ST.master Thesis Prentation

Embed Size (px)

Citation preview

  • 7/23/2019 ST.master Thesis Prentation

    1/24

    Numerical Study of Free Surface Effect on S

    upercavitating Flows

    Student: Dang Son TungSupervisor: Prof. Park Warn yu

    !"#$%#!%"&

    Sc'ool of (ec'anical Engineering

    Pusan National )niversity

    (aster T'esis Presentation

  • 7/23/2019 ST.master Thesis Prentation

    2/24

    *ontents

    +ntroduction

    overning e,uation

    -F met'od

    Simulation results

    *onclusions

    1

    2

    3

    4

    5

  • 7/23/2019 ST.master Thesis Prentation

    3/24

    +ntroduction

    Supercavitating flow / p'enomenon occurs w'en t'e cavity develop large enoug' to cover an o01ect travelling

    t'roug' t'e li,uid. Classififcation:

    1. Natural supercavity2 w'ic' t'e 0u00le is filled 0y pure vapor

    2. Ventilated supercavity, w'ic' is artificially created 0y in1ecting gas to t'e cavity +n reality2 most of supercavitating applications operate under t'e free surface 0etween

    li,uid and air suc' as torpedo or underwater ve'icle.

    Figure 1. Supercavitating flow Figure 2. The application of supercavitation

  • 7/23/2019 ST.master Thesis Prentation

    4/24

    +ntroduction

    Supercavitating flow Computational methods:

    1. Two-fluid model Simulates eac' p'ase separately 0y employing two sets of conservation e,uations

    governing t'e 0alance of t'e mass2 momentum2 and energy of eac' p'ase.

    2. Homogeneous mixture model(H!" /ssumes t'at t'e temperature2 pressure2 and velocity are in e,uili0rium 0etween t'e

    p'ases. *onse,uently2 t'e governing e,uations for t'e mass2 momentum2 and energy

    conservation reduce to a form similar to t'ose for a single3p'ase flow

    Vapor volume fraction

    Mixturespeedofsound(m/s)

    0 0.25 0.5 0.75 110

    0

    101

    102

    103

    104

    427.9 m/s

    1503.0 m/s

    3.741 m/s

    Preconditioning method

    (ultip'ase flow

    4.56 m%s 7 c 7 #$"4 m%s

    Preconditioning

    (ac'8#

    Supersonic flow

    (ac'7#

    Su0sonic flow

    *onverge faster *onverge slowly

    c *onverge 0etterFigure 3. Mixture speed of sound versus

    vapour fraction

    CFt

    =

    sup ! su" ! ?

    sup su" !

  • 7/23/2019 ST.master Thesis Prentation

    5/24

    +ntroduction

    Free surface flow T'e surface of a fluid t'at is su01ect to constant perpendicular normal stress and 9ero parallel s'ear

    stress2 suc' as t'e 0oundary 0etween two 'omogeneous fluids2 in t'is case2 is li,uid water and t'e air. Computational methods:

    1. #nterface trac$ing met%od (&agrangian sc%eme" (odels t'e free surface 0y attac'ing computational grid on t'e moving 0oundary

    2. #nterface capturing met%od (ulerian sc%eme" Employs a fied mes' formulation and reconstructs t'e interface 0etween two p'ases from

    t'e value of appropriate flow field varia0les #$F method models t'e free surface t'roug' li,uid void fraction.

    +nterface s'arpening tec'ni,ue

    +nterface reconstruction tec'ni,ue

    a%&nterface trac'ing method "% &nterface capturing method

    Figure (. &nterface modeling method

  • 7/23/2019 ST.master Thesis Prentation

    6/24

    +ntroduction

    HE

    /ir

    Water-apor

    VOF

    !"#ective of this stud$ +nvestigate t'e effect of free surface on supercavitating flow in term of

    T'e s'ape of supercavity T'e deformation process of supercavity

    /pply -F met'od to model t'e free surface and ;E( met'od to simulate

    t'e multip'ase flows

    Figure ). Schematic of $"*ective of this stud+

  • 7/23/2019 ST.master Thesis Prentation

    7/24

    overning E,uation

    T'e compressi0le two3p'ase 'omogeneous

    F=

    ?E=

    >F=

    ?E=

    @A=

    BtA=

    B

    vv

    e =+++

    =

    g

    v

    C

    C

    T

    v

    u

    p

    A=

    +

    +

    =

    )DC

    )DC)'D

    p?v)D

    p?u)D

    )2DC

    #E=

    mg

    mv

    tm

    pym

    pm

    mG

    +

    +

    =

    -DC

    -DC-'D

    pE>v-D

    pE>u-D

    -DC

    #F=

    mg

    mv

    tm

    pym

    p:m

    mG

    v>u>-Hv?u?) y:y: +=+=

    pE

    ( ) ( )

    ++++

    +

    =

    "

    "

    ,v@u@?,v@u@?

