42
1 Statistical Downscaling of 1 Wintertime Temperatures over South Korea 2 3 Seoyeon Lee and KwangYul Kim 4 School of Earth and Environmental Sciences, Seoul National University 5 Seoul, 151747, Republic of Korea 6 7 8 9 * Corresponding author: KwangYul Kim ([email protected]) 10 School of Earth and Environmental Sciences, Seoul National University 11 1 Gwanangno, Gwanakgu, Seoul, 151747, Republic of Korea 12 +8228804205 (phone), +8228834972 (fax) 13 Submitted to: Journal of Atmospheric and Oceanic Technology 14 Submission date: January 8, 2015 15

Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  1  

Statistical  Downscaling  of    1  

Wintertime  Temperatures  over  South  Korea  2  

 3  

Seoyeon  Lee  and  Kwang-­‐Yul  Kim    4  

School  of  Earth  and  Environmental  Sciences,  Seoul  National  University  5  

Seoul,  151-­‐747,  Republic  of  Korea  6  

 7  

 8  

 9  

*  Corresponding  author:    Kwang-­‐Yul  Kim  ([email protected])  10  

School  of  Earth  and  Environmental  Sciences,  Seoul  National  University  11  

1  Gwanangno,  Gwanak-­‐gu,  Seoul,  151-­‐747,  Republic  of  Korea  12  

+82-­‐2-­‐880-­‐4205  (phone),    +82-­‐2-­‐883-­‐4972  (fax)  13  

Submitted  to:    Journal  of  Atmospheric  and  Oceanic  Technology  14  

Submission  date:    January  8,  2015    15  

Page 2: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  2  

Abstract  16  

Reanalysis  data  have  global  coverage  and  faithfully  render  large-­‐scale  17  

phenomena.    On  the  other  hand,  regional  and  small-­‐scale  characteristics  of  18  

atmospheric  variability  are  poorly  resolved.    In  an  attempt  to  improve  reanalysis  19  

data  for  regional  use,  statistical  downscaling  strategy  is  developed  based  on  20  

Cyclostationary  Empirical  Orthogonal  Function  (CSEOF)  analysis.    The  developed  21  

algorithm  is  applied  to  the  National  Center  for  Environmental  Prediction-­‐22  

National  Center  for  Atmospheric  Research  (NCEP/NCAR)  reanalysis  data  and  the  23  

European  Center  for  Medium  Range  Weather  Forecast  (ECMWF)  ERA-­‐interim  24  

reanalysis  data  in  order  to  produce  winter  temperatures  at  60  Korea  25  

Meteorological  Administration  (KMA)  stations  over  the  Korean  Peninsula.    The  26  

developed  downscaling  algorithm  is  evaluated  by  predicting  winter  daily  27  

temperatures  from  Nov.  17–Mar.  16  for  the  period  of  35  years  (1979-­‐2014).    For  28  

validating  the  downscaling  algorithm  the  Jackknife  method  is  used,  in  which  29  

winter  daily  temperature  is  predicted  over  a  one-­‐year  period  not  used  for  30  

training.    This  procedure  is  repeated  for  the  entire  data  period.    Mean  and  31  

variance  of  the  resulting  downscaled  temperatures  match  reasonably  well  with  32  

those  of  the  KMA  measurements.    Validation  based  on  correlation  and  error  33  

variance  shows  that  the  temperatures  at  60  KMA  stations  are  faithfully  34  

reproduced  based  on  coarse  reanalysis  data.    The  utility  of  this  technique  for  35  

downscaling  model  predictions  based  on  future  scenarios  is  also  addressed.    36  

Page 3: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  3  

1.    Introduction  37  

General  circulation  models  (GCMs)  are  a  widespread  means  of  38  

understanding  future  climate  and  various  aspects  of  climate  changes  (Hansen  et  39  

al.  1988;  Cox  et  al.  1999;  Murphy  et  al.  2004;  IPCC  2013).    They  also  serve  as  a  40  

useful  tool  for  seasonal  forecasts  and  long-­‐term  predictions.    Considerable  effort  41  

to  improve  the  performance  of  GCMs  has  been  made  for  the  past  decades  and  42  

GCMs  are  capable  of  simulating  large-­‐scale  climatological  features  and  their  43  

changes  in  the  atmosphere  and  the  oceans.    One  important  factor  in  improving  44  

GCMs  is  the  temporal  and  spatial  resolution  of  the  model  (IPCC  1996;  Sakamoto  45  

et  al.  2004;  Kimoto  et  al.  2005;  IPCC  2007).    Interaction  of  climatological  features  46  

across  different  scales  should  be  simulated  properly  in  order  to  make  reliable  47  

long-­‐term  prediction  of  climates    (Palmer  et  al.  2008;  Shukla  2009;  Hoskins  48  

2013). 49  

While  the  resolution  of  GCMs  has  significantly  increased  and  is  still  50  

increasing,  the  present  generation  of  general  circulation  models  (GCMs)  has  not  51  

yet  reached  a  level  of  resolution  sufficient  for  simulating  small  regional  features.    52  

The  current  computational  power  does  not  yet  allow  GCMs  with,  say,  a  1-­‐km  53  

resolution  over  the  whole  earth.    In  order  to  capture  small  regional  features,  54  

dynamical  downscaling  method  has  been  used  frequently,  in  which  a  high-­‐55  

resolution  model  with  a  smaller  spatial  domain  is  imbedded  in  a  low-­‐resolution  56  

GCM.    This  so-­‐called  “nesting”  is  often  conducted  a  few  times  to  accomplish  57  

model  computations  at  a  desirable  resolution  (Giorgi  1990;  Ji  and  Vernekar  1997;  58  

Fennessy  and  Shukla  2000;  Jones  et  al.  1995).    Dynamical  downscaling  method  59  

has  been  applied  to  specific  areas  to  address  regional  features  (Giorgi  1990;  Ji  60  

and  Vernekar  1997;  Fennessy  and  Shukla  2000;  Misra  et  al.  2003;  Coulibaly  et  al.  61  

Page 4: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  4  

2005;  Sun  et  al.  2006;  Lim  et  al.  2007).    While  dynamical  downscaling  techniques  62  

have  proven  to  be  useful  and  provided  local  conditions  in  greater  detail,  they  63  

also  suffer  from  the  difficulty  of  prescribing  open  boundary  conditions  (Giorgi  64  

1990;  Jones  et  al.  1995;  Christensen  et  al.  1997;  Marchesiello  et  al.  2001).    A  65  

regional  climate  model    (RCM)  simulation  is  often  inadvertently  affected  in  a  66  

significant  manner  by  natural  variability  in  a  GCM  output  introduced  through  67  

open  boundary  conditions.      68  

Statistical  downscaling  is  also  common  and  is  a  simple  alternative  to  69  

dynamical  downscaling  (Hewitson  and  Crane  1996;  Wilby  and  Wigley  1997;  70  

Wilby  et  al.  1998;  Wilks  1999;  Huth  and  Kysely  2000;  Huth  2002;  Widmann  et  al.  71  

2003;  Robertson  et  al.  2004;  Feddersen  and  Andersen  2005;  Lim  et  al.  2007)  or  72  

serves  a  means  of  improving  dynamical  downscaling  (Fuentes  and  Heimann  73  

2000).    As  the  name  implies,  statistical  downscaling  delves  into  statistical  74  

relationship  between  two  variables—often  between  a  large-­‐scale  feature  such  as  75  

atmospheric  pressure  and  a  local  feature  such  as  wind  speed  at  a  specific  76  

location—in  order  to  draw  inference  on  a  local  feature  based  on  a  large-­‐scale  77  

feature  (Wilby  et  al.  2004;  Lim  et  al.  2007).    In  this  way,  low-­‐resolution  GCM  78  

output  can  be  used  to  obtain  detailed  local  features.    As  such,  statistical  79  

downscaling  method  can  bridge  the  gap  between  coarse  GCM  outputs  and  80  

detailed  regional  outputs  necessary  for  environmental  assessment  and  decision  81  

making  (Wilby  and  Wigley  1997;  Huth  and  Kysely  2000).    Statistical  downscaling,  82  

of  course,  is  computationally  much  more  efficient  than  dynamical  downscaling.  83  

