29
Stokes’ Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Summer 2011 J. Robert Buchanan Stokes’ Theorem

Stokes' Theorem - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Stokes/main.pdf · Stokes’ Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

  • Upload
    vumien

  • View
    239

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Stokes' Theorem - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Stokes/main.pdf · Stokes’ Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Stokes’ TheoremMATH 311, Calculus III

J. Robert Buchanan

Department of Mathematics

Summer 2011

J. Robert Buchanan Stokes’ Theorem

Page 2: Stokes' Theorem - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Stokes/main.pdf · Stokes’ Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Background (1 of 2)

Recall: Green’s Theorem,∮C

M(x , y) dx + N(x , y) dy =

∫∫R

(∂N∂x− ∂M∂y

)dA

where C is a piecewise smooth, positively oriented, simpleclosed curve in the xy -plane enclosing region R.

Define the vector field F(x , y) = 〈M(x , y),N(x , y),0〉.Note that ∇× F = 〈0,0, ∂N

∂x −∂M∂y 〉.

The component of ∇× F along k is

(∇× F) · k =

(∂N∂x− ∂M∂y

)k · k =

∂N∂x− ∂M∂y

J. Robert Buchanan Stokes’ Theorem

Page 3: Stokes' Theorem - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Stokes/main.pdf · Stokes’ Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Background (2 of 2)

Thus we have developed the vector form of Green’s Theorem∮C

M(x , y) dx + N(x , y) dy =

∫∫R

(∂N∂x− ∂M∂y

)dA∮

CF · dr =

∫∫R(∇× F) · k dA

Today we will generalize this result to three dimensions.

J. Robert Buchanan Stokes’ Theorem

Page 4: Stokes' Theorem - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Stokes/main.pdf · Stokes’ Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Curve Orientation

C

n

S

-1.0-0.5

0.0

0.5

1.0

x

-1.0

-0.5

0.0

0.5

1.0

y

0.0

0.5

1.0

1.5

2.0

z

Using the right-hand rule, curve C has positive orientation if ithas the same orientation as the right hand’s fingers when theright thumb points in the direction of the normal n to surface S.Otherwise C has negative orientation.

J. Robert Buchanan Stokes’ Theorem

Page 5: Stokes' Theorem - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Stokes/main.pdf · Stokes’ Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Stokes’ Theorem

Theorem (Stokes’ Theorem)Suppose that S is an oriented, piecewise-smooth surface withunit normal vector n, bounded by the simple closed,piecewise-smooth boundary curve ∂S having positiveorientation. Let F(x , y , z) be a vector field whose componentshave continuous first partial derivatives in some open regioncontaining S. Then,∮

∂SF(x , y , z) · dr =

∫∫S(∇× F) · n dS.

J. Robert Buchanan Stokes’ Theorem

Page 6: Stokes' Theorem - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Stokes/main.pdf · Stokes’ Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Interpretation

Recalling that the unit tangent vector is

T(t) =r′(t)‖r′(t)‖

⇐⇒ r′(t) = ‖r′(t)‖T(t)

and that differential arc length is defined as

ds = ‖r′(t)‖dt ,

sometimes Stokes’ Theorem is written as∫∫S(∇× F) · n dS =

∮∂S

F(x , y , z) · dr =

∮∂S

F · T ds

where T is the unit tangent in the direction of ∂S.

Interpretation: The line integral of the tangential component ofF is equal to the flux of the curl of F. This integral is the averagetendency of the flow of F to rotate around path ∂S.

J. Robert Buchanan Stokes’ Theorem

Page 7: Stokes' Theorem - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Stokes/main.pdf · Stokes’ Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (1 of 4)

Evaluate∮∂S

F · dr where F(x , y , z) = −y2i + x j + z2k and ∂S

is the intersection of the plane y + z = 2 and the cylinderx2 + y2 = 1.

-1

0

1

x

-1

0

1

y

1

2

3

z

J. Robert Buchanan Stokes’ Theorem

Page 8: Stokes' Theorem - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Stokes/main.pdf · Stokes’ Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (2 of 4)

Note that ∇× F = (1 + 2y)k.There are many surfaces which have ∂S as a boundary,choose the elliptical disk bounded by ∂S in the planey + z = 2.

The unit normal to this surface is n =1√2〈0,1,1〉.

