48
03/22/22 03/22/22 1 Status of the Status of the LINAC2 project LINAC2 project Cristina Vaccarezza Cristina Vaccarezza on behalf of the SPARC-X team on behalf of the SPARC-X team

Status of the LINAC2 project

Embed Size (px)

DESCRIPTION

Status of the LINAC2 project. Cristina Vaccarezza on behalf of the SPARC-X team. The SPARC-X team. - PowerPoint PPT Presentation

Citation preview

04/19/2304/19/23 11

Status of the LINAC2 Status of the LINAC2 projectproject

Cristina VaccarezzaCristina Vaccarezzaon behalf of the SPARC-X teamon behalf of the SPARC-X team

04/19/2304/19/23 22

The SPARC-X teamThe SPARC-X team

D.Alesini, S.Bertolucci, M. Bellaveglia, M.E.Biagini, R.Boni, M.Boscolo, M.Castellano, D.Alesini, S.Bertolucci, M. Bellaveglia, M.E.Biagini, R.Boni, M.Boscolo, M.Castellano, A.Clozza, G.Di Pirro, A.Drago, A.Esposito, M.Ferrario, L.Ficcadenti, D. Filippetto, A.Clozza, G.Di Pirro, A.Drago, A.Esposito, M.Ferrario, L.Ficcadenti, D. Filippetto,

V.Fusco, A.Gallo, G. Gatti, A.Ghigo, S.Guiducci, M.Migliorati, A.Mostacci, V.Fusco, A.Gallo, G. Gatti, A.Ghigo, S.Guiducci, M.Migliorati, A.Mostacci, L.Palumbo, L.Pellegrino, M.Preger, C.Sanelli, M.Serio, F.Sgamma, B.Spataro, L.Palumbo, L.Pellegrino, M.Preger, C.Sanelli, M.Serio, F.Sgamma, B.Spataro,

A.Stella, F.Tazzioli, C.Vaccarezza, M.Vescovi, C.Vicario, A.Stella, F.Tazzioli, C.Vaccarezza, M.Vescovi, C.Vicario, INFN-FrascatiINFN-Frascati

F.Alessandria, A.Bacci, F.Broggi, S.Cialdi, C. DeMartinis, D. Giove, C.Maroli, M.Mauri, F.Alessandria, A.Bacci, F.Broggi, S.Cialdi, C. DeMartinis, D. Giove, C.Maroli, M.Mauri, V.Petrillo, M.Romè, L.Serafini, V.Petrillo, M.Romè, L.Serafini, INFN-MilanoINFN-Milano

M.Mattioli, P. Musumeci, M. Petracca, M.Mattioli, P. Musumeci, M. Petracca, INFN-Roma1INFN-Roma1

L.Catani, E.Chiadroni, A. Cianchi, C. Schaerf, L.Catani, E.Chiadroni, A. Cianchi, C. Schaerf, INFN-Roma2INFN-Roma2

F.Ciocci, G.Dattoli, A.Doria, F.Flora, G.P.Gallerano, L.Giannessi, E.Giovenale, F.Ciocci, G.Dattoli, A.Doria, F.Flora, G.P.Gallerano, L.Giannessi, E.Giovenale, G.Messina, P.L.Ottaviani, G. Parisi, L.Picardi, M.Quattromini, A.Renieri, C. G.Messina, P.L.Ottaviani, G. Parisi, L.Picardi, M.Quattromini, A.Renieri, C.

Ronsivalle, Ronsivalle, ENEA-FrascatiENEA-Frascati

J.B. Rosenzweig, S. Reiche, J.B. Rosenzweig, S. Reiche, UCLAUCLA , Los Angeles, CA, USA , Los Angeles, CA, USA

D. Dowell, P. Krejcik, P. Emma, D. Dowell, P. Krejcik, P. Emma, SLACSLAC, Stanford, CA, USA, Stanford, CA, USA

04/19/2304/19/23 33

OutlineOutline

LINAC2 project goalLINAC2 project goal SPARXINO proposal & scientific caseSPARXINO proposal & scientific case General layout, Operating scenarioGeneral layout, Operating scenario Preliminary cost estimatePreliminary cost estimate Beam Dynamics & FEL simulation Beam Dynamics & FEL simulation

resultsresults SummarySummary

04/19/2304/19/23 44

Project GoalProject Goal

High brightness beam injector High brightness beam injector for SASE and seeded FEL for SASE and seeded FEL experiments (experiments (SPARX projectSPARX project))

energy upgrade:

