --v 4 1 --v s 2 6 4 - - v 7 6 7 -~ ~ . ~ 8 ;

1 - - v 5 1 - - vg' Dr,l+ L = "%6~ - - ~ 65 - - "v m6to % ~ 69;

I - - "v lz

D i 4_l,i_ 1 ~ 'Vr67 + - ' T - - - 611;

1 - - - v l ~ Di+l . i+ l = v10610 ' 2 612;

I - - v H 1 - - vl2 Dt+t.I ---- v868-- v969 ~ 611 + ~ 61~-;

C q = ~ lqv(ti}(hi_t ~6.1 -~- ht.i+168) "q- "~x{ti) (hl . i-~4 -~ hi.l+,~)5)];

D r =: [( 1 + v3) r 3 �9 T a �9 63 + (I -1- v4) a 4 �9 T.t6 ~

- - ( l q- "%) a 5 �9 Z 5 . 65 - - (1 -+- v 6) (16' Z6" ~6] h i , i - t

+ [(l + v7) a 7 .T767 -~- (1 -{- V8)(18 .T8.68

- - (1 -]- v~) (19 .T 9 .60 - - (1 -!- rio ) (110"Tm '61ol ht,t~_,;

0~1 ~ El2 ~ (/3 - - (14 ~ (15 == f~6 ~ (~]~ (17 ~ (18 "~-- (~9 ~ (110 --- (111 :~"0~12 ~ (1"

a ~ h i ' l - I " b = hi'i4-1" c = hi'l--I " d-- - -hi ' i+t h i , i_ 1 ' h i , l_ I ' hi,t-hi ' hi,l+ 1 �9

We note tha t the quan t i t i e s Aq, Cq accoun t i ng fo r the con tour load van i sh fo r a l l i n t e r n a l nodes .

T h e s e equa t ions a r e a p p l i c a b l e to a l l the nodes . It is only n e c e s s a r y to s p e c i f y the a p p r o p r i a t e v a l - ues of the c o e f f i c i e n t s 5k, v. , at- fo r each node pos i t ion . F o r e x a m p l e , if a node l i e s at the m a t r i x - f i l a - men t i n t e r f a c e (Fig . 2a), then in Eqs. (11) and (12) we mus t put 6 1 = 6 2 = 5 3 = 6 4 = 6 s = 5 6 = ' ~ ; 6 t =68=69=6to=6"~I

= 5 1 2 = 1 ; vl = v2 = P3 = /)4 = /)5 = /)6 = / ) f ; u7 = v8 = v9 = ulo = v i i = /)12 = /); ~1 = ~ 2 = O/3 = o r 4 = ~ = o r 6 = o g f ; Ol7 = c e s = C e g = ~ 1 9

= Otl l = O~12 = O~.

If the node l i e s at one of the b o u n d a r i e s of the r e g i o n , for e x a m p l e , y = cons t (F ig . 2b), then we have

61=63=54=?i7=68=<~11=1; 62=65=66=69=610=612=0. A l l /)k=/); Otk=~.

In the p r e s e n t p r o b l e m we have e ight d i f f e r en t t y p e s of cond i t i ons , depend ing on the l o c a t i o n of the noda l po in t s (at the f i l a m e n t - m a t r i x i n t e r f a c e , in the f i l a m e n t r e g i o n , in the m a t r i x r e g ion , a t the edge of the p l a t e y = cons t , and so on). We m a y denote t h e s e by the s y m b o l s P I - P 8 . In add i t i on to th i s , t h e r e a r e s o m e e x t r a cond i t ions fo r nodes on the s y m m e t r y a x e s . F o r the ox ax i s (denote by Pg)

Vii = Ot._l,] = Oi+l, i = 0; h i , l _ l = h ld + l ;

r ) t_L i_ l = - - v t_ t , i+ t ; U~--LI-] = u , _ L i + z ;

Ol,]_ 1 ~ - - Ut,]+l; U i , l - - I = Ili,i+!;

'O' l+ l , ] - - I = - - O t + l , / + l ; U i + I , / - - I ==- / ' / i + 1 , 1 + 1 '

F o r the oy ax i s (P l0 )

u q = u t , l _ ~ ~ u t , l+ ~ = O; h~,t_ ~ = h i j + ] ;

u l _ t , i _ l = - - u t + L / _ l ; v l - t , i _ t = o t+t , l_ t ;

ul._l,i ~ - - ut+l , i ; O~-i,i ~- Oi+l,/;

u " - I , / + I ~ - - u t " H . / + I ; U i - - t . / + l ---- [ ~ i + , / + "

769

Page 7: Study of local effects involving interaction between the filaments and the matrix in composite materials: 1

L

3

2

!

