20
Student Presentation Topic 5 IEEE Transactions on Circuit and Systems (Vol. 58, No. 9, Sep. 2011) J. Kim , Rambus, Inc. Sunnyvale 1

Student Presentation Topic 5 - High-Speed Circuits ...tera.yonsei.ac.kr/class/2013_1_2/lecture/130403_SP1_ban.pdfStudent Presentation Topic 5 IEEE Transactions on Circuit and Systems

  • Upload
    vanliem

  • View
    216

  • Download
    2

Embed Size (px)

Citation preview

Student Presentation Topic 5

IEEE Transactions on Circuit and Systems (Vol. 58, No. 9, Sep. 2011) J. Kim , Rambus, Inc. Sunnyvale

1

I. INTRODUCTIONII. REDUCED‐SLICER PARTIAL‐RESPONSE DECISION FEEDBACK EQUALIZER (RS‐

PRDFE)A. Equivalence Between ADC‐Based DFE and Loop‐Unrolling DFE ReceiversB. BER Model for ADC‐Based DFE Receivers

III. OPTIMIZATION OF RS‐PRDFE SLICER THRESHOLDSA. ADC Threshold Placements for Minimum BER Versus Minimum 

Quantization ErrorIV. EXPERIMENTAL RESULTSV. JOINT OPTIMIZATION WITH LINEAR EQUALIZERS

A. RS‐PRDFE With Transmit FIR EqualizersB. RS‐PRDFE With Receive Linear EqualizersC. Digital Versus Analog Receive Linear Equalizers

VI. CONCLUSION

Contents

2

• Scaling of CMOS  fast digital logic (Tx based on ADC and DSP)

• 2010 : 10Gbps ADC‐based backplane Tx using low power 

• Maximizing the performance of ADC‐based Rx

: Nonuniformly quantized ADC‐based DFE  low resolution ADC is OK

• Bit error rate(BER) / quantization error 

: ADC‐based DFE ≡ loop unrolling DFE (PRDFE)

• Proposing Reduced‐slicer partial‐response DFE (RS‐PRDFE) 

:Optimally configured nonuniform ADC‐based DFE

• Optimizing programming algorithm 

• Jointly optimizing the RS‐PRDFE Rx with various types of linear equalizers

Introduction

3

ADC-based DFE ≡ loop unrolling DFE (PRDFE)

4

• ADC : converting the received signal into a digital form

• DSP : DFE operation (subtracting appropriate amount of offset)

• High resolution ADC for high SNR

ADC-based DFE ≡ loop unrolling DFE (PRDFE)

5

• Analog DFE Rxs

• DFE Rx : DFE operation (subtracting  the offset in analog domain)

• Feedback path : 2 analog/digital conversions  timing problem

• Loop‐unrolling DFE (PRDFE) : moving timing loop in to the digital domain

Number of slicers grows exponentially (2N) with the number of tap (N) 

ADC-based DFE ≡ loop unrolling DFE (PRDFE)

6

• ADC‐based DFE : determining whether the quantized output is greater than a 

certain offset 

• PRDFE : determining whether the analog input signal is above a quantization 

threshold that is closest to this offset

• Possible to Optimize using same principle

Reduced-Slicer PRDFE

7

• ADC‐based DFE : Digital feedback equalizer(hDFE) Look‐up table(LUT) & MUX

• PRDFE : merging slicers having similar threshold values

• Saving power & area by removing redundant or unused slicers without 

degrading BER performance

BER Model for ADC-Based DFE Rx

8

• Consider N‐tap DFE Rx, Intersymbol interference(ISI) spans L (>N)

• Tj: threshold of slicer (j=1,2,…2N)

• yISI : yj (possible to cancel by DFE)+ yr(out of range N<r<L)

• If Tj is close to yj : Q ↓ BER ↓

N L

Optimization of RS-PRDFE Slicer Thresholds

9

• Placing M slicer thresholds for the minimum BER in set of 2N yj• Optimal grouping of ISI levels(yj) to any number of M group

• Using programming procedure, finding optimal M

• Varying strongly with channel characteristics  

Minimum BER vs. Minimum Quantization Error

10

• Optimal threshold placements with number of slicers

• Min BER and min Quantization error : different placements

• Reduced FSR ADC‐based DFE resembling optimal RS‐PRDFE

RS-PRDFE

11

• Main data path + voltage margin detector

• 10 Gbps, 700 mVpp‐diff, 231‐1 PRBS data pattern• 25‘’‐long Nelco backplane channel • 17 dB loss at 5 GHz

Channel Characteristic

12

Measurement Results

13

• Rx performance ↑ with HPF, FIR filter, VGA

• Effective SBR

• Voltage margin at BER=10‐7

Measurement Results

14

• SBR has 5 post cursor ISIs with very distinct values

no performance gain over PRDFE

• Prefiltering is important way to improve the performance of the RS‐PRDFE

RS-PRDFE With Transmit FIR Equalizers

15

• Peak sing constraint

can’t alter the channel response too much

RS-PRDFE With Transmit FIR Equalizers

16

• 4 slicers (N=4) achieving comparable signal margin with 4‐tap PRDFE Rx

RS-PRDFE With Receive Linear Equalizers

17

• CTLE(continuous‐time linear equalizer), FIR equalizer

• Input : discrete‐time sampled analog input 

• Ability to individually adjust the tap coefficients

RS-PRDFE With Receive Linear Equalizers

18

• Effectively cancel the remaining ISI with only 4 slicers (N=4)

• Reduce 12 slicers

• Superior to 16‐slicer PRDFE Rx

Digital vs. Analog Receive Linear Equalizers

19

• Analog FIR filter : large power consumption

• Implemen ng Rx FIR equalizer in digital domain : Signal Margin↓

• RS‐PRDFE & digital FIR equalizers : conflicting requirements on ADC threshold 

placement

• Introducing a way of designing high‐performance with low‐resolution ADCs.

• Optimizing for the best signal margins

:  quantization thresholds > quantization errors

• RS‐PRDFE receiver with only 4 slicers

: equivalent performance with uniformly quantizing ADC (N=3,4)

• Synergistic effects of combining RS‐PRDFE with Les

: especially with the receive FIR equalizers in analog domain

Conclusion

20