1.5 GeV e-- 1 GeV e+

2 GeV option for e-

(X-band acc. sections)

High EnergyHigh Energy

BBeam eam TTest est FFacilityacility

04/19/2304/19/23 55

Peak & average brilliance evolutionPeak & average brilliance evolution

04/19/2304/19/23 66

a) Feb 2001: Call for proposals-a) Feb 2001: Call for proposals- 7.5 M€ for R&D 7.5 M€ for R&D

SPARC (CNR-ENEA-INFN-INFM-S.Trieste-SPARC (CNR-ENEA-INFN-INFM-S.Trieste-U.Roma2)U.Roma2)

bb)) Dec 2001Dec 2001: : Call for proposals- Call for proposals- 67 M€ for a 67 M€ for a X-ray FEL sourceX-ray FEL source

1) SPARX (CNR-ENEA-INFN-Univ.Roma2)1) SPARX (CNR-ENEA-INFN-Univ.Roma2)

2) FERMI (INFM-Sincrotrone Trieste)2) FERMI (INFM-Sincrotrone Trieste)

Italian InitiativesItalian Initiatives

04/19/2304/19/23 77

04/19/2304/19/23 88

““X-raysX-rays are presently utilized in many research and are presently utilized in many research and application fields, for :application fields, for :

High peak brightness and short pulse durationHigh peak brightness and short pulse duration (few (few femtosecondsfemtoseconds) will be the main characteristics of the SPARX ) will be the main characteristics of the SPARX source.source.

By using a 2.5 GeV linear electron accelerator and two magnetic By using a 2.5 GeV linear electron accelerator and two magnetic undulators it will be possible to emit radiation at undulators it will be possible to emit radiation at 10 nm10 nm and and 1.5 1.5 nm.nm. Exploitation of 3rd and 5th harmonics will allow Exploitation of 3rd and 5th harmonics will allow emission in the range between 10 and 2 nm for the first beam emission in the range between 10 and 2 nm for the first beam line and between 1.5 and 0.3 nm for the second beam line.”line and between 1.5 and 0.3 nm for the second beam line.”

Atomic, molecular and cluster physics

Plasma and warm dense matter

Condensed matter physics Material science Femtosecond chemistry

Life science Single Biological molecules and

clusters Imaging/holography Micro and nano lithography

From the SPARX From the SPARX proposal:proposal:

04/19/2304/19/23 99

FERMIFERMI

A VUV-FEL user A VUV-FEL user facility at facility at 40-10040-100 nmnm

SPARXSPARX

An R&D program for An R&D program for a X-ray FEL test a X-ray FEL test facility at facility at 3-10 nm3-10 nm

The final decision of the Research Ministry The final decision of the Research Ministry was to support two strategic programs:was to support two strategic programs:

04/19/2304/19/23 1010

TheTheSPARX-SPARX-inoino opportunityopportunity

Energy [GeV]

I = 2.5 kAI = 2.5 kAK = 3K = 3e e = 0.03 %= 0.03 %

cr [nm]

nn=1=1

nn=4=4

Energy [GeV]

cr [nm]

I = 1 kAI = 1 kAK = 3K = 3e e = 0.1 %= 0.1 %

nn=4=4

nn=1=1

04/19/2304/19/23 1111

► upgrade the DAFNE Linac to

drive a 3-10 nm SASE-FEL

► beam energy : 1.2 - 1.5 GeV

► upgrade the injector to a RF

photo-injector (SPARC-like)

► Study group is preparing a

proposal within 2005

SPARX-SPARX-inoino proposal:proposal:

04/19/2304/19/23 1212

FEL Covering from the VUV to the 1 Å X-ray spectral range:

new Research Frontiers

12.4 1.24 0.124 (nm)