South  Korea  is  located  in  the  eastern  coast  of  Asia  and  is  strongly  84  

influenced  by  the  East  Asian  winter  monsoon  (EAWM)  during  winter.    A  strong  85  

EAWM  is  characterized  as  strong  low-­‐level  northwesterlies  and  the  ensuing  cold  86  

Page 5: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  5  

surface  air  temperatures  over  the  northeastern  part  of  East  Asia,  including  87  

northeastern  China,  Korea,  and  Japan.    Although  South  Korea  occupies  a  small  88  

region,  wintertime  daily  temperatures  are  highly  variable  due  to  its  geographic  89  

location  and  topographic  complexity.    Thus,  GCMs  have  difficulty  resolving  90  

detailed  regional  features  over  the  Korean  peninsula,  and  an  accurate  91  

downscaling  method  proves  to  be  useful.    In  this  study,  a  statistical  downscaling  92  

method  is  developed  based  on  CSEOF  analysis  (Kim  et  al.  1996;  Kim  and  North  93  

1997)  for  the  purpose  of  improving  GCM  outputs  to  reflect  regional  details  over  94  

the  Korean  peninsula.      95  

The  paper  is  organized  as  follows.    Section  2  provides  information  on  the  96  

datasets  used  for  this  study.    Section  3  addresses  the  concept  of  statistical  97  

downscaling  technique  based  on  CSEOF  analysis.    Then,  the  accuracy  and  utility  98  

of  the  developed  downscaling  method  is  discussed  in  section  4  in  terms  of  99  

various  statistical  measures.    Finally,  summary  and  concluding  remarks  follow  in  100  

section  5.  101  

 102  

2.    Data    103  

This  study  uses  winter  120-­‐day  (Nov.  17  –  Mar.  16)  Korea  Meteorological  104  

Administration  (KMA)  daily  mean  temperature  measured  at  60  stations  (Fig.  1)  105  

for  a  35-­‐year  period  (1979/1980-­‐2013/2014).    One  KMA  station,  Andong,  was  106  

excluded  in  this  study,  since  it  has  an  incomplete  record  for  the  35-­‐year  period.    107  

The  KMA  measurements  have  relatively  high  resolution,  which  is  used  as  the  108  

target  variable  in  this  study.  109  

Winter  temperatures  at  surface  (2  m),  1000,  and  850  hPa  from  the  110  

National  Center  for  Environmental  Prediction-­‐National  Center  for  Atmospheric  111  

Page 6: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  6  

Research  (NCEP/NCAR)  reanalysis  dataset  (Kalnay  et  al.  1996)  have  relatively  112  

low  resolution:  T62  Gaussian  grid  with  192×94  points  for  surface  data  and  113  

2.5°×2.5°  resolution  for  pressure  level  data.    The  dashed  lines  in  Fig.  1  represent  114  

the  latitude-­‐longitude  grids  of  the  NCEP/NCAR  reanalysis  surface  temperature.    115  

The  four  red  dots  denote  the  KMA  stations  closest  to  the  NCEP/NCAR  grid  points.    116  

The  1.5°×1.5°  ERA  interim  reanalysis  daily  temperatures  at  surface  (2  m),  1000  117  

and  850  hPa  from  the  European  Center  for  Medium  Range  Weather  Forecast  118  

(ECMWF)  are  also  used  in  this  study  (Dee  et  al.  2011).    Both  reanalysis  data  are  119  

for  the  same  period  of  time  of  the  KMA  data  and  cover  South  Korea  [31.4°-­‐40.0°N,  120  

124.5°-­‐132.5°E].    These  lower-­‐resolution  temperatures  serve  as  the  predictor  121  

variables  based  on  which  a  downscaling  method  will  be  developed  to  estimate  122  

the  target  variable  (the  KMA  temperatures).  123  

 124  

3.    Method  of  Analysis  125  

3.1.    Cyclostationary  EOF  (CSEOF)  Analysis  126  

Given  a  space-­‐time  dataset,  Data(r,t) ,  cyclostationary  empirical  127  

orthogonal  function  (CSEOF:  Kim  et  al.  1996;  Kim  and  North  1997)  analysis  128  

decomposes  them  into    129  

  Data(r,t) = CSLVn (r,t)PCn (t)n∑ ,           t ∈D ,           (1)  130  

where  CSLVn (r,t)    are  the   n th  cyclostationary  loading  vectors  (CSLV),  PCn (t)  131  

are  corresponding  principle  component  (PC)  time  series  and  D  is  the  record  132  

length  of  the  data.    Each  CSLV  is  periodic  in  time  with  the  nested  period  d ,  which  133  

is  set  to  120  days  in  the  present  study.    Thus,  134  

Page 7: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  7  

  CSLVn (r,t) = CSLVn (r,t + d) ,               (2)  135  

and  each  CSLV  describes  a  deterministic  evolution  of  temperature  during  winter.    136  

The  corresponding  PC  time  series  represents  longer-­‐term  variation  of  the  137  

amplitude  of  the  evolution  depicted  in  the  loading  vector.    Details  of  CSEOF  138  

analysis  are  referenced  to  Kim  et  al.  (1996),  Kim  and  North  (1997),  and  Kim  and  139  

Wu  (1999).  140  

The  KMA  measurement  (target  variable)  and  the  reanalysis  temperature  141  

(predictor  variable)  can  be  written  as  142  

T (r,t) = Bn (r,t)Tn (t)n∑ ,           t ∈D ,             (3)  143  

and  144  

  P(r,t) = Cn (r,t)Pn (t)n∑ ,           t ∈D ,             (4)  145  

where   Bn (r,t)  and  Cn (r,t)  are  respectively  the  CSLVs  of  the  target  and  the  146  

predictor  variables,  and  Tn (t)  and  Pn (t)  are  corresponding  PC  time  series.  147  

 148  

3.2.    Regression  Analysis  in  CSEOF  Space  149  

  Two  sets  of  CSEOFs  derived  from  the  target  and  predictor  variables  do  150  

not  exhibit  one-­‐to-­‐one  correspondence.    Namely,  two  PC  time  series  for  each  151  

mode  number  n  are  not  maximally  correlated.    The  two  corresponding  loading  152  

vectors,  as  a  result,  do  not  necessarily  have  identical  amplitude  variation.    In  153  

order  to  make  two  sets  of  CSEOFs  physically  consistent,  therefore,  regression  154  

analysis  is  conducted  in  CSEOF  space.    As  the  first  step,  regression  relationship  is  155  

Page 8: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  8  

built  between  the  PC  time  series  of  the  target  variable  and  those  of  the  predictor  156  

variable.    That  is,  157  

  T (t) = αm(n)Pm (t)m=1

M∑ + ε (n)(t) ,          n = 1,2,... ,           (5)  158  

where   αm(n){ }  are  the  regression  coefficients,  ε (n)(t)  is  the  regression  error  time  159  

series  for  the   n th  target  PC  time  series,  and  M  is  the  number  of  predictor  PC  160  

time  series  used  for  regression.    In  this  study,  M = 30  was  used;  this  value  was  161  

chosen  to  keep  the  regression  error  variance  less  than  5%  for  each  of  the  first  20  162  

CSEOF  modes.    The  second  step  of  the  procedure  is  written  as  163  

  Dn (r,t) = αm(n)Cm (r,t)m=1

M∑ ,          n = 1,2,... ,           (6)  164  

where   Dn (r,t){ }  are  regressed  loading  vectors  for  the  predictor  variable.    As  a  165  

result  of  regression  analysis  in  CSEOF  space,  the  predictor  variable  can  be  166  

written  as  (Seo  and  Kim  2003;  Yeo  and  Kim  2014)  167  

P(r,t) = Dn (r,t)Tn (t)n∑ .               (7)  168  

Then  the  evolution  of  the  target  variable,   Bn (r,t) ,  and  that  of  the  predictor  169  

variable,  Dn (r,t) ,  share  identical  PC  (amplitude)  time  series  and  are  said  to  be  170  

physically  consistent.  171  

 172  

3.3.    Statistical  Downscaling  173  

  After  the  regression  analysis  in  CSEOF  space,  the  target  and  predictor  174  

variables  are  written  as  175  

  T (r,t),P(r,t){ } = Bn (r,t),Dn (r,t){ }Tn (t)n∑ ,           t ∈D ,       (8)  176  