    @?@?

    @?@?

    "

    #E=

    yyyyyy

    yyyy

    yy

    v

    ( ) ( )

    ++++

    +

    =

    "

    "

    ,v@u@>,v@u@>

    @>@>

    @>@>

    "

    #F=

    yyyyyy

    yyyy

    yy

    v

    +

    ++

    +

    =

    +

    +

    y

    vDCc

    y

    vDCcmm

    y

    ,v@u@v'D3c

    y@

    yvDc

    y

    @

    y

    uvDc

    y

    vDCcmm

    S=

    mg

    a

    mva

    yyyytm

    a

    yy

    !

    ma

    yma

    mGa

  • 7/23/2019 ST.master Thesis Prentation

    8/24

    overning E,uation

    T'e flu aco0ian matri and preconditioning matri

    w'ere2

    *avitation model I(erkle !""6J:

    =

    ;CC""C

    CC""C

    FEDvu*

    v v v"v

    uuu"u

    PKC""C

    B

    mCvgmTg

    L

    mpg

    mCgvmTv

    L

    mpv

    mm

    mCgmCvmTm

    L

    mp

    mCgmCvmTm

    L

    mp

    mTG

    L

    mpG

    =

    ;CC""C

    CC""C

    FEDvu*

    v v v"v

    uuu"u

    PKC""C

    B

    mCvgmTgmpg

    mCgvmTvmpv

    mm

    mCgmCvmTmmp

    mCgmCvmTmmp

    mTGmpG

    e

    C;2C

    ''F'2'E

    ''D2''*

    C3P2C3K

    mCggmmCvvm

    CgmmCgtCvmmCvt

    TmmTtppmmpt

    mCgGmmCvGm

    +=+=

    +=+=

    +=+=+=+=

    ( )

    ( )"2ppmat)

    !

    #

    M*m

    "2ppmint)

    !

    #

    M*

    m

    v

    vvprod

    v

    lldest

    =

    =

    +

    L

    m m L! !

    # #

    p p c c

    = +

    T

    D

    p

    'D

    p

    D

    T

    'D

    T

    'D

    cm

    mp

    m

    m

    mp!

    +

    =

    !! ! ! !

    p- cL min c 2ma:I ) 2) J = =

    r

  • 7/23/2019 ST.master Thesis Prentation

    9/24

    -F met'od

    T'e location of interface 0etween two p'ases is defined t'roug' a li,uid void fraction

    +f # : t'e cell contains only li,uid

    +f " : t'e cell contains only t'e ot'er p'ase +f " 7

    7 #: t'e cell contains 0ot' two p'ases

    T'e advection e,uation: +n *artesian coordinates:

    +n generali9ed curvilinear coordinates:

    w'ere2

    Figure ,. Modelling interface

    through #$F

    "l l lu vt x +

    + + =

    l

    l l

    F - ! #.

    t . .

    + + = +

    lF !.

    =

    l- #.

    =

  • 7/23/2019 ST.master Thesis Prentation

    10/24

    -F met'od

    Numerical met'od /pplying Operator Split /dvection /lgorit'm. T'e governing e,uation is split into

    T'e discretisation of t'e e,uations

    w'ere2

    : t'e volume of fluid in t'e cell

    +n present researc'2 PG+*tec'ni,ue is applied to reconstruct t'e free surface in order to

    compute t'e flu across t'e cell 0oundary.

    SG+*

    PG+*

    Figure /. &nterface reconstruction

    techni0ue

    l

    l

    F !.

    t .

    + =

    l

    l

    - #.

    t .

    + =

    ( ) #%! #%!2 2 #%! #%!#%! #%!

    Qt Q

    Q? Q% #n i il i * il i

    i i

    ! !tF F

    . .. .

    + +

    +

    = +

    ( )#%! #%!# #%! #%!#%! #%!

    Q Qt

    Q#

    t

    Q

    * *n

    l * *

    * *

    l . .# #

    - -. .

    + +

    ++

    +

    = +

    ( )#%!2 #%! #%!2 #%!%Qt Q>i * i i * iF ! # !+ + + +=

    #%!2i *#+

  • 7/23/2019 ST.master Thesis Prentation

    11/24

    Simulation results

    Simple test case

    -F (et'od ;omogeneous (odel I;E(J

    : Eact interface

    Figure . Schematic of Flow Field

    Figure . Time se0uence of the interface movement

  • 7/23/2019 ST.master Thesis Prentation

    12/24

    Simulation results

    Simple test case

    +nterface position:

    ".!