Brilliance of X-ray radiation Brilliance of X-ray radiation sourcessources

SPARX

04/19/2304/19/23 1313

““Time resolved X-ray microscopyTime resolved X-ray microscopy”, ”, D. Pelliccia, CNR-INFND. Pelliccia, CNR-INFN

““Image reconstruction of non periodic nanostructured Image reconstruction of non periodic nanostructured objects using coherent X-ray diffraction (CXD)” , objects using coherent X-ray diffraction (CXD)” , G. Campi, G. Campi, CNR-ICCNR-IC

““Proprietà ottiche del “mezzo vuoto” a corte lunghezze Proprietà ottiche del “mezzo vuoto” a corte lunghezze d’ondad’onda” ” G.Cantatore Uni-TSG.Cantatore Uni-TS

““Low energy X-rays QED testsLow energy X-rays QED tests”, ”, M. MilottiM. Milotti Uni-UDUni-UD

and more onand more on Radiation Transport, Diagnostics, Beam Radiation Transport, Diagnostics, Beam

Handling, DetectorsHandling, Detectors and and Ultrashort Radiation PulsesUltrashort Radiation Pulses

ScientificScientificcasecase

FOR MORE INFO...

http://www.lnf.infn.it/conference/sparx05/http://www.lnf.infn.it/conference/sparx05/

04/19/2304/19/23 1414

……objectives:objectives:

Input from the workshop: Input from the workshop:

Wavelength range as close Wavelength range as close as possible to the water as possible to the water window (~ window (~ 2.5 – 4.5 nm2.5 – 4.5 nm))

Flexible design: Flexible design:

SASE & Seeded configurationsSASE & Seeded configurations• Improve Improve coherence lengthcoherence length• Short pulsesShort pulses (fs range) (fs range)• Increase wavelength operation Increase wavelength operation

rangerange

… … and to the carbon windowand to the carbon window

F. Bonfigli et al, SPARX workshop, LNF 9-10 May 2005

04/19/2304/19/23 1515

Schematic layout: Schematic layout: 1.2 GeV (basic)1.2 GeV (basic)

E= .490 GeVE= .150 GeV

= -22°

z~ 210 m z~ 50÷90 m

E= 1.2 GeV

R56= 26÷32 mm

BCDL

X-band X-band

L0 L2L1

04/19/2304/19/23 1616

The DAThe DANE LINACNE LINAC

The main LINAC components are the following The main LINAC components are the following ::

Thermionic gunThermionic gun Prebuncher and buncher at f=2.856GHz.Prebuncher and buncher at f=2.856GHz. High current TW LINAC with output energy High current TW LINAC with output energy

250 MeV 250 MeV Positron converterPositron converter Capture sectionCapture section Low current e+e- TW LINAC with output Low current e+e- TW LINAC with output

energy energy 510 MeV. 510 MeV.

04/19/2304/19/23 1717

The DAThe DANE complexNE complex

04/19/2304/19/23 1818

Linac1: Low Energy sectionLinac1: Low Energy section

RFgun

04/19/2304/19/23 1919

Linac2: High energy sectionLinac2: High energy section

Now : Etot ~ 1.2 GeV

dogleg start

Etot ~ w 4 S-band :

1.5 GeV e-, 1GeV e+Etot ~ w 3 X-band 2 GeV e-

04/19/2304/19/23 2020

Operating ScenarioOperating Scenario

Sparxino @ 1.5 GeV &:Sparxino @ 1.5 GeV &:a)a) ee++ 510MeV w damping (+ 510MeV w damping (+

accumulator)accumulator)i.i. Dafne data takingDafne data taking

ii.ii. Dafne high energy w ramping Dafne high energy w ramping

iii.iii. Dafne high luminosity w time sharingDafne high luminosity w time sharing

b)b) ee++ 1 GeV 1 GeVi.i. BTF experimentsBTF experiments

ii.ii. on energy in Dafne2 with new injection systemon energy in Dafne2 with new injection system

04/19/2304/19/23 2121

High energyHigh energydogleg 3D modeldogleg 3D model

04/19/2304/19/23 2222

480 MeV

> 1100 MeV

SPARC PC

45 MW - RF Stations

15075 150

750 MeV

4 new S-band stations (M€ 2.8)