J. Robert Buchanan Stokes’ Theorem

Page 9: Stokes' Theorem - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Stokes/main.pdf · Stokes’ Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (3 of 4)

-1

0

1

x

-1

0

1

y

1

2

3

z

S

C

n

-1.0-0.5

0.00.5

1.0 x

-1.0-0.5

0.00.5

1.0y

1.0

1.5

2.0

2.5

3.0

z

J. Robert Buchanan Stokes’ Theorem

Page 10: Stokes' Theorem - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Stokes/main.pdf · Stokes’ Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (4 of 4)

According to Stokes’ Theorem∮∂S

F · dr =

∫∫S(∇× F) · n dS

=

∫∫S(1 + 2y)k · 1√

2〈0,1,1〉dS

=

∫∫S

1√2(1 + 2y) dS

=

∫∫R(1 + 2y) dA

=

∫ 2π

0

∫ 1

0(1 + 2r sin θ)r dr dθ

=

∫ 2π

0

∫ 1

0r dr dθ

= π

J. Robert Buchanan Stokes’ Theorem

Page 11: Stokes' Theorem - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Stokes/main.pdf · Stokes’ Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (1 of 4)

Evaluate∫∫

S(∇× F) · ndS where F(x , y , z) = yzi + xzj + xyk

and S is the part of the sphere x2 + y2 + z2 = 4 that lies insidethe cylinder x2 + y2 = 1 and above the xy -plane.

-2

-1

0

1

2

x

-2

-1

0

1

2

y

0.0

0.5

1.0

1.5

2.0

z

J. Robert Buchanan Stokes’ Theorem

Page 12: Stokes' Theorem - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Stokes/main.pdf · Stokes’ Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (2 of 4)

Surface S is bounded by a circle formed by the intersectionof the sphere of radius 2 and the cylinder of radius 1.We can describe ∂S using the vector-valued function

r(t) = 〈cos t , sin t ,√

3〉,

with 0 ≤ t ≤ 2π.

J. Robert Buchanan Stokes’ Theorem

Page 13: Stokes' Theorem - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Stokes/main.pdf · Stokes’ Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (3 of 4)

-2

-1

0

1

2

x

-2

-1

0

1

2

y

0.0

0.5

1.0

1.5

2.0

zS

n

C

-1.0

-0.5

0.0

0.5

1.0

x

-1.0

-0.5

0.0

0.5

1.0

y

2.0

2.5

3.0

z

J. Robert Buchanan Stokes’ Theorem

Page 14: Stokes' Theorem - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Stokes/main.pdf · Stokes’ Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (4 of 4)

According to Stokes’ Theorem∫∫S(∇× F) · n dS

=

∮∂S

F · dr

=

∫ 2π

0F(cos t , sin t ,

√3) · 〈− sin t , cos t ,0〉dt

=√

3∫ 2π

0(cos2 t − sin2 t) dt

=√

3∫ 2π

0cos 2t dt

= 0

J. Robert Buchanan Stokes’ Theorem

Page 15: Stokes' Theorem - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Stokes/main.pdf · Stokes’ Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

An Identity

Show that∮

C(f ∇f ) · dr = 0.

∮C(f ∇f ) · dr =

∫∫S

(∇× (f ∇f )) · n dS

=

∫∫S

(∇×

⟨f∂f∂x, f∂f∂y, f∂f∂z

⟩)· n dS

=

∫∫S

0 · n dS

= 0

J. Robert Buchanan Stokes’ Theorem

Page 16: Stokes' Theorem - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Stokes/main.pdf · Stokes’ Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Interpretation of the Curl (1 of 3)

Let P = (x0, y0, z0) be any point in a vector field F and let Sa bea circular disk of radius a > 0 centered at P. Let Ca be theboundary of Sa.

n

P

Ca

Sa

J. Robert Buchanan Stokes’ Theorem

Page 17: Stokes' Theorem - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Stokes/main.pdf · Stokes’ Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Interpretation of the Curl (2 of 3)

Average value of (∇× F) · n on surface Sa:

[(∇× F) · n]|Pa=

1πa2

∫∫Sa

(∇× F) · n dS

where πa2 is the area of Sa and point Pa ∈ Sa by the IntegralMean Value Theorem.

By Stokes’ Theorem∮Ca

F · dr =

∫∫Sa

(∇× F) · n dS

= πa2 [(∇× F) · n]|Pa

J. Robert Buchanan Stokes’ Theorem

Page 18: Stokes' Theorem - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Stokes/main.pdf · Stokes’ Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Interpretation of the Curl (2 of 3)

Average value of (∇× F) · n on surface Sa:

[(∇× F) · n]|Pa=

1πa2

∫∫Sa

(∇× F) · n dS

where πa2 is the area of Sa and point Pa ∈ Sa by the IntegralMean Value Theorem.

By Stokes’ Theorem∮Ca

F · dr =

∫∫Sa

(∇× F) · n dS

= πa2 [(∇× F) · n]|Pa

J. Robert Buchanan Stokes’ Theorem

Page 19: Stokes' Theorem - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Stokes/main.pdf · Stokes’ Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Interpretation of the Curl (3 of 3)

[(∇× F) · n]|Pa=

1πa2

∮Ca

F · dr

lima→0+

[(∇× F) · n]|Pa= lim

a→0+

1πa2

∮Ca

F · dr

[(∇× F) · n]|P = lima→0+

1πa2

∮Ca

F · T ds

If F describes the flow of a fluid then∮

CF · T ds is the

circulation around C, the average tendency of the fluid tocirculate around the curve.

