41
Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend • Asif ud-Doula • also: David Cohen, Detlef Groote, Marc Gagné

Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Stellar Magnetospheres

Stan OwockiBartol Research InstituteUniversity of DelawareNewark, Delaware USA

Collaborators (Bartol/UDel)• Rich Townsend• Asif ud-Doula• also: David Cohen, Detlef Groote, Marc Gagné

Page 2: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

“Magnetosphere”• Space around magnetized planet or astron.body• coined in late ‘50’s

– satellites discovery of Earth’s “radiation belts”– trapped, high-energy plasma

• also detected in other planets with magnetic field– e.g. Jupiter (biggest), Saturn etc. (but not Mars, Venus)

• concept since extended to Sun and other stars– sun has “magnetized corona”– stretched out by solar wind

• but study has some key differences...

Page 3: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Planetary vs. Stellar Magnetospheres• outside-in compression• Space physics• local in-situ meas.• plasma parameters• plasma physics models

• inside-out expansion• Astrophysics• global, remote obs.• gas & stellar parameters• hydro or MHD models

Solar coronal expansionInterplanetary medium

Solar astrophysics includes both approaches

Page 4: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Earth’s Magnetosphere

Page 5: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Sun-Earth Connection

Page 6: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Magnetic loops on Solar limb

Page 7: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Solar Flare

Page 8: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Sun’s Active “Magnetosphere”

Page 9: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Solar Activity: Coronal Mass Ejections

Page 10: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Processes for Solar Activity

• Convection + Rotation Dynamo– Complex Magnetic Structure– Magnetic Reconnection– Coronal Heating– Solar Wind Expansion + CME

Page 11: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Solar Corona in EUV & X-raysComposite EUV image from EIT/SOHO X-ray Corona from SOHO

Page 12: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Magnetic Effects on Solar Coronal ExpansionCoronal streamers

Page 13: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Corona during Solar Eclipse

Page 14: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Latitudinal variation of solar wind speed

Coronalstreamers

Page 15: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Pneuman and Kopp (1971)

MHD model for base dipolewith Bo=1 G

Iterative scheme

MHD Simulation

Fully dynamic, time dependent

Page 16: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

MHD model for magnetized plasmas• ions & electrons coupled in “single fluid”

– “effective” collisions =>– Maxwellian distributions

• large scale in length & time– >> Larmour radius, mfp, Debye, skin– >> ion gyration period

• ideal MHD => infinite conductivity

Page 17: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Magnetohydrodynamic (MHD) Equations

DρDt

+ ρ∇ •v = 0Mass Momentum

mag InductionDivergence free B

P = ρa2 = (γ −1)e

∂e∂ t

+∇ ⋅ ev = −P∇ ⋅ v + H −C€

ρDvDt

= −∇p +14π

∇ × B( ) × B + ρ(gext − ggrav )

∂B∂t

=∇ × v × B( )

∇ •B = 0

Energy Ideal Gas E.O.S.

Page 18: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Maxwell’s equations

Induction

no mag. monopoles

∇ × E = −1c∂B∂t

∇ •B = 0€

∇ • E = 4πρe

Coulomb

∇ × B =4πcJ +

1c∂E∂t

Ampere

O vc

2

<<1

Page 19: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Magnetic Induction & Diffusion

J =σ(E + v × B /c)

magnetic induction

Combine Maxwell’s eqns. with Ohm’s law:

∂B∂t

=∇ × v × B( ) +c 2

4σ∇2B

Eliminate E and J to obtain:

magneticdiffusion

Page 20: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Magnetic Reynold’s number

Re ≅ 4πσLvc 2

induction

∂B∂t

=∇ × v × B( ) +c 2

4σ∇2B

diffusion

≅inductiondiffusion

>>1

O 1Re

<<1“Ideal” MHD

e.g., 1010!

Page 21: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Frozen Flux theorum

∂B∂t

=∇ × v × B( )Ideal MHD induction eqn.:

F ≡ B • dAσ∫

implies flux F through any material surface σ,

dFdt

= 0

does not change in time, i.e. is “frozen”:

Page 22: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Magnetic loops on Solar limb

Page 23: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Magnetic ReconnectionIf/when/where B field varies over a small enough scale, L << R, i.e. such that local Re~1,then frozen flux breaks down,

dFdt

≠ 0

The associated magnetic reconnection can occur suddenly, leading to dramatic plasma heating through dissipation of magnetic energy B2/8π.