0

3 5 7 g 11 I# 17 Ig 21 1

Fig. 6. Dis t r ibut ion of the no rma l s t r e s s e s 6 a long l ines para l l e l to the filameYt.

By va ry ing i and j and choos ing the a p p r o p r i a t e condi t ions f r o m P 1 - P 1 0 we obtain a s y s t e m of a l g e b r a i c equat ions with a s y m m e t r i c a l s t r ip m a t r i x of coeff ic ients .

The fo rma t ion of the mat r ix , the solut ion of the s y s t e m of equat ions , and the de te rmina t ion of the s t r e s s e s at each node in the mesh f r o m the d i sp l acemen t s so found were r ead i ly ach ieved by means of a Minsk 22 compute r . An en la rged block d i a g r a m of the p r o g r a m for de t e rmin ing the s t r e s s e s and s t r a i n s in m a t e r i a l s r e i n f o r c e d with individual f i l aments is p r e sen t ed in Fig. 3.

The s y s t e m of l inea r a l g e b r a i c equat ions with a s y m m e - t r i ca l s t r ip ma t r i x was solved by the Gauss method, us ing a p r o g r a m developed in the Ukra in ian S c i e n t i f i c - R e s e a r c h De - sign Ins t i tu te of the Coal Minis t ry .

The s t r e s s e s were d e t e r m i n e d a s w e i g h t e d means over the four ce l l s ad jacent to each point i, j. g a r d i n g t h e s t r e s s e s in each cel l as constant , we may wri te

R e -

o'*F4 -~- osF6 + osF, + osF9 a t i = F , + F 6 + F a + F ~ (13)

where F4, Fs, F8, F9 a r e the a r e a s of ce l l s 4, 5, 8, and 9, and a 4, as, as, a s a r e the s t r e s s e s in these ce l ls .

Star t ing f r o m e x p r e s s i o n s (3) and (13) and choos ing the a p p r o p r i a t e va lues of the P o i s s o n coeff ic ient v k, shea r modulus Gk, and t h e r m a l - e x p a n s i o n coeff ic ient a k in a c c o r d a n c e with the pos i t ion of the node i, j, we may der ive f o r m u l a s for ca lcula t ing the s t r e s s e s f r o m the d i sp l acemen t s found p rev ious ly . Fo r e x a m - ple, in the case of points lying on the v e r t i c a l boundary between the ma t r ix and f i lament ,

2G [uq(•215 / -',- (vt.i+t--vl./_O(• , +vai+,. i) T[a(l +v)h~d+t + a t ( l +vf) • axlI= l - - v [ I Z i _ _ l , i J F h l , i 4 _ l " ( h t _ l , t - J r h l , t + l ) ( h l , J _ l . J r h i , j + t ) hi_l,i-~-hid+ 1 (14)

Put t ing • =1, vf= v, we obtain a f o rm u l a for the s t r e s s e s in the un i fo rm reg ion :

26 [ u'+~'i+--ui-''i !- v t ' 'a '+ ' -v~' i - t (1 - - v )aT] . OxiJ ~ I - - v ~hi , l_ | ~ .hi , i4_ I h i , i _ I "-t-hi,l+ I (15) J

F o r m u l a s for Cry and Txy a r e de r ived ana logous ly .

We shal l now p re se n t some ca lcu la t ions r e l a t ing to a p la te r e i n f o r c e d with a s ingle f i l ament under the act ion of a longitudinal (with r e s p e c t to the f i lament) load of in tens i ty ql (Fig. la ) , put t ing qx(ij); rx( i j ) ; Ty(ij); T equal to z e r o in Eqs. (11) and (12) and qy(ij) =ql.

The s t r e s s e d s ta te of a plate r e i n f o r c e d with a s ingle f i lament and subjec ted to a t r a n s v e r s e load in a un i form t e m p e r a t u r e field will be cons ide red in a l a t e r publ icat ion (communica t ion 2).