Page 9: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  9  

where   Bn (r,t),Dn (r,t){ }  are  essentially  the  mapping  function  between  the  target  177  

and  the  predictor  variables.    The  accuracy  of  this  mapping  function  depends  on  178  

the  R2  value  of  regression  in  (5).    If  we  have  a  longer  predictor  variable,  then  we  179  

can  write  180  

  P(r,t) = Dn (r,t) !Tn (t)n∑ ,           t ∈D + R ,           (9)  181  

where   R  is  the  extended  period  of  time.    The  tilde  symbol  signifies  that  the  PC  182  

time  series  are  estimates  from  the  predictor  variable  not  the  target  variable.    183  

Then,  the  target  variable  can  be  extended  by  using  the  estimated  PC  time  series  184  

!Tn (t)  ,  i.e.,  185  

  !T (r,t) = Bn (r,t) !Tn (t)n∑ ,           t ∈D + R .                                (10)  186  

Again,  the  tilde  symbol  implies  that   !T (r,t)  is  an  estimate  by  using  the  PC  time  187  

series  derived  from  the  predictor  variable.      188  

  The  procedure  described  in  (8)-­‐(10)  can  be  used  for  statistical  189  

downscaling.    If  P(r,t)  denotes  a  dataset  with  a  coarse  resolution  and  T (r,t)  190  

represents  a  dataset  with  a  high  resolution,  then  coarse-­‐resolution  data  can  be  191  

translated  into  high-­‐resolution  data  by  using  (8)-­‐(10).    The  physical  relationship  192  

between  the  two  datasets  in  (8)  can  be  determined  by  using  the  data  over  the  193  

training  period  D .    Then,  high-­‐resolution  data  in  the  prediction  period   R  can  be  194  

found  from  the  predictor  variable  by  using  (9)  and  (10).    The  accuracy  of  195  

downscaling,  of  course,  depends  on  how  accurate  the  estimated  PC  time  series  196  

are,  which,  in  turn,  depends  on  the  accuracy  of  physical  relationship  in  (8).  197  

 198  

3.4.    Verification  Method  199  

Page 10: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  10  

To  validate  the  new  downscaling  approach,  the  jackknife  method  is  used.    200  

From  the  target  data,  one  year  in  the  data  record  D  is  removed  and  is  designated  201  

as  the  prediction  year   R .    Then,  physical  relationship  between  the  target  and  202  

predictor  variables,  (8),  is  established  by  using  the  data  in  D − R .    Then,  the  203  

target  variable  is  constructed  in  R  by  using  the  downscaling  method,  (9)  and  204  

(10).    This  procedure  is  repeated  for  every  year  in  the  data  record  D .    The  205  

resulting  downscaled  data   !T (r,t) ,  then,  are  compared  with  the  raw  data  T (r,t)  206  

by  measuring  correlation  and  relative  root-­‐mean-­‐square  error  (RMSE)  defined  207  

respectively  by  208  

ρ =′T (r,t) ! ′T (r,t)

t∑′T (r,t)( )2

t∑ ′!T (r,t)( )2t∑,                                  (11)  209  

and  210  

RMSE = ′T (r,t)− ! ′T (r,t)( )2t∑ ′T (r,t)( )2

t∑ ,                              (12)  211  

where  the  prime  denotes  that  mean  is  removed  from  the  time  series.  212  

 213  

4.    Results  214  

4.1.    Comparison  of  the  KMA  and  Reanalysis  Winter  Temperatures  215  

South  Korea  shows  an  intricate  temperature  distribution  in  winter  216  

although  it  has  a  small  territory.    Reanalysis  data  at  their  current  resolutions  217  

cannot  faithfully  depict  the  detailed  characteristics  of  winter  temperatures.    218  

Figure  2  shows  the  mean  and  variance  of  winter  surface  temperatures  from  the  219  

NCEP/NCAR  reanalysis  data  and  those  derived  from  the  60  KMA  stations.    With  220  

this  resolution,  NCEP/NCAR  dataset  has  only  4  grid  points  over  the  South  Korean  221  

Page 11: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  11  

peninsula.    As  can  be  seen  in  the  figure,  the  NCEP/NCAR  dataset  are  not  capable  222  

of  depicting  the  detailed  features  of  winter  temperatures  in  Korea  such  as  the  223  

lower  mean  temperature  and  stronger  temperature  variability  in  the  224  

mountainous  interior  regions,  although  it  captures  the  general  meridional  225  

structure  of  the  mean  and  variance.    Without  the  seasonal  cycle,  the  spatial  226  

pattern  of  variance  remains  to  be  similar  although  the  magnitude  decreases  227  

significantly.    Other  variables  including  the  NCEP/NCAR  lower  tropospheric  228  

temperatures  and  the  ECMWF  surface  and  lower  tropospheric  temperatures  229  

show  similar  patterns  of  mean  and  variance  to  those  of  NCEP/NCAR  surface  230  

temperature.    231  

Figure  3  shows  the  mean  bias,  relative  RMSE,  and  correlation  of  the  232  

NCEP/NCAR  surface  temperatures  in  comparison  with  the  KMA  temperatures.    233  

These  maps  were  produced  from  the  difference  in  temperatures  between  each  of  234  

the  60  KMA  stations  and  the  closest  NCEP/NCAR  grid  point.    The  mean  bias  is,  in  235  

general,  fairly  high  except  for  a  few  stations  in  the  mid-­‐western  and  the  southern  236  

part  of  the  peninsula;  mean  bias  generally  exceeds  2K  over  much  of  the  237  

peninsula  with  particularly  strong  bias  on  the  mountainous  eastern  side  of  the  238  

peninsula  (Fig.  3a).    The  relative  RMSE  is  also  high  (>  0.6)  on  the  eastern  and  239  

southern  part  of  the  Korean  Peninsula.    This  means  that  the  standard  deviation  240  

of  the  difference  between  the  KMA  temperature  and  NCEP/NCAR  temperature  is  241  

greater  than  60%  of  the  standard  deviation  of  the  KMA  temperature.    Correlation  242  

between  the  KMA  and  NCEP/NCAR  temperature  is  high  in  the  western  part  of  243  

the  peninsula  but  is  lower  between  the  western  and  eastern  coasts.    Reasonably  244  

high  correlations  over  the  Korean  peninsula  indicate  that  the  long-­‐term  245  

variability  in  the  NCEP/NCAR  surface  temperature  is  similar  to  that  in  the  KMA  246  

Page 12: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  12  

temperature.    Figure  3  implies  that  a  statistical  downscaling  method  may  be  247  

useful  if  it  can  alleviate  regional  differences  between  the  reanalysis  and  KMA  248  

temperatures  as  depicted  in  the  figure.    Without  the  seasonal  cycle,  the  mean  249  

bias  is  nearly  zero  since  the  bias  is  primarily  in  the  seasonal  cycle.    Correlation  is  250  

slightly  degraded  and  RMSE  is  increased  slightly  as  should  be  expected.  251  

Figure  4  shows  the  winter  temperatures  at  the  four  KMA  stations  (red  252  

dots)  in  Fig.  1  and  at  the  nearest  grid  points  of  the  NCEP/NCAR  surface  dataset.    253  

For  easier  comparison,  time  series  are  plotted  from  year  2000.    It  appears  that  254  

the  NCEP/NCAR  temperatures  are  reasonably  similar  to  the  KMA  data  with  an  255  

average  correlation  of  0.85  (0.87,  0.81)  at  the  surface  (1000  hPa,  850  hPa)  level.    256  