    +nterface position: ".&

    +nterface position:

    ".5

    +nterface position:

    #."

    Figure 1. i0uid void fraction distri"ution in various interface locations

  • 7/23/2019 ST.master Thesis Prentation

    13/24

    Simulation results

    Dam0reak test

    Figure 11. The tan' shape at front view and side view

    Figure 12. The computation domain

  • 7/23/2019 ST.master Thesis Prentation

    14/24

    Simulation results

    Dam0reak test

    Figure 13. i0uid void fraction calculated "+ #$F method

    and 45M method

    Figure 1(. The shape of fluid versus non6dimensional time

  • 7/23/2019 ST.master Thesis Prentation

    15/24

    Simulation results

    Dam0reak test

    !ime

    "avefront

    0 0.5 1 1.5 2 2.5 30

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4# $ 0.3% &umericalresult(V')# $ 0.% &umericalresult(V')# $ 0.3% &umerical result(#M)# $ 0.3% !*+& experiment

    # $ 0.% !*+& experiment# $ 0.220% ,ressler1 954

    # $ 0.110% ,ressler1 954# $ 0.055% ,ressler1 954# $ 0.114% Martin-Moce 1952

    h%H

    0 2 4 6 8 10 120

    0.2

    0.4

    0.6

    0.8

    1 # $ 0.3% &umericalresult(V')# $ 0.3% &umerical result(#M)

    # $ 0.3% !*+& 01# $ 0 .% ee et al. 2002# $ 0.% ucner 2002

    h%H

    0 2 4 6 8 10 12

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1 # $ 0.3% &umerical esult(V')# $ 0.3% &umericalesult(#M)

    # $ 0.3% !*+& 01# $ 0.3% !*+& 02# $ 0.% /ee et al. 2002# $ 0.% ucner 2002

    h%H

    0 2 4 6 8 10 120

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1 # $ 0.3% &umerical result(V')# $ 0.3% &umerical result(#M)

    # $ 0.3% !*+& 01# $ 0.3% !*+& 02# $ 0.% /ee et al. 2002# $ 0.% ucner2002

    1/#

    0 2 4 6 8 10 120

    0.2

    0.4

    0.6

    0.8

    1

    1.2 # $ 0.3% &umericalresult(V')

    # $ 0.3% &umericalresult(#M)

    # $ 0.3% !*+&01

    # $ 0.3% !*+& 02

    # $ 0.% /ee et al. 2002# $ 0.% urcer 2002

    arrival of

    t'e second wave

    arrival of

    t'e second wave

    arrival of t'e primary wave

    arrival of

    t'e second wave

    arrival of t'e primary wave

    arrival of

    t'e second wave

    arrival of t'e primary wave

    Figure 1,. The position of wave front versus time

    Figure 1). The water height at various locations versus the non6dimensional time

    Gi,uid 'eig't at ;# Gi,uid 'eig't at ;!

    Gi,uid 'eig't at ;4 Gi,uid 'eig't at ;&t&g%H'1%2 t&g%H'1%2

    t&g%H'1%2 t&g%H'1%2

  • 7/23/2019 ST.master Thesis Prentation

    16/24

    Simulation results

    Dam0reak test

    0 2 4 6

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4 *ensor 1 &umerical result(V')

    *ensor 1 &umerical result(#M)*ensor 1 xperiment

    0 2 4 6

    0

    0.5

    1

    1.5

    2

    2.5 *ensor 2 &umerical esult(V')

    *ensor 2 &umerical result(#M)*ensor 2 xperiment

    0 2 4 6

    0

    0.5

    1

    1.5

    2 *ensor 3 &umerical result(V')*ensor 3 &umerical result(#M)*ensor 3 xperiment

    0 2 4 6

    0

    0.5

    1

    1.5

    2 *ensor 4 &umerical esult(V')

    *ensor 4 &umerical result(#M)*ensor 4 xperiment

    Figure 1/. T+pical impact pressure at all four pressure sensors at 4 7 .3m

    t&g%H'1%2 t&g%H'1%2

    t&g%H'1%2 t&g%H'1%2

    (%

    &)gH'

    (%

    &)gH'

    (% &)gH'

    (% &)gH'

  • 7/23/2019 ST.master Thesis Prentation

    17/24

    Simulation results

    Dam0reak test

    0 1 2 3 4 5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5*ensor 1 &umericalresult

    *ensor 1 xperiment result

    0 1 2 3 4 5

    0

    1

    2

    3*ensor 2 &umerical result

    *ensor 2 xperimentalresult

    0 1 2 3 4 5

    0

    1

    2

    3*ensor 3 &umericalresult

    *ensor 4 xperimetal result

    0 1 2 3 4 5

    0

    0.5

    1

    1.5

    2*ensor 4 &umerical result

    *ensor 4 xperiment result

    Figure 1. T+pical impact pressure at all four pressure sensors at 4 7 .,m

    t&g%H'1%2 t&g%H'1%2

    t&g%H'1%2 t&g%H'1%2

    (%

    &)gH'