The ma te r i a l of the plate is ha rdened epoxy r e s i n with an e las t ic modulus of E = 3.5.104 k g / c m 2, a Po i s son coeff ic ient of v = 0.4, and a coeff ic ient of l inear t h e r m a l expansion oz = 65 �9 10 -6 deg -1. The f i lament ma te r i a l is s teel (Ef= 2.106 k g / c m 2 ; v f= 0.3; cef=12.5. 10 -6 deg-1).

One qua r t e r of the plate, with the mesh and d imens ions a t tached , is shown in Fig . 2c. The sma l l s tep is 0.025 and the l a rge step 0.05. This kind of division leads to 472 equat ions (we note that fo r nodes lying on the s y m m e t r y axes t he re is one equation each).

A compute r ca lcula t ion gives the s t r a in s uij and vij and the s t r e s s e s a ; a ; T at each node of the x y xy mesh; the d is t r ibut ion of these is i l lus t ra ted in F igs . 4 -6 and in Tab le 1 for c e r t a i n c r o s s s ec t ions .

In Fig. 4 the cu rves 1-4 r e p r e s e n t the d is t r ibut ion of tangent ia l s t r e s s e s r x a long the l ine i = 3, which p a s s e s through the m a t r i x - f i l a m e n t in t e r face (Fig. 2c), and a l so a long the l ines i :=Y4, 6, 10, p a s s i n g th rough the ma t r ix at d i s tances of 1 /4 of the width of the f i lament , one f i l ament width, and t h r e e f i lament widths, r e spec t ive ly , f r o m the m a t r i x - f i l a m e n t in t e r f ace .

770

Page 8: Study of local effects involving interaction between the filaments and the matrix in composite materials: 1

We s e e f r o m the f i g u r e tha t the g r e a t e s t c o n c e n t r a t i o n o f t a nge n t i a l s t r e s s e s o c c u r s n e a r the end of the f i l a m e n t a t the i n t e r f a c e be tween the m a t r i x and the f i l a m e n t ( cu rve 1). In view of the l i m i t a - t ions of the d i f f e r e n c e method , the s t r e s s peak could , un fo r tuna t e ly , not be d e t e r m i n e d . The m e s h would have to be g r e a t l y r e f i n e d in o r d e r to do t h i s .

The zone of c o n c e n t r a t i o n of the t a n g e n t i a l s t r e s s e s o c c u p i e s 1 .5 -2 f i l a m e n t widths , which i s c o n s i d - e r a b l y s m a l l e r than tha t d e r i v e d f r o m the op t i ca l me thod [3]. Th i s i s p e r f e c t l y r e a s o n a b l e , s i nce i dea l coupl ing was c o n s i d e r e d to t ake p l a c e at the m a t r i x - f i l a m e n t i n t e r f a c e in the p r e s e n t c a l c u l a t i o n s , whi le the op t i ca l me thod c o n s i d e r e d the r e a l bond f o r c e s . On moving away f r o m the f i l a m e n t the c o n c e n t r a t i o n of t angen t i a l s t r e s s e s f a l l s s h a r p l y ; the c h a r a c t e r of the c u r v e s a l s o changes , and they b e c o m e s m o o t h e r (F ig . 4, c u r v e s 3 and 4). At the end of the f i l a m e n t a l l the c u r v e s have a s h a r p b r e a k . The d i s t r i b u t i o n of the t angen t i a l s t r e s s e s a long l i nes p e r p e n d i c u l a r to the f i l a m e n t m a y be judged f r o m F ig . 5a.

F i g u r e 5a p r e s e n t s c u r v e s r e l a t i n g to the l i n e s j =8 (1), 14 (2), 16 (3), 20 (4). The l ine j =8 p a s s e s at a d i s t a n c e of 1 /4 of the f i l a m e n t length f r o m the end of the f i l a m e n t , the l ine j = 14 at the end of the f i l amen t , whi le the l i n e s j = 16 and j = 20 p a s s t h rough the m a t r i x at d i s t a n c e s of 1 /2 and 2.5 f i l a m e n t widths f r o m the end.