J. Robert Buchanan Stokes’ Theorem

Page 20: Stokes' Theorem - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Stokes/main.pdf · Stokes’ Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Remarks

[(∇× F) · n]|P attains its maximum when ∇× F is parallelto n.We can define rot F = (∇× F) · n. This quantity is therotation of the vector field at a point.F is an irrotational vector field if and only if ∇× F = 0.

J. Robert Buchanan Stokes’ Theorem

Page 21: Stokes' Theorem - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Stokes/main.pdf · Stokes’ Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example

Suppose F = 〈3y ,4z,−6x〉. Find the direction of the maximumvalue of (∇× F) · n.

Since ∇× F = 〈−4,6,−3〉, the maximum of (∇× F) · n willoccur in the direction of

n =〈−4,6,−3〉‖〈−4,6,−3〉‖

=1√61〈−4,6,−3〉.

J. Robert Buchanan Stokes’ Theorem

Page 22: Stokes' Theorem - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Stokes/main.pdf · Stokes’ Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example

Suppose F = 〈3y ,4z,−6x〉. Find the direction of the maximumvalue of (∇× F) · n.

Since ∇× F = 〈−4,6,−3〉, the maximum of (∇× F) · n willoccur in the direction of

n =〈−4,6,−3〉‖〈−4,6,−3〉‖

=1√61〈−4,6,−3〉.

J. Robert Buchanan Stokes’ Theorem

Page 23: Stokes' Theorem - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Stokes/main.pdf · Stokes’ Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Irrotational Vector Fields

TheoremSuppose that F(x , y , z) has continuous partial derivativesthroughout a simply connected region D, then ∇× F = 0 in D if

and only if∮

CF · dr = 0 for every simple closed curve C in D.

J. Robert Buchanan Stokes’ Theorem

Page 24: Stokes' Theorem - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Stokes/main.pdf · Stokes’ Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Proof (1 of 2)

Suppose ∇× F = 0.According to Stokes’ Theorem∮

CF · dr =

∫∫S(∇× F) · n dS =

∫∫S

0 dS = 0.

J. Robert Buchanan Stokes’ Theorem

Page 25: Stokes' Theorem - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Stokes/main.pdf · Stokes’ Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Proof (2 of 2)

Suppose∮

C F · dr = 0 for every simple closed curve C.If at some point P, (∇× F) 6= 0, then by continuity thereexists a subregion of D on which (∇× F) 6= 0.In the subregion choose a circular disk whose normal n isparallel to ∇× F.∮

CF · dr =

∫∫S(∇× F) · n dS 6= 0

which contradicts our first assumption.

J. Robert Buchanan Stokes’ Theorem

Page 26: Stokes' Theorem - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Stokes/main.pdf · Stokes’ Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Inclusive Result

TheoremSuppose that F(x , y , z) has continuous first partial derivativesthroughout a simply connected region D, then the followingstatements are equivalent.

1 F is conservative in D, i.e. F = ∇f .

2

∫C

F · dr is independent of path in D.

3 F is irrotational in D, i.e. ∇× F = 0 in D.

4

∮C

F · dr = 0 for every simple closed curve in D.

J. Robert Buchanan Stokes’ Theorem

Page 27: Stokes' Theorem - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Stokes/main.pdf · Stokes’ Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example

Let F(x , y , z) = y2i + (2xy + e3z)j + 3ye3zk and show that F isconservative.

We can accomplish this by showing that ∇× F = 0.

∇× F =

∣∣∣∣∣∣i j k∂∂x

∂∂y

∂∂z

y2 2xy + e3z 3ye3z

∣∣∣∣∣∣ = 〈0,0,0〉

J. Robert Buchanan Stokes’ Theorem

Page 28: Stokes' Theorem - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Stokes/main.pdf · Stokes’ Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example

Let F(x , y , z) = y2i + (2xy + e3z)j + 3ye3zk and show that F isconservative.

We can accomplish this by showing that ∇× F = 0.

∇× F =

∣∣∣∣∣∣i j k∂∂x

∂∂y

∂∂z

y2 2xy + e3z 3ye3z

∣∣∣∣∣∣ = 〈0,0,0〉

J. Robert Buchanan Stokes’ Theorem

Page 29: Stokes' Theorem - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Stokes/main.pdf · Stokes’ Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Homework

Read Section 14.8.Exercises: 1–33 odd

J. Robert Buchanan Stokes’ Theorem