While  correlations  are  fairly  reasonable,  the  NCEP/NCAR  reanalysis  products  fall  257  

short  of  the  reality  in  terms  of  their  ability  to  reproduce  the  spatial  peculiarity  in  258  

the  KMA  measurements.    Similarly,  the  ECMWF  reanalysis  temperature  exhibits  259  

an  average  correlation  of  0.85  (0.89,  0.79)  at  the  surface  (1000  hPa,  850  hPa)  260  

level.  261  

 262  

4.2.    Test  Results  263  

By  using  the  Jackknife  method,  the  first  20  CSEOF  PC  time  series  were  264  

generated  as  shown  in  Fig.  5;  the  first  20  CSEOF  modes  explain  about  90%  of  the  265  

total  variability  of  winter  temperatures  measured  at  60  KMA  stations.    The  black  266  

curve  in  each  panel  represents  the  estimated  PC  time  series  from  the  predictor  267  

variable,  which  is  the  NCEP/NCAR  surface  temperature.    Except  for  the  mode  20,  268  

correlations  between  the  PC  time  series  of  the  KMA  data  and  those  estimated  269  

from  the  NCEP/NCAR  data  are  fairly  high  ( ρ ≥ 0.59 ).    Table  1  provides  270  

correlations  for  the  first  10  PC  time  series  of  all  predictor  variables  tested  in  this  271  

Page 13: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  13  

study.    Since  the  performance  of  the  downscaling  method  is  similar  for  all  six  272  

variables  tested  here,  the  results  based  on  the  NCEP  surface  temperatures  will  be  273  

shown  below.  274  

Figure  6  shows  the  downscaled  temperatures  based  on  the  20  PC  time  275  

series  estimated  from  the  NCEP/NCAR  surface  data  against  the  20-­‐mode  276  

reconstruction  of  the  KMA  temperatures  at  the  four  stations  closest  to  the  4  277  

NCEP/NCAR  grid  points.    Although  the  downscaled  temperatures  occasionally  278  

underestimate  the  peaks  in  the  KMA  reconstruction  data,  evolution  of  the  279  

wintertime  temperatures  in  the  35-­‐year  KMA  record  are  reasonably  captured  by  280  

the  developed  downscaling  method.    Correlation  between  the  20-­‐mode  281  

reconstruction  of  the  KMA  data  and  the  downscaled  temperatures  based  on  the  282  

NCEP/NCAR  surface  data  are  close  to  0.93  at  all  four  stations.    A  comparison  of  283  

the  downscaled  temperature  and  the  raw  KMA  data  is  shown  in  Fig.  7.    284  

Correlations  decrease  slightly  from  those  in  Fig.  6,  since  the  first  20  modes  285  

explain  only  about  90%  of  the  total  variability  of  the  KMA  data;  this  decrease  is  286  

obviously  due  to  the  neglect  of  the  remaining  variability  in  the  KMA  data.    287  

Nonetheless,  downscaled  temperatures  are  quite  comparable  in  accuracy  to  the  288  

original  reanalysis  surface  temperatures.  289  

Correlations  of  the  20-­‐mode  and  10-­‐mode  downscaled  temperatures  from  290  

the  NCEP/NCAR  surface  data  with  the  original  KMA  data  are  shown  in  Table  2.    291  

Correlations  are  calculated  with  and  without  the  seasonal  cycle  at  the  four  292  

stations.    The  averaged  correlation  between  the  20-­‐mode  (10-­‐mode)  downscaled  293  

temperature  and  the  KMA  temperature  is  ~0.88  (~0.82)  with  the  seasonal  cycle  294  

and  is    ~0.82  (~0.73)  without  the  seasonal  cycle.    Correlation,  of  course,  295  

decreases  slightly  by  removing  the  seasonal  cycle,  which  is  a  major  component  of  296  

Page 14: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  14  

variability  in  the  data.    Correlations  of  the  20-­‐mode  (10-­‐mode)  downscaled  297  

temperature  with  the  20-­‐mode  (10-­‐mode)  KMA  reconstruction  temperature  is  298  

~0.93  (~0.97)  with  the  seasonal  cycle  and  is  ~0.89  (~0.95)  without  the  seasonal  299  

cycle.    Correlation  increases  by  using  the  same  number  of  modes  for  the  KMA  300  

temperatures.      301  

Figure  8  shows  difference  between  the  downscaled  temperature  and  the  302  

raw  KMA  temperature  together  with  the  difference  between  the  reanalysis  and  303  

KMA  temperatures.    Downscaling  reduces  the  mean  bias  in  the  reanalysis  surface  304  

temperatures.    The  mean  bias  ranges  from  0.93K  at  Uljin  station  to  1.93K  at  305  

Suncheon  station  in  the  NCEP/NCAR  surface  temperatures,  which  was  reduced  306  

to  ~0.008-­‐0.04K  after  downscaling.    The  variance  of  error  time  series  is  reduced  307  

at  two  stations  (Suncheon  and  Icheon)  but  is  slightly  increased  at  the  other  308  

stations.    Of  course,  the  purpose  of  downscaling  is  to  reproduce  temperatures  309  

accurately  away  from  the  reanalysis  grid  points.  310  

Figure  9  summarizes  the  accuracy  of  the  downscaled  temperatures  311  

against  the  raw  KMA  temperatures.    In  the  presence  of  the  seasonal  cycle,  312  

correlation  is  greater  than  0.87  all  over  the  peninsula  and  the  relative  RMSE  is  313  

less  than  ~50%.    Even  in  the  absence  of  the  seasonal  cycle,  correlation  is  314  

reasonably  high  (>  0.80)  and  the  relative  RMSE  is  less  than  ~62%.    It  should  be  315  

noted  that  both  correlation  and  RMSE  values  are  fairly  uniform  over  the  316  

peninsula.    A  comparison  between  Figs.  8  and  9  reveals  that  specific  regional  317  

characteristics  of  the  KMA  temperature  have  been  reasonably  reproduced  by  the  318  

downscaling  method.    Tables  3  and  4  show  the  range  of  RMSE  and  correlation  319  

values  for  different  datasets.    As  can  be  seen  in  the  table,  the  performance  of  the  320  

developed  downscaling  method  is  not  overly  sensitive  to  the  choice  of  a  321  

Page 15: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  15  

predictor  variable.    For  six  different  variables,  the  range  of  relative  RMSE  is  322  

(0.462,  0.551)  and  that  of  correlation  is  (0.841,  0.900)  at  the  60  KMA  stations.  323  

Figure  10  shows  the  mean  and  standard  deviation  of  the  raw  KMA  324  

temperature  over  the  peninsula  and  the  20-­‐mode  downscaled  temperature  325  

based  on  the  NCEP/NCAR  surface  data.    The  patterns  of  the  standard  deviation  326  

are  similar  between  the  two  although  the  downscaled  temperature  327  

underestimates  the  standard  deviation  by  ~10-­‐20%.    It  is  clear  that  the  328  

statistical  downscaling  method  cannot  reproduce  all  the  variability  in  the  KMA  329  

winter  temperatures.    Nonetheless,  the  details  of  the  distribution  of  temperature  330  

variability  over  the  peninsula  are  faithfully  captured  by  the  downscaling  method.    331  

The  patterns  of  the  mean  are  nearly  identical;  the  mean  bias  in  the  reanalysis  332  

data  has  been  removed  almost  completely.  333  

 334  

4.3.    Implications  of  the  Test  Results  335  

General  circulation  models  (GCMs)  are  frequently  used  for  seasonal  336  

predictions.    GCMs  at  present  resolutions,  however,  have  limitations  in  rendering  337  

small-­‐scale  climate  variability.    The  utility  of  GCM  seasonal  predictions  can  be  338  

enhanced  by  using  the  statistical  downscaling  method  developed  in  the  present  339  

study.    For  example,  Fig.  11  shows  the  regressed  PC  time  series  over  the  5-­‐year  340  

prediction  interval  (2009/2010-­‐2013/2014)  based  on  the  NCEP/NCAR  and  341  

ECMWF  surface  temperatures  over  the  training  period  (1979/1980-­‐2008/2009).    342  

This  is  a  stringent  test,  since  daily  winter  temperatures  are  predicted  for  5  343  

consecutive  years  based  on  30-­‐year  training  data.    As  can  be  seen  in  the  figure,  344  

the  amplitudes  of  the  first  10  modes  were  reasonably  predicted  with  some  345  

underestimation  for  modes  6  and  8.    Figure  12  shows  the  correlation  map  of  346  