We s e e f r o m the f i g u r e that the s t r e s s m a x i m u m l i e s not at t h e m a t r i x - f i l a m e n t i n t e r f a c e but a s h o r t d i s t a n c e away f r o m th i s , a l though on moving t o w a r d s t h e e n d of the f i l a m e n t the s t r e s s peak c o m e s c l o s e r to the a c t u a l i n t e r f a c e .

At a d i s t a n c e of the o r d e r of t h r e e f i l a m e n t widths f r o m t h e m a t r i x - f i l a m e n t i n t e r f a c e the t a nge n t i a l s t r e s s e s a r e i n s i g n i f i c a n t , and t end to z e r o on moving away f r o m the f i l a m e n t .

The d i s t r i b u t i o n of the n o r m a l s t r e s s e s a y in c r o s s s e c t i o n s p e r p e n d i c u l a r to t he f i l a m e n t a r e shown in F ig . 5b. C u r v e 1 c h a r a c t e r i z e s the s t r e s s d i s t r i b u t i o n a long the l ine j = 1, i . e . , the ox ax i s , c u r v e 2 the l ine j =8, c u r v e 3 the l i n e j =14, and c u r v e 4 the l ine j =20.

The g r e a t e s t d e l o a d i n g of the m a t r i x o c c u r s a long the ox ax i s , i . e . , in the m i d d l e of the f i l a m e n t . The g r e a t e s t s t r e s s e s in the f i l a m e n t e x c e e d the g r e a t e s t s t r e s s e s on the con tour of the p l a t e in the s a m e s e c - t ion by a f a c t o r of 10, and the s t r e s s e s in the m a t r i x at the po in t s c l o s e to the f i l a m e n t by a l m o s t 20 t i m e s .

We m a y judge the d i s t r i b u t i o n of n o r m a l s t r e s s e s ~y a long l i nes p a r a l l e l to the f i l a m e n t f r o m F ig . 6. The g r e a t e s t s t r e s s e s o c c u r a long the l ine p a s s i n g a long- the ax i s of the f i l a m e n t ( c u r v e 1, i =1) .

On p a s s i n g t h rough t h e f i l a m e n t - m a t r i x b o u n d a r y t h e r e is a b r e a k in the cu rve . C u r v e 2 d e s c r i b e s the s t r e s s d i s t r i b u t i o n ay a long the f i l a m e n t - m a t r i x i n t e r f a c e . At the end of the f i l a m e n t t h e r e i s a sub - s t a n t i a l s t r e s s c o n c e n t r a t i o n .

C u r v e s 3 and 4 c h a r a c t e r i z e the s t r e s s d i s t r i b u t i o n ey in the m a t r i x a long the l i ne s i = 5 and 8, p a s s - ing a t a d i s t a n c e of 1 /2 and 2.5 f i l a m e n t widths f r o m the i n t e r f a c e . In the f i l a m e n t zone the s t r e s s e s a r e c o n s i d e r a b l y s m a l l e r than the n o m i n a l s t r e s s a0, and at a po in t on the ox ax i s we have a y = 0.2 e0, f~r i = 5 and ~y = 0.37 o- 0, for i = 8. Beyond the f i l a m e n t the s t r e s s e s i n c r e a s e , t end ing t o w a r d e0.

The a b s o l u t e va lue of the s t r e s s e s a x is c o n s i d e r a b l y s m a l l e r than tha t of a y and Txy. The va lues of cr x a r e g iven in T a b l e 1 for c e r t a i n c h a r a c t e r i s t i c po in t s . In the s e c t i o n s i= cons t t h e s e a r e s e l f - b a l a n c e d .

We no te tha t the s t r e s s d i s t r i b u t i o n in a p l a t e r e i n f o r c e d with a s i ng l e f i l a m e n t a g r e e s qua l i t a t i ve ly with that ob ta ined by the op t i c a l me thod for m o d e l s with o the r p l a t e and f i l a m e n t d i m e n s i o n s .

LITERATURE CITED

I. G.S. Hollister and K. Thomas, Filament-Strengthened Materials [Russian translation], Metallurgiya, Moscow (1969).

2. D.S. Griffin and R. B. Kellog, "Numerical solution of axially-symmetrical and plane elasticity pro- blems," in: Mechanics [Russian translation],No. 2, Mir, Moscow (1968).

3. E . I . Z a l u z h n a y a and t~. S. U m a n s k i i , P r o b l e m y P r o c h n o s t i , No. 1 (1969).

771