1 X-band station (M€ 1)1 new waveguide system (M€ 0.4)

1 magnetic chicane (M€ 0.6)

1 SPARC clone (M€ 5)

Estimated cost:

M€ (4.8 + 15% + 5) = 10.5M€ +7M€ (buildings & plants upgrade)

SPARXino – 1.2 GeV S-Band

Preliminary cost estimationPreliminary cost estimation 1/31/3

04/19/2304/19/23 2323

4 new acc. sections (M€ 0.7)

6 new stations (M€ 4.2)

1 X-band station (M€ 1)

1 SPARC clone (M€ 5)

1 compressore (M€ 0.6)

1 new waveguide system (M€ 0.5)

Estimated costM€ (7.0 + 15% + 5) = 13 M€ +7M€ (buildings & plants upgrade)

SPARC PC

45 MW - RF Stations

15075 150

750 300

SPARXino – 1.5 GeVS-Band

Preliminary cost estimationPreliminary cost estimation 2/32/3

150

04/19/2304/19/23 2424

> 1800 MeV

SPARC PC

45 MW - RF Stations

75 MW - X-band Stations

150 MW0.4 sec

150 MW0.4 sec

10 MW

45 MW

45 MW

750 600

480 MeV

Preliminary cost estimationPreliminary cost estimation

SPARXino – 1.8 GeV S+X Band

3/33/3

04/19/2304/19/23 2525

Beam DynamicsBeam Dynamics Working point analysisWorking point analysis Invariant envelope matching Invariant envelope matching

principleprinciple Jitter sensitivity and optimizationJitter sensitivity and optimization Microbunching instabilityMicrobunching instability

04/19/2304/19/23 2626

Beam opticsBeam optics doglegto the undulator

old Linac

mag. compressor

matching line

SPARC

04/19/2304/19/23 2727

photoinjector

exit Ipk-av 450A

Two possible working points:Two possible working points:a) Ia) Ipkpk avav 450A w X-band at gun exit 450A w X-band at gun exit

final beamIpk-av 1.1 kA

0

0.5

1

1.5

2

2.5

3

3.5

4

0 200 400 600 800 1000 1200

Exn(mm-mrad) for eth=0.34 mmXrms(mm) for eth=0.34 mm mradExn(mm-mrad) for eth=0.6 mmXrms(mm) for eth=0.6 mm mrad

Z(cm)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 200 400 600 800 1000 1200

Exn(mm-mrad) for eth=0.34 mmXrms(mm) for eth=0.34 mm mradExn(mm-mrad) for eth=0.6 mmXrms(mm) for eth=0.6 mm mrad

Z(cm)

Parmela simulation Np=50k

04/19/2304/19/23 2828

photoinjector

exit Ipk-av 300A

Two possible working points:Two possible working points:b) Ib) Ipkpk avav 300A wo X-band at gun exit 300A wo X-band at gun exit

final beamIpk-av 1.4 kA

04/19/2304/19/23 2929

= 3 nm

= 4 nm

= 5 nm

04/19/2304/19/23 3030

High energy scenario E~1.5 GeVHigh energy scenario E~1.5 GeV

Sparxino0x

High Energy

= 3 nm

04/19/2304/19/23 3131

Laser pulse jitter Laser pulse jitter IIpk-avpk-av ~450 A ~450 A

reference

= -1°

= +1°

04/19/2304/19/23 3232

Laser pulse jitter Laser pulse jitter IIpk-avpk-av ~450 A ~450 A

reference

= +1°

= -1°

04/19/2304/19/23 3333

Laser pulse jitter Laser pulse jitter IIpk-avpk-av ~300 A ~300 A

reference

= +1°

= -1°

04/19/2304/19/23 3434

Laser pulse jitter Laser pulse jitter IIpk-avpk-av ~300 A ~300 A

reference

= +1°

= -1°

04/19/2304/19/23 3535

Microbunching instability Microbunching instability simulation resultssimulation results