Page 16: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  16  

daily  and  monthly  winter  temperatures  predicted  over  the  peninsula.    It  is  clear  347  

that  the  predicted  temperatures  reflect  both  regional  accuracy  and  details.  348  

An  added  advantage  of  the  CSEOF-­‐based  downscaling  method  here  is  that  349  

regional  patterns  of  other  variables  can  also  be  obtained  by  carrying  out  350  

regression  analysis  in  CSEOF  space.    Upon  regression  of  two  KMA  variables  in  351  

CSEOF  space,  we  have  352  

T (r,t),S(r,t){ } = Bn (r,t),An (r,t){ }Tn (t)n∑ ,                                (13)  353  

where   Bn (r,t),An (r,t){ }  are  two  matching  evolutions  in  two  different  variables  354  

T (r,t),S(r,t){ } .    By  estimating  the  PC  time  series  of  T (r,t)  (target  variable:    KMA  355  

temperature)  from  a  predictor  variable  (e.g.,  NCEP/NCAR  surface  temperature),  356  

we  can  also  generate  the  detailed  spatial  pattern  of  other  KMA  variables  based  357  

on  (13).    Of  course,  the  accuracy  of  the  regression  procedure  depends  on  the  358  

accuracy  of  regression  between  two  KMA  variables.    Nonetheless,  this  idea  is  359  

intriguing  considering  the  reasonable  performance  of  the  developed  360  

downscaling  method  as  applied  to  surface  temperatures.      361  

 362  

5.    Summary  and  Conclusions  363  

A  statistical  downscaling  method  based  on  CSEOFs  was  developed  in  this  364  

study.    The  resulting  downscaling  method  was  tested  in  the  construction  of  365  

winter  temperatures  at  60  KMA  stations  over  South  Korea  by  using  the  366  

NCEP/NCAR  and  ECMWF  reanalysis  datasets.    The  essence  of  the  technique  is  to  367  

identify  mapping  relationships  (matching  evolutions)  in  CSEOF  space  between  a  368  

target  variable  (KMA  temperatures)  and  a  predictor  variable  (NCEP/NCAR  or  369  

ECMWF  winter  temperatures).    Then,  the  evolutions  in  a  predictor  variable  are  370  

Page 17: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  17  

translated  into  matching  evolutions  in  a  target  variable.    This  strategy  should  371  

work  if  a  predictor  variable  is  reasonably  accurate  in  depicting  long-­‐term  372  

evolution  in  a  target  variable.    373  

In  order  to  validate  the  downscaling  method,  winter  temperatures  at  the  374  

60  KMA  stations  were  constructed  by  using  the  jackknife  method.    The  375  

performance  of  the  downscaling  method  was  assessed  in  terms  of  mean  bias,  376  

relative  RMSE,  and  correlation  at  each  station.    The  downscaled  temperatures  377  

improve  the  reanalysis  temperatures,  and  exhibit  little  mean  bias,  smaller  378  

relative  RMSE,  and  higher  correlation  at  most  KMA  stations.    The  downscaling  379  

method  reproduces  the  regional  characteristics  of  temperature  in  a  faithful  380  

manner  and  is  little  sensitive  to  the  choice  of  a  predictor  variable  tested  in  this  381  

study.    In  practice,  of  course,  the  accuracy  of  downscaling  depends  not  only  on  382  

the  method  but  also  on  the  predictor  field  itself.  383  

In  the  present  resolutions,  the  utility  of  GCM  predictions  is  very  limited.    384  

As  demonstrated  in  Figs.  11  and  12,  GCM  predictions  can  be  enhanced  in  terms  385  

of  systematic  bias  and  spatial  details  by  using  the  developed  statistical  386  

downscaling  method.    It  should  be  noted  that  the  temporal  resolutions  of  GCM  387  

predictions  could  also  be  improved  by  using  the  CSEOF-­‐based  downscaling  388  

method.    This  can  be  accomplished  by  reproducing  the  PC  time  series  of  389  

temporally  dense  target  variable  (say,  daily  observations)  from  PC  time  series  of  390  

temporally  coarse  predictor  variables  (say,  monthly  GCM  outputs).    391  

 392  

Acknowledgments:  This  work  was  supported  by  SNU-­‐Yonsei  Research  393  

Cooperation  Program  through  Seoul  National  University  (SNU)  in  2014.    394  

Page 18: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  18  

References  395  

Christensen, J. H., B. Machenhauer, R. G. Jones, C. Schar, P. M. Ruti, M. Castro, and 396  

G. Visconti, 1997: Validation of present-day regional climate simulations over 397  

Europe: LAM simulations with observed boundary conditions. Clim. Dyn., 13, 398  

489–506.  399  

Coulibaly,  P.,  Y.  B.  Dibike,  and  F.  Anctil,  2005:  Downscaling  precipitation  and  400  

temperature  with  temporal  neural  networks.  J.  Hydrometeor.,  6,  483–496.  401  

Cox,  P.,  R.  Betts,  C.  Bunton,  R.  Essery,  P.  R.  Rowntree,  and  J.  Smith,  1999:  The  402  

impact  of  new  land-­‐surface  physics  on  the  GCM  simulation  and  climate  403  

sensitivity.  Clim.  Dyn.,  15,  183-­‐203.  404  

Dee,  D.  P.,  and  Coauthors,  2011:  The  ERA-­‐Interim  reanalysis:  configuration  and  405  

performance  of  the  data  assimilation  system.  Q.  J.  Meteorol.  Soc.,  137,  553-­‐406  

597.  407  

Feddersen,  H.,  and  U.  Andersen,  2005:  A  method  for  statistical  downscaling  of  408  

seasonal  ensemble  predictions.  Tellus,  Ser.  A,  57,  398–  408.  409  

Fennessy,  M.  J.,  and  J.  Shukla,  2000:  Seasonal  prediction  over  North  America  with  410  

a  regional  model  nested  in  a  global  model.  J.  Clim.,  13,  2605–2627.  411  

Fuentes,  U.,  and  D.  Heimann,  2000:  An  improved  statistical-­‐dynamical  412  

downscaling  scheme  and  its  application  to  the  Alpine  precipitation  413  

climatology.  Theor.  Appl.  Climatol.,  65,  119–  135.  414  

Giorgi,  F.,  1990:  Simulation  of  regional  climate  using  a  limited  area  model  nested  415  

in  a  general-­‐circulation  model.  J.  Clim.,  3,  941–  963.  416  

Hansen,  J.,  I.  Fung,  A.  Lacis,  D.  Rind,  S.  Lebedeff,  R.  Ruedy,  G.  Russell,  P.  Stone,  417  

1988:  Global  climate  changes  as  forecast  by  Goddard  Institute  for  Space  418  

Studies  three-­‐dimensional  model.  J.  Geophys.  Res.,  93,  9341-­‐9364.  419  

Page 19: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  19  

Hewitson,  B.  C.,  and  R.  G.  Crane,  1996:  Climate  downscaling:  Techniques  and  420  

application.  Clim.  Res.,  7,  85–  95.  421  

Hoskins,  B.  J.,  2013:  The  potential  for  skill  across  the  range  of  the  seamless  422  

weather-­‐climate  prediction  problem:  A  stimulus  for  our  science.  Q.  J.  Roy.  423  

Meteor.  Soc.,  139,  573–584,  doi:10.1002/qj.1991.  424  

Huth,  R.,  2002:  Statistical  downscaling  of  daily  temperature  in  central  Europe.  J.  425  

Clim.,  15,  1731–1742.  426  

Huth,  R.,  and  J.  Kysely,  2000:  Constructing  site-­‐specific  climate  change  scenarios  427  

on  a  monthly  scale  using  statistical  downscaling.  Theor.  Appl.  Climatol.,  66,  428  

13–27.  429  

IPCC,  1996:  Climate  Change  1995:  The  Science  of  Climate  Change  [Houghton,  J.  T.,  430  

et  al.  (eds.)].  Cambridge  University  Press,  Cambridge,  United  Kingdom  and  431  

