20
Structure and Evolutio n of Cosmological HII Regions T. Kitayama (Toho Univ ersity) with N. Yoshida, H. Susa, M. Umemura

Structure and Evolution of Cosmological HII Regions

  • Upload
    ellard

  • View
    25

  • Download
    0

Embed Size (px)

DESCRIPTION

Structure and Evolution of Cosmological HII Regions. T. Kitayama (Toho University) with N. Yoshida, H. Susa, M. Umemura. Introduction. Feedback from the 1st stars in a Pop III objects - radiation - SN explosion. ⇒ formation of HII regions (Yorke 1986) - PowerPoint PPT Presentation

Citation preview

Page 1: Structure and Evolution of Cosmological HII Regions

Structure and Evolution of Cosmological HII Regions

T. Kitayama (Toho   University)

with

N. Yoshida, H. Susa, M. Umemura

Page 2: Structure and Evolution of Cosmological HII Regions

Introduction

Feedback from the 1st stars in a Pop III objects - radiation - SN explosion

⇒ formation of HII regions (Yorke 1986) dissociation of molecules   (Omukai & Nishi 1999) blow-away of gas (Ferrara 1998) metal enrichment (Gnedin & Ostriker 1997) etc.

Great impacts on - reionization history - galaxy formation

Page 3: Structure and Evolution of Cosmological HII Regions

Difficulties- Many relevant physical processes radiative transfer, non-equilibrium chemistry, explosive motions….

- Uncertain initial conditions density, temperature, velocity, composition…..

This work 1D hydro + radiative transfer + H2 chemistry   ⇒  Evolution of HII regions around 1st stars for various Mhalo & ρ(r)   Initial conditions for SN feedback studies

Page 4: Structure and Evolution of Cosmological HII Regions

HII regions in a uniform medium (1)

HII

HII

Static solution: photoionization = recombination ⇒   Stroemgren sphere (1939)

Page 5: Structure and Evolution of Cosmological HII Regions

HII regions in a uniform medium (2)

Dynamical evolution

Two phases!

formation ofthe HII region→pressure gap→shock→expansion of the HII region

Page 6: Structure and Evolution of Cosmological HII Regions

HII regions in a uniform medium (3)

R-type front

HII

HIIHII

D-type front

rion < Rst

vion >> vshock

rion > Rst

vion ~ vshock

shock formation

Page 7: Structure and Evolution of Cosmological HII Regions

HII regions in a uniform medium (4)

Rst

Essential ingredients:

- hydrodynamics- radiative transfer- time-dependent reactions- density profile of the medium etc.

Page 8: Structure and Evolution of Cosmological HII Regions

MethodCollapsed cloud at z=10 in a ΛCDM universe total M → radius Rvir

gas: power-law density profile n r∝ -w

Ti =1000K, Xe=10-4, XH2=10-4

DM: NFW profile (fixed)Radiation from a central massive star 200 Msun, zero metallicity →   Nγ(>13.6eV) = 2.3×1050 1/s Teff = 105 K τ= 2.2 Myr (Schaerer 2002)

Solve 1D hydro, radiative transfer of UV photons, chemical reactions (e, H, H+, H-, H2, H2

+,)

& cooling/heating self-consistently

M,w: free

Page 9: Structure and Evolution of Cosmological HII Regions

n(r) r∝ -w, w=2M=3×106 Msun

high central density →confined I-front →sweep out of gas by shock →prompt ionization

D-type →R-typeopposite to the uniform medium

Structure of HII regions (1)

Page 10: Structure and Evolution of Cosmological HII Regions

Structure of HII regions (2)

n(r) r∝ -w, w=2M=3×107 Msun

higher mass→ confined shock→ no further ionization   

D-type only

Page 11: Structure and Evolution of Cosmological HII Regions

Structure of HII regions (3)

n(r) r∝ -w, w=1.5M=3×107 Msun

shallower slope・ lower n at the center・ higher n at the envelope

R-type →D-type

Page 12: Structure and Evolution of Cosmological HII Regions

Density profile and I-front types

n∝ Rst-3/2

n∝ Rst-3/2

n r∝ -w

w<3/2

n r∝ -w

w>3/2

R-type →   D-type D-type →   R-type

r<Rst →   r>Rst r>Rst →   r<Rst

Page 13: Structure and Evolution of Cosmological HII Regions

Evolution of HII regions (1)

n(r) r∝ -w, w=2.0

M<107 Msun

fully ionized H2 fully dissociated n0 < 1 cm-3

M>107 Msun

almost unionized H2 partially dissoc. n0 > 30 cm-3

I-front

shock

Page 14: Structure and Evolution of Cosmological HII Regions

Evolution of HII regions (2)

M=107 Msun

w<1.5

fully ionized H2 fully dissociated n0 <1 cm-3

w>2.0

almost unionized H2 partially dissoc. n0 >10 cm-3

I-front

shock

Page 15: Structure and Evolution of Cosmological HII Regions

Final HI and H2 fractions

Critical masses- ionization ~ 107 Msun

- H2 dissociation ~ 108 Msun

H2 fraction positive feedback near Mcrit

Page 16: Structure and Evolution of Cosmological HII Regions

Fate of collapsed clouds

HII

HI & H2

HI H2 dissociated

Page 17: Structure and Evolution of Cosmological HII Regions

Fate of collapsed clouds

HII

HI & H2

HI H2 dissociated

large: R-typesmall: D-type

Page 18: Structure and Evolution of Cosmological HII Regions

Density profile and I-front types

n∝ Rst-3/2

n∝ Rst-3/2

n r∝ -w

w<3/2

n r∝ -w

w>3/2

R-type →   D-type D-type →   R-type

r<Rst →   r>Rst r>Rst →   r<Rst

Page 19: Structure and Evolution of Cosmological HII Regions

Conclusions

Radiative feedback from a massive star in Pop III objects →   photoionized & photodissociated HII regions (M<107 Msun) (M<108 Msun) sweep-out of gas by shock down to n < 1 cm-3

Evolution & structure of HII regions sensitive to M & gas density profile (index w) w<1.5 : R-type → D-type w>1.5 : D-type → R-type maintenance/achievement of R-type front is essential!

Page 20: Structure and Evolution of Cosmological HII Regions

Future work

- Subsequent SN explosion

← initial conditions from the present work

- different z, Mstar, Zstar,…..

- dust in HII regions

etc.