    (%&)gH'

    (%

    &)gH

    '

    (%

    &)gH'

  • 7/23/2019 ST.master Thesis Prentation

    18/24

    Simulation results

    S'eet cavitation flows over a #%R cali0er30lunt 0ody

    */,

    4p

    0 2 4 6 8-0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2&umerical result a.no $ 0.3

    &umerical result a.no $ 0.4xperiment a.no $ 0.3

    xperiment a.no $ 0.4

    Figure 1. Time se0uence of unstead+ cavitating flows over the 18

    cali"er6"lunt "od+

    Figure 2. the pressure coefficient

  • 7/23/2019 ST.master Thesis Prentation

    19/24

    Simulation results

    Non3slip wall

    +nletutlet

    S'eet cavitation flows over a divergent% convergent no99le

    Figure 21. -rid of divergent8convergent no99le: 1/x1

    Figure 22. Time se0uence of the c+clic process of "u""le formation

  • 7/23/2019 ST.master Thesis Prentation

    20/24

    Simulation results

    Supercavitating flow under free surface effects

    Figure 23. The shape of h+drofoil and computational domain

    Figure 2(. The time se0uence of "u""le formation for supercavitation at angle of attac' 7 12o:

    cavitation num"er 7 .1/): water level from .3c to 1.c

  • 7/23/2019 ST.master Thesis Prentation

    21/24

    Simulation results

    Supercavitating flow under free surface effects

    &% Ca.no 7 .1) &&% Ca.no 7 .2

    Figure 2). The maximum cavit+ shape at cavitation num"er 7 .1) and .2

    Ta"le 1. The maximum cavit+ length

  • 7/23/2019 ST.master Thesis Prentation

    22/24

    Simulation results

    Supercavitating flow under free surface effects

    */c-10 -5 0 5 10 15 20

    -0.4

    -0.2

    0

    0.2

    0.4 # $ 0.3c

    # $ 1.5c

    # $ 3.0c

    # $ 5.0c# $ 10.0c

    */c-10 -5 0 5 10 15 20

    -0.4

    -0.2

    0

    0.2

    0.4 # $ 0.3c

    # $ 1.5c

    # $ 3.0c

    # $ 5.0c# $ 10.0c

    */c-10 -5 0 5 10 15 20

    -0.4

    -0.2

    0

    0.2

    0.4 # $ 0.3c

    # $ 1.5c

    # $ 3.0c

    # $ 5.0c

    # $ 10.0c

    */c-10 -5 0 5 10 15 20

    -0.4

    -0.2

    0

    0.2

    0.4 6n7le of attac8 $ 10

    6n7le of attac8 $ 126n7le of attac8 $ 14

    Figure 2,. The pressure contour at four

    different water levels

    Figure 2/. The wave profile at angle of attac' e0ual to 1(o

    Figure 2. The wave profile at three different angles of attac'

    in case of ca.no 7 .1/)

    Ca.no =

    0.2

    Ca.no =

    0.175

    Ca.no =

    0.15

    *h%c

    *h%c

    *h%c

    *h%c

  • 7/23/2019 ST.master Thesis Prentation

    23/24

    *onclusion

    +n t'is t'esis2 t'e -F met'od and ;E( met'od are successfully implemented2 t'e

    conclusions can 0e drawn as follows:

    T'e simulation tests performed in various cases s'ow t'at t'e -F sc'eme can predict,uite accurately t'e movement of interface 0etween air and li,uid.

    *omparing wit' t'e ;E( met'od2 t'e -F sc'eme produces a s'arper contacting layer

    0y eliminating t'e numerical error t'roug' computing a cell 0oundary flu applying t'e

    interface reconstruction.

    T'e dynamics tests indicate t'at a diffusive interface make t'e ;E( met'od predict t'e

    impact pressure peak less accurately t'an t'e -F sc'eme.

    T'e presence of free surface affect strongly not only to t'e maimum cavity lengt' 0ut

    also to t'e 0reaking process of 0u00le.

    T'e wave elevation also depends on t'e distance from t'e o01ect to free surface. Future works:

    /pplying -F met'od and ;E( met'od for t'ree3dimensional applications

    +mproving -F met'od to track t'e interface 0etween t'ree p'ases suc' as t'e miture

    of li,uid2 air2 and vapor in t'e ventilated supercavitation pro0lems

  • 7/23/2019 ST.master Thesis Prentation

    24/24

    +H,-. /!0 F!

    /!0 ,++E-+!-