New  York,  NY,  USA,  236-­‐237  pp.  432  

IPCC,  2007:  Climate  Change  2007:  The  Physical  Science  Basis  [Solomon,  S.,  et  al.  433  

(eds.)].  Cambridge  University  Press,  Cambridge,  United  Kingdom  and  New  434  

York,  NY,  USA,  602-­‐603  pp.  435  

IPCC,  2013:  Working  Group  I  Contribution  to  the  IPCC  Fifth  Assessment  Report  436  

(AR5),  Climate  Change  2013:  The  Physical  Science  Basis.  437  

Intergovernmental  Panel  on  Climate  Change,  Geneva,  Switzerland.  438  

Ji,  Y.,  and  A.  D.  Vernekar,  1997:  Simulation  of  the  Asian  summer  monsoons  of  439  

1987  and  1988  with  a  regional  model  nested  in  a  global  GCM.  J.  Clim.,  10,  440  

1965–1979.  441  

Jones,  R.  G.,  J.  M.  Murphy,  and  M.  Noguer,  1995:  Simulation  of  climate  change  over  442  

Europe  using  a  nested  regional  climate  model.  Part  I.  Assessment  of  443  

Page 20: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  20  

control  climate  including  sensitivity  to  location  of  lateral  boundaries.  Q.  J.  444  

Roy.  Meteor.  Soc.,  121,  1413-­‐1449.  445  

Kalnay,  E.,  and  Coauthors,  1996:  The  NCEP/NCAR  40-­‐Year  Reanalysis  Project.  446  

Bull.  Amer.  Meteor.  Soc.,  77,  437-­‐471.  447  

Kim,  K.-­‐Y.,  and  G.  R.  North,  1997:  EOFs  of  harmonizable  cyclostationary  448  

processes.  J.  Atmos.  Sci.,  54,  2416–2427.  449  

Kim,  K.-­‐Y.,  and  Q.  Wu,  1999:  A  comparison  study  of  EOF  techniques:  Analysis  of  450  

nonstationary  data  with  periodic  statistics.  J.  Clim.,  12,  185-­‐199.  451  

Kim,  K.-­‐Y.,  G.  R.  North,  and  J.  Huang,  1996:  EOFs  of  one-­‐dimensional  452  

cyclostationary  time  series:  Computations,  examples,  and  stochastic  453  

modeling.  J.  Atmos.  Sci.,  53,  1007–1017.  454  

Kimoto,  M.,  N.  Yasutomi,  C.  Yokoyama,  and  S.  Emori,  2005:  Projected  changes  in  455  

precipitation  characteristics  near  Japan  under  the  global  warming.  456  

Scientific  online  Letters  on  the  Atmosphere,  1,  85-­‐88,  457  

doi:10.2151/sola.2005-­‐023.  458  

Lim,  Y.-­‐K.,  D.  W.  Shin,  S.  Cocke,  T.  E.  LaRow,  J.  T.  Schoof,  J.  J.  O’Brien,  and  E.  P.  459  

Chassignet,  2007:  Dynamically  and  statistically  downscaled  seasonal  460  

simulations  of  maximum  surface  air  temperature  over  the  southeastern  461  

United  States.  J.  Geophys.  Res.,  112,  D24102,  doi:10.1029/2007JD008764.  462  

Marchesiello,  P.,  J.  C.  McWilliams,  and  A.  Shchepetkin,  2001:  Open  boundary  463  

conditions  for  long-­‐term  integration  of  regional  oceanic  models.  Ocean  464  

Model.,  3,  1–20.    465  

Misra,  V.,  P.  A.  Dirmeyer,  and  B.  P.  Kirtman,  2003:  Dynamical  downscaling  of  466  

seasonal  simulations  over  South  America.  J.  Clim.,  16,  103–  117.  467  

Murphy,  J.  M.,  D.  M.  H.  Sexton,  D.  N.  Barnett,  G.  S.  Jones,  M.  J.  Webb,  M.  Collins,  and  468  

Page 21: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  21  

D.  A.  Stainforth,  2004:  Quantification  of  modelling  uncertainties  in  a  large  469  

ensemble  of  climate  change  simulations.  Nature,  430,  768–772.    470  

Palmer, T. N., F. J. Doblas-Reyes, A. Weisheimer, and M. J. Rodwell, 2008: Toward 471  

Seamless Prediction: Calibration of Climate Change Projections Using 472  

Seasonal Forecasts. Bull. Amer. Meteor. Soc., 89, 459–470.  473  

Robertson,  A.  W.,  S.  Kirshner,  and  P.  Smyth,  2004:  Downscaling  of  daily  rainfall  474  

occurrence  over  northeast  Brazil  using  a  hidden  Markov  model.  J.  Clim.,  475  

17,  4407–  4424.  476  

Sakamoto,  T.  T.,  et  al,  2004:  Far-­‐reaching  effects  of  Hawaiian  Islands  in  the  477  

CCSR/NIES/FRCGC  high-­‐resolution  climate  model.  Geophys.  Res.  Lett.,  31,  478  

doi:10.1029/2004GL020907.  479  

Seo,  K.-­‐H.,  and  K.-­‐Y.  Kim,  2003:  Propagation  and  initiation  mechanisms  of  the  480  

Madden-­‐Julian  oscillation.  J.  Geophys.  Res..  108,  4384,  481  

doi:10.1029/2002JD002876.  482  

Shukla,  J.,  2009:  Seamless  prediction  of  weather  and  climate:  A  new  paradigm  for  483  

modeling  and  prediction  research.  Climate  Test  Bed  Joint  Seminar  Series,  484  

Camp  Springs,  MD,  NOAA,  8  pp.  485  

Sun,  L.,  D.  F.  Moncunill,  H.  Li,  A.  D.  Moura,  F.  D.  A.  D.  S.  Filho,  and  S.  E.  Zebiak,  2006:  486  

An  operational  dynamical  downscaling  prediction  system  for  Nordeste  487  

Brazil  and  the  2002–04  real-­‐time  forecast  evaluation.  J.  Clim.,  19,  1990–  488  

2007.  489  

Widmann,  M.,  C.  S.  Bretherton,  and  E.  P.  Salathe  Jr.,  2003:  Statistical  precipitation  490  

downscaling  over  the  northwestern  United  States  using  numerically  491  

simulated  precipitation  as  a  predictor.  J.  Clim.,  16,  799–  816.  492  

Page 22: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  22  

Wilby,  R.  L.,  and  T.  M.  L.  Wigley,  1997:  Downscaling  general  circulation  model  493  

output:  A  review  of  methods  and  limitations.  Prog.  Phys.  Geogr.,  21,  530–494  

548.  495  

Wilby  R.  L.,  S.  P.  Charles,  E.  Zorita,  B.  Timbal,  P.  Whetton,  L.  O.  Mearns,  2004:  496  

Guidelines  for  use  of  climate  scenarios  developed  from  statistical  497  

downscaling  methods,  Supporting  material  of  the  Intergovernmental  Panel  498  

on  Climate  Change,  available  from  the  DDC  of  IPCC  TGCIA,  27.    499  

Wilby,  R.  L.,  T.  M.  L.  Wigley,  D.  Conway,  P.  D.  Jones,  B.  C.  Hewitson,  J.  Main,  and  D.  500  

S.  Wilks,  1998:  Statistical  downscaling  of  general  circulation  model  output:  501  

A  comparison  of  methods.  Water  Resour.  Res.,  34,  2995–  3008.  502  

Wilks,  D.  S.,  1999:  Multisite  downscaling  of  daily  precipitation  with  a  stochastic  503  

weather  generator.  Clim.  Res.,  11,  125–  136.  504  

Yeo,  S.-­‐R.,  and  K.-­‐Y.  Kim,  2014:  Global  warming,  low-­‐frequency  variability,  and  505  

biennial  oscillation:  An  attempt  to  understand  the  physical  mechanisms  506  

driving  major  ENSO  events.  Clim.  Dyn.,  43,  771-­‐786.    507  

Page 23: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  23  

Table  Captions  508  

Table  1.    Correlation  between  the  first  10  PC  time  series  of  KMA  winter  509  

temperature  for  35  years  and  the  regressed  PC  time  series  of  the  NCEP/NCAR  510  

surface,  1000  and  850  hPa  temperatures  and  those  of  the  ECMWF  surface,  1000  511  

and  850  hPa  temperatures.  512  

Table  2.    Correlation  of  the  20-­‐mode  and  10-­‐mode  downscaled  (d)  NCEP/NCAR  513  

surface  temperature  data  with  the  original  (o)  and  reconstructed  (r)  KMA  data.    514  