Page 24: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Solar Flare

Page 25: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Magnetic ReconnectionIf/when/where B field varies over a small enough scale, L << R, i.e. such that local Re~1,then frozen flux breaks down,

dFdt

≠ 0

The associated magnetic reconnection can occur suddenly, leading to dramatic plasma heating through dissipation of magnetic energy B2/8π.

Page 26: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Magnetic Lorentz force:magnetic tension and pressure

fLor =J × Bc

magnetictension

Lorentz force

fLor =B •∇B4π

−∇B2

Use BAC-CAB + no. div. to rewrite:

magneticpressure

=14π

∇ × B( ) × B

Page 27: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Alfven speed

VA ≡B4πρ

Alfven speed

ρVA2

2=B2

Note:

= Pmag

= Emag

a ≡Pgasρ

Compare sound speed

Pgas = ρa2

Page 28: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Plasma “beta”

low“beta” plasma strongly magnetic: VA > a

= 2 aVA

2

β ≡PgasPmag

=Pgas

B2 /8π

high “beta” plasma weakly magnetic: VA < a

Page 29: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Key MHD concepts• Reynolds no. Re >> 1• Re->inf => “ideal” => frozen flux• breaks down at small scales: reconnection• Lorentz force ~ mag. pressure + tension• Alfven speed VA~B/sqrt(ρ)• plasma beta ~ Pgas/Pmag ~ (a/VA)2

Page 30: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Magnetohydrodynamic (MHD) Equations

DρDt

+ ρ∇ •v = 0Mass Momentum

mag InductionDivergence free B

P = ρa2 = (γ −1)e

∂e∂ t

+∇ ⋅ ev = −P∇ ⋅ v + H −C€

ρDvDt

= −∇p +14π

∇ × B( ) × B + ρ(gext − ggrav )

∂B∂t

=∇ × v × B( )

∇ •B = 0

Energy Ideal Gas E.O.S.

Page 31: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Apply to solar corona & wind• Solar corona

–high T => high Pgas– scale height H ~< R– breakdown of hydrostatic equilibrium– pressure-driven solar wind expansion

• How does magnetic field alter this?– closed loops => magnetic confinement– open field => coronal holes– source of high speed solar wind

Page 32: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Hydrostatic Scale Height

≈T614

Scale Height:

HR

=a2RGM €

P = ρa2

≡a2

H

HR≈

12000

solar photosphere:

T6 = 0.006

−GMr2

=1ρdPdr

Hydrostaticequilibrium:

HR≈17

solar corona:

T6 = 2

Page 33: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Failure of hydrostatic equilibriumfor hot, isothermal corona

0 = −GMr2

−a2

PdPdr

hydrostaticequilibrium:

P(r)Po

= exp − RH1− R

r

log PTRPISM

=12

observations for TR vs. ISM:

# decades of pressure decline:

log PoP∞

=

RHloge ≈ 6

T6€

→ exp − RH

for r→∞

Solar corona T6 ~ 2 => must expand!

Page 34: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Spherical Expansion of Isothermal Solar WindMomentum and Mass Conservation:

v dvdr

= −GMr2

−a2

ρdρdr

d ρvr2( )dr

= 0

Combine to eliminate density:

1- a2

v2

vdvdr

=2a2

r−GMr2

RHS=0 at “critical” radius:

rc =GM2a2

v2

a2- ln v

2

a2= 4 ln r

rc+4rcr

+ CIntegrate for transcendental soln:

v rc( ) ≡ a

C = −3 => Transonic soln:

rc = rs sonic radius

Page 35: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Solution topology for isothermal wind

C=-3

Page 36: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Corona during Solar Eclipse

Page 37: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Kopp-HolzerNon-Radial Expansion

Page 38: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Mach number topology

Page 39: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Latitudinal variation of solar wind speed

Coronalstreamers

Page 40: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

MHD model for coronal expansion vs. solar dipole

Pneumann & Kopp 1971Iterative solution MHD Simulation

Page 41: Stellar Magnetospheres€¦ · Stellar Magnetospheres Stan Owocki Bartol Research Institute University of Delaware Newark, Delaware USA Collaborators (Bartol/UDel) • Rich Townsend

Wind Magnetic Confinement

η(r) ≡ B2 /8πρv 2 /2

Ratio of magnetic to kinetic energy density:

e.g, for dipole field,q=3; η ~ 1/r 4

=B2r2

M•

v=B*

2R*2

M•

v∞

(r /R*)2−2q

(1− R* /r)β

η*

for solar wind with Bdipole ~ 1 G: η*~ 40

η* >>1 => strong magnetic confinement of wind