04/19/2304/19/23 3636

from Elegant with Nfrom Elegant with Npp=2M from the =2M from the

photoinjector exit up to undulator photoinjector exit up to undulator entranceentrance

no modulation

f =9 m, Af= 1 %

04/19/2304/19/23 3737

from Elegant with Nfrom Elegant with Npp=2M from the =2M from the

photoinjector exit up to undulator photoinjector exit up to undulator entranceentrance

f =15 m, Af= 30 %0 =5 m, A0= 5 %

04/19/2304/19/23 3838

in detail:in detail:

f =25 m, Af= 11 %

f =15 m, Af= 30. %

f =9 m, Af= 1 %

04/19/2304/19/23 3939

Summary tableSummary table

00

(%)(%)

00

((m)m)

AA00

(%)(%)

ff

((m)m)

AAff

(%)(%)

2.0E-52.0E-5 33 55 2626 4.4.

55 55 1515 3030

1010 55 2525 1111

33 1010 2626 88

55 1010 1212 5858

1010 1010 2626 2424

55 .1.1 8.78.7 1.21.2LSCLSC

04/19/2304/19/23 4040

about a laser heater…about a laser heater… to increase uncorrelated energy spreadto increase uncorrelated energy spread

and….and…. Fast (slice length determined by laser pulse length) control on the Fast (slice length determined by laser pulse length) control on the

longitudinal electron phase spacelongitudinal electron phase space Convert energy modulation into density modulation. Enhanced SASE. Convert energy modulation into density modulation. Enhanced SASE.

(Ref. Zholents Phys. Rev. ST Accel. Beams (Ref. Zholents Phys. Rev. ST Accel. Beams 88, 040701, 2005), 040701, 2005) Attosecond radiation with a few optical cycle-laser slicing technique (Ref. Attosecond radiation with a few optical cycle-laser slicing technique (Ref.

Zholents and Fawley, PRL 92, 224801, 2004)Zholents and Fawley, PRL 92, 224801, 2004) Short current spike at the bunch tail to study superradiance regime (Ref. Short current spike at the bunch tail to study superradiance regime (Ref.

Giannessi, Musumeci, Spampinati, Journal of Applied Physics, 98, 043110 Giannessi, Musumeci, Spampinati, Journal of Applied Physics, 98, 043110 (2005))(2005))

Weak FEL detection with a modulated laser-based beam heater (Ref. Weak FEL detection with a modulated laser-based beam heater (Ref. Emma et al. PAC 2005)Emma et al. PAC 2005)

04/19/2304/19/23 4141

FEL radiation analysisFEL radiation analysis

04/19/2304/19/23 4242

•Flat longitudinal current profile ~ 1kA

•Slice energy spread < 2 10-4

•Slice emittances < 1 mm-mrad

•Beam energy 1.2 GeV

e-beam @ the UMe-beam @ the UM

•Pulse Duration ~ 300μm ~ 1 ps

04/19/2304/19/23 4444

2 4 6 8 10 12 14 161

1.5

2

2.5

Wavelength (nm)

K

21

2

2

2

KUMFEL

Resonance conditionResonance condition

SPARC Undulator λUM=2.8 cm – KMAX ~ 2.5

1.5 GeV1.5 kA

1.0 GeV1.0 kA

Reference:Reference: Beam Energy 1.2 GeVPeak Current 1 kASlice energy spread < 2 10-4

Slice emittance < 1 mm-mrad

Low Energy : Low Energy : 1.0GeV & 1.0kA

High Energy :High Energy : 1.5GeV & 1.5kA

Wavelength tuning range - 15 – 4 nm

SPARC Undulator SPARC Undulator 2.8 cm period2.8 cm period

Tuning range 3.5 – 15 nm

04/19/2304/19/23 4545

SASE – PerformancesSASE – PerformancesSimulations made with GENESIS 1.3 + Perseo for the high order

harmonics

0 50 100 150 200 250 3000

0.5

1

z (um)

Pow

er (

/ max

Pow

er)

SASE PULSE (4.5nm – 33m)

2 4 6 8 10 12 14 161 10

3

0.01

0.1

1

10

1 GeV1.25 GeV1.5 GeV1 GeV - 3h1.25 GeV - 3h1.5 GeV - 3h

Wavelength (nm)P

ulse

Ene

rgy

(mJ)