Correlation  is  calculated  in  two  cases  with  the  seasonal  cycle  and  without  the  515  

seasonal  cycle  at  four  stations  closest  to  the  four  NCEP/NCAR  grid  points.      516  

Table  3.    The  lowest  three  and  the  highest  three  RMSE  values  of  the  20-­‐mode  517  

downscaled  NCEP/NCAR  and  ECMWF  temperatures  with  those  at  the  60  KMA  518  

stations.      519  

Table  4.    The  lowest  three  and  the  highest  three  correlation  values  of  the  20-­‐520  

mode  downscaled  NCEP/NCAR  and  ECMWF  temperatures  with  those  at  the  60  521  

KMA  stations.      522  

Page 24: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  24  

Figure  Captions  523  

Figure  1.    The  locations  of  the  60  Korea  Meteorological  Administration  (KMA)  524  

stations.    The  black  dotted  lines  represent  the  NCEP/NCAR  grids  for  2  m  525  

temperature,  the  blue  dotted  lines  the  NCEP/NCAR  grids  for  temperatures  at  526  

pressure  levels,  and  the  red  dotted  lines  the  ERA  interim  temperatures.    The  red  527  

dots  denote  the  stations  closest  to  the  four  NCEP/NCAR  grid  points.  528  

Figure  2.    The  mean  and  variance  of  the  (left)  NCEP  surface  and  (right)  KMA  raw  529  

temperatures:  (a)  and  (b)  represent  the  mean,  (c)  and  (d)  the  variance,  and  (e)  530  

and  (f)  the  variance  without  the  seasonal  cycle.  531  

Figure  3.    Mean  bias  (top),  relative  RMSE  (middle),  and  correlation  (bottom)  of  532  

the  NCEP/NCAR  surface  temperature  against  the  KMA  temperatures.    At  each  of  533  

the  60  KMA  stations,  the  closest  NCEP/NCAR  grid  point  is  taken  to  calculate  534  

these  statistics.  535  

Figure  4.    The  KMA  temperature  (blue)  and  the  raw  NCEP/NCAR  surface  536  

temperature  (red)  at  the  four  KMA  stations  closest  to  the  NCEP  grid  points  (red  537  

dots  in  Fig.  1).  538  

Figure  5a.    Comparison  of  the  CSEOF  PC  time  series  (modes  1-­‐10)  of  (red)  the  539  

KMA  winter  temperature  for  1979/1980-­‐2013/2014,  and  (black)  the  PC  time  540  

series  generated  from  the  NCEP  surface  temperature  based  on  the  Jackknife  541  

method.  542  

Figure  5b.    Same  as  Fig.  5a,  but  for  modes  11-­‐20.  543  

Figure  6.    Comparison  of  (red)  the  20-­‐mode  downscaled  NCEP  surface  544  

temperature  and  (blue)  the  20-­‐mode  reconstruction  of  the  KMA  temperature  at  545  

the  four  stations  closest  to  the  NCEP  grids.  546  

Page 25: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  25  

Figure  7.    Comparison  of  (red)  the  20-­‐mode  downscaled  NCEP  surface  547  

temperature  and  (blue)  the  raw  KMA  temperature  at  the  four  stations  closest  to  548  

the  NCEP  grids.  549  

Figure  8.    Error  time  series  (blue)  between  the  raw  KMA  temperature  and  the  550  

20-­‐mode  downscaled  temperature  in  Fig.  6  and  (red)  the  raw  KMA  temperature  551  

and  the  NCEP  surface  temperature  at  the  four  KMA  stations  in  Fig.  1  (red  dots).  552  

Figure  9.    Correlation  and  RMSE  of  the  downscaled  temperature  from  the  NCEP  553  

surface  data  and  the  raw  KMA  temperature:  with  the  seasonal  cycle  in  (a)  and  554  

(b),  and  without  the  seasonal  cycle  in  (c)  and  (d).    555  

Figure  10.    Standard  deviation  (upper  panels)  and  mean  (lower  panels)  of  the  556  

raw  KMA  temperature  (left  column)  and  the  20-­‐mode  downscaled  temperature  557  

from  the  NCEP  surface  data  (right  column).  558  

Figure  11.    The  first  10  PC  time  series  of  (red)  the  KMA  winter  temperature  559  

(1979/1980  -­‐  2013/2014)  and  the  regressed  PC  time  series  from  (red)  the  560  

NCEP/NCAR  and  (blue)  ECMWF  surface  temperature.    Regression  relationship  is  561  

determined  based  on  the  data  in  the  training  period  (1979/1980-­‐2008/2009)  562  

and  the  time  series  from  2009/2010-­‐2013/2014  are  prediction  based  on  the  563  

regressed  PC  time  series.  564  

Figure  12.    Correlation  (left  column)  and  the  relative  RMSE  (right  column)  565  

between  the  20-­‐mode  downscaled  NCEP/NCAR  surface  temperature  and  the  raw  566  

KMA  temperature  for  the  prediction  period  (2009/2010-­‐2013/2014):  (a)  and  567  

(b)  are  for  the  daily  temperature,  and  (c)  and  (d)  are  for  the  monthly  568  

temperature.      569  

Page 26: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  26  

Table  1.    Correlation  between  the  first  10  PC  time  series  of  KMA  winter  570  temperature  for  35  years  and  the  regressed  PC  time  series  of  the  NCEP/NCAR  571  surface,  1000  and  850  hPa  temperatures  and  those  of  the  ECMWF  surface,  1000  572  and  850  hPa  temperatures.    The  first  10  modes  explain  ~73%  and  the  first  20  573  modes  explain  ~90%  of  the  total  variability  of  the  KMA  temperatures.  574    575  

                   Data  Mode                    

NCEP   ECMWF  

Surface   1000  hPa   850  hPa   Surface   1000  hPa   850  hPa  

1st  (34.8%)   0.995   0.991   0.981   0.995   0.993   0.979  

2nd  (8.3%)   0.975   0.964   0.958   0.985   0.981   0.963  

3rd  (5.2%)   0.953   0.965   0.962   0.942   0.968   0.949  

4th  (4.6%)   0.969   0.967   0.951   0.972   0.977   0.954  

5th  (4.2%)   0.971   0.958   0.957   0.962   0.964   0.953  

6th    (3.7%)   0.966   0.963   0.950   0.968   0.966   0.944  

7th    (3.6%)   0.969   0.969   0.971   0.973   0.976   0.971  

8th    (3.0%)   0.931   0.936   0.871   0.961   0.954   0.905  

9th    (2.8%)   0.933   0.911   0.895   0.922   0.921   0.869  

10th  (2.5%)   0.936   0.918   0.887   0.926   0.932   0.891  

   576  

Page 27: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  27  

Table  2.    Correlation  of  the  20-­‐mode  and  10-­‐mode  downscaled  (d)  NCEP/NCAR  577  surface  temperature  data  with  the  original  (o)  and  reconstructed  (r)  KMA  data.    578  Correlation  is  calculated  in  two  cases  with  the  seasonal  cycle  and  without  the  579  seasonal  cycle  at  four  stations  closest  to  the  four  NCEP/NCAR  grid  points.    580    581  

20-­‐mode  With  the  seasonal  cycle   Without  the  seasonal  cycle  

Corr  (o,d)   Corr  (r,d)   Corr  (o,d)   Corr  (r,d)  

Suncheon   0.880   0.935   0.815   0.898  Busan   0.880   0.928   0.834   0.897  Icheon   0.883   0.935   0.806   0.889  Uljin   0.871   0.926   0.817   0.892  

10-­‐mode  With  the  seasonal  cycle   Without  the  seasonal  cycle  

Corr  (o,d)   Corr  (r,d)   Corr  (o,d)   Corr  (r,d)  

