53
Dept. of Telecomm. Eng. Faculty of EEE SSP2013 DHT, HCMUT Chapter 7: Kalman Filter  State-space formulation  Kalman filtering algorithm  Examples of Kalman filtering  Scalar random variable estimation  Position estimation  System Identificat ion  System tracking.

SSP (IU) Chapter78 2013

Embed Size (px)

Citation preview

Page 1: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 1/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013DHT, HCMUT

Chapter 7:Kalman Filter

 State-space formulation

 Kalman filtering algorithm

 Examples of Kalman filtering

 Scalar random variable estimation

 Position estimation

 System Identification

 System tracking.

Page 2: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 2/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013DHT, HCMUT2

References

[1] Simon Haykin, Adaptive Filter Theory, Prentice Hall,1996 (3rd Ed.), 2001 (4th Ed.)..

[2] Steven M. Kay, Fundamentals of Statistical Signal Processing:

 Estimation Theory, Prentice Hall, 1993.

[3] Alan V. Oppenheim, Ronald W. Schafer, Discrete-Time Signal

Processing, Prentice Hall, 1989.

[4] Athanasios Papoulis, Probability, Random Variables, andStochastic Processes, McGraw-Hill, 1991 (3rd Ed.), 2001 (4th Ed.).

Page 3: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 3/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013DHT, HCMUT3

7. Kalman Filter: State-Space Formulation (1)

 Linear discrete-time dynamical system: State vector 

x(n) with dimension M  is unknown. To estimate x(n),using the observation vector y(n) with dimension N .

Page 4: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 4/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013DHT, HCMUT4

7. Kalman Filter: State-Space Formulation (2)

Process equation:

where F(n+1,n) is ( M × M )-state transition matrix relating the

state of the system at times n+1 and n. ( M ×1)- process noise

vector v1(n) is zero-mean white-noise process with correlation

matrix:

Measurement equation describing observation vector:

where C(n) is ( N × M )-measurement matrix. ( N ×1)-measurement

noise vector v2(n) is zero-mean white- noise process with

correlation matrix:

)()(),1()1( 1  nnnnn

  vxFx  ++=+

[ ]

=

= k n

k nn

k n E   H