2 4 6 8 10 12 14 161 10

10

1 1011

1 1012

1 1013

1 1014

1 1015

Wavelength (nm)

# P

hoto

ns/p

ulse

3° harmonic data

04/19/2304/19/23 4646

SpectrumSpectrum

SASE Spectrum @ 4.5 nm – 33m

0.1% λ

5 10 151 10

10

1 1011

1 1012

1 1013

1 1014

Wavelength (nm)

# P

hoto

ns/p

ulse

/0.1

%bw

5 10 151 10

26

1 1027

1 1028

1 1029

1 1030

1 GeV1.25 GeV1.5 GeV1 GeV - 3h1.25 GeV - 3h1.5 GeV - 3h

Wavelength (nm)

# P

hoto

ns/p

ulse

/0.1

%bw

Peak

bri

llian

ce [

Phot

./(s

mra

d2 mm

2 0.1

% b

w)]

04/19/2304/19/23 4747

Ar Ar λλ ~ 30 nm~ 30 nmE ~ 0.4 E ~ 0.4 μμJ J P P ~~ 8 MW 8 MWδδt t ~ 50 fs ~ 6 ~ 50 fs ~ 6 μμmm

100 50 0 50 1000

0.5

1

λλ ~ 30 nm~ 30 nmEEff =η =ηmmEEii~ 0.6 ~ 0.6 nJ nJ

PPff ~~ 3 kW 3 kW

ccδδttff ~ 60 ~ 60 μμmm

Monochromator

ηm = 0.08 x 0.5 x 0.25 x δti/δtf

UM2 (SPARC)UM1

λλuu = 4.2 cm= 4.2 cm

K = 3.89K = 3.895 UM 5 UM 48 periods each48 periods eachλλresres ~ 30 nm ~ 30 nm

λλuu = 2.8 cm= 2.8 cm

K = 1.51K = 1.516 UM 6 UM 77 periods each77 periods eachλλresres ~ 5 nm ~ 5 nm (3.75 nm)(3.75 nm)

Seeding to increase longitudinal Seeding to increase longitudinal coherence: HHG in coherence: HHG in Ar+MonochromatorAr+Monochromator

X 6 (X8)

04/19/2304/19/23 4848

5.005 5.01 5.015 5.02

1st harmonic

wavelength (nm)

Pow

er S

pect

rum

(a.

u.)

HHGHHG in Ar + monochromator cont. in Ar + monochromator cont.

5.006 5.008 5.01 5.012 5.014

wavelength (nm)

Pow

er S

pect

rum

(a.

u.)

1.665 1.67 1.675

wavelength (nm)

90 45 0 45 903.14

1.05

1.05

3.14

z (um)

Pha

se

90 45 0 45 90

z (um)

90 45 0 45 90

1st harmonic

z (um)

Pow

er (

a.u.

)

5 nm5 nmEnergy per pulse Energy per pulse ~ ~ 100 100 μμJJN phot. N phot. ~ 2x10~ 2x101212

Coherence length Coherence length ~~ 45 45 μμmm

3.755 3.756 3.757 3.758 3.759 3.76 3.761

1st harmonic

wavelength (nm)

Pow

er S

pect

rum

(a.

u.)

3.75 nm3.75 nmEnergy per pulse Energy per pulse ~ ~ 10 10 μμJJN phot. N phot. ~ 1x10~ 1x101111

Coherence length Coherence length ~~ 30 30 μμmm

5 nm5 nm

5 nm5 nm

04/19/2304/19/23 4949

SUMMARYSUMMARY

LINAC upgrade layout proposed w a LINAC upgrade layout proposed w a preliminary cost estimatepreliminary cost estimate

Photoinjector Beam Dynamics studies:Photoinjector Beam Dynamics studies: 2 stable w.p. considered2 stable w.p. considered Jitter sensitivity analysis & optimizationJitter sensitivity analysis & optimization Microbunching instability studyMicrobunching instability study

NEXT:NEXT:• Prototypes realizationPrototypes realization• Tests at SPARC on techniques and systems for Tests at SPARC on techniques and systems for

SPARXINOSPARXINO• Components and installationComponents and installation