Suncheon   0.834   0.971   0.732   0.950  Busan   0.820   0.968   0.739   0.950  Icheon   0.841   0.971   0.726   0.946  Uljin   0.814   0.967   0.725   0.949  

   582  

Page 28: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  28  

Table  3.    The  lowest  three  and  the  highest  three  RMSE  values  of  the  20-­‐mode  583  downscaled  NCEP/NCAR  and  ECMWF  temperatures  with  those  at  the  60  KMA  584  stations.    585    586  

                             Data  Station                    

NCEP/NCAR   ECMWF  

Surface   1000  hPa   850  hPa   Surface   1000  hPa   850  hPa  

1st     0.474   0.479   0.505   0.466   0.462   0.501  

2nd     0.474   0.480   0.506   0.468   0.465   0.501  

3rd   0.474   0.480   0.507   0.469   0.465   0.502  

58th     0.514   0.521   0.549   0.515   0.508   0.542  

59th   0.516   0.525   0.551   0.516   0.508   0.544  

60th   0.517   0.527   0.551   0.523   0.517   0.544      587  

Page 29: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  29  

Table  4.    The  lowest  three  and  the  highest  three  correlation  values  of  the  20-­‐588  mode  downscaled  NCEP/NCAR  and  ECMWF  temperatures  with  those  at  the  60  589  KMA  stations.    590    591  

                             Data  Station                    

NCEP/NCAR   ECMWF  

Surface   1000  hPa   850  hPa   Surface   1000  hPa   850  hPa  

1st     0.891   0.887   0.871   0.894   0.900   0.872  

2nd     0.890   0.886   0.870   0.893   0.900   0.872  

3rd   0.890   0.885   0.869   0.892   0.900   0.871  

58th     0.869   0.864   0.842   0.869   0.873   0.847  

59th   0.867   0.860   0.841   0.867   0.873   0.844  

60th   0.867   0.860   0.841   0.862   0.866   0.844      592  

Page 30: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  30  

 593  Figure  1.  The  locations  of  the  60  Korea  Meteorological  Administration  (KMA)  594  stations.    The  black  dotted  lines  represent  the  NCEP/NCAR  grids  for  2  m  595  temperature,  and  the  red  dotted  lines  the  ERA  interim  temperatures.    The  red  596  dots  denote  the  stations  closest  to  the  four  NCEP/NCAR  grid  points.    597  

Page 31: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  31  

 598    599  

 600    601  

 602    603  

Figure  2.    The  mean  and  variance  of  the  (left)  NCEP/NCAR  surface  and  (right)  604  KMA  raw  temperatures:  (a)  and  (b)  represent  the  mean,  (c)  and  (d)  the  variance,  605  and  (e)  and  (f)  the  variance  without  the  seasonal  cycle.    606  

Page 32: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  32  

             607  

             608  

             609    610  Figure  3.    Mean  bias  (top),  relative  RMSE  (middle),  and  correlation  (bottom)  of  611  the  NCEP/NCAR  surface  temperature  against  the  KMA  temperatures:  (left)  with  612  the  seasonal  cycle,  and  (right)  without  the  seasonal  cycle.    At  each  of  the  60  KMA  613  stations,  the  closest  NCEP/NCAR  grid  point  is  taken  to  calculate  these  statistics.    614  

Page 33: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  33  

 615    616  Figure  4.    The  KMA  temperature  (blue)  and  the  raw  NCEP/NCAR  surface  617  temperature  (red)  at  the  four  KMA  stations  closest  to  the  NCEP  grid  points  (red  618  dots  in  Fig.  1).    Time  series  are  plotted  from  year  2000  for  easier  comparison.    619  

corr (kma,NCEP surf) = 0.814

corr (kma,NCEP surf) = 0.900

corr (kma,NCEP surf) = 0.814

corr (kma,NCEP surf) = 0.875

Page 34: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  34  

 620    621  Figure  5a.    Comparison  of  the  CSEOF  PC  time  series  (modes  1-­‐10)  of  (red)  the  622  KMA  winter  temperature  for  1979/1980-­‐2013/2014,  and  (black)  the  PC  time  623  series  generated  from  the  NCEP  surface  temperature  based  on  the  Jackknife  624  method.    625  

0

2

4

-2

0

2

-2

0

2

-2

0

2

-2

0

2

4

-2

0

2

-2

0

2

-2

0

2

-2

0

2

-2

0

2

1980 1985 1990 1995 2000 2005 2010

Page 35: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  35  

 626    627  Figure  5b.    Same  as  Fig.  5a,  but  for  modes  11-­‐20.    628  

-2

0

2

-2

0

2

-2

0

2

-2

0

2

-2

0

2

-2

0

2

0

2

-2

0

2

0

-2

0

2

1980 1985 1990 1995 2000 2005 2010

Page 36: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  36  

 629    630  Figure  6.    Comparison  of  (red)  the  20-­‐mode  downscaled  NCEP  surface  631  temperature  and  (blue)  the  20-­‐mode  reconstruction  of  the  KMA  temperature  at  632  the  four  stations  closest  to  the  NCEP  grids.    633  

corr (recon,downscaled) = 0.935

corr (recon,downscaled) = 0.928

corr (recon,downscaled) = 0.935

corr (recon,downscaled) = 0.926

Page 37: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  37  

 634    635  Figure  7.    Comparison  of  (red)  the  20-­‐mode  downscaled  NCEP  surface  636  temperature  and  (blue)  the  raw  KMA  temperature  at  the  four  stations  closest  to  637  the  NCEP  grids.    638  

corr (KMA,downscaled) = 0.880

corr (KMA,downscaled) = 0.880

corr (KMA,downscaled) = 0.883

corr (KMA,downscaled) = 0.871

Page 38: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  38  

 639    640  Figure  8.    Error  time  series  (blue)  between  the  raw  KMA  temperature  and  the  641  20-­‐mode  downscaled  temperature  in  Fig.  6  and  (red)  the  raw  KMA  temperature  642  and  the  NCEP  surface  temperature  at  the  four  KMA  stations  in  Fig.  1  (red  dots).    643  

Page 39: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  39  

     644    645  

     646    647  Figure  9.    Correlation  and  RMSE  of  the  downscaled  temperature  from  the  NCEP  648  surface  data  and  the  raw  KMA  temperature:  with  the  seasonal  cycle  in  (a)  and  649  (b),  and  without  the  seasonal  cycle  in  (c)  and  (d).      650  

Page 40: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  40  

     651  

     652    653  Figure  10.    Standard  deviation  (upper  panels)  and  mean  (lower  panels)  of  the  654  raw  KMA  temperature  (left  column)  and  the  20-­‐mode  downscaled  temperature  655  from  the  NCEP  surface  data  (right  column).    656  

Page 41: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  41  

             657    658  

Figure  11.    The  first  10  PC  time  series  of  (red)  the  KMA  winter  temperature  659  (1979/1980  -­‐  2013/2014)  and  the  regressed  PC  time  series  from  (red)  the  660  NCEP/NCAR  and  (blue)  ECMWF  surface  temperature.    Regression  relationship  is  661  determined  based  on  the  data  in  the  training  period  (1979/1980-­‐2008/2009)  662  and  the  time  series  from  2009/2010-­‐2013/2014  are  prediction  based  on  the  663  regressed  PC  time  series.    664  

Page 42: Statistical(Downscaling(of(statclim.snu.ac.kr/.../downscaling.pdf · ! 1! 1! Statistical(Downscaling(of(2! Wintertime(Temperatures(overSouthKorea(3! ! 4! SeoyeonLee!and!Kwang0Yul!Kim!

  42  

     665    666  

         667    668  

Figure  12.    Correlation  (left  column)  and  the  relative  RMSE  (right  column)  669  between  the  20-­‐mode  downscaled  NCEP/NCAR  surface  temperature  and  the  raw  670  KMA  temperature  for  the  prediction  period  (2009/2010-­‐2013/2014):  (a)  and  671  (b)  are  for  the  daily  temperature,  and  (c)  and  (d)  are  for  the  monthly  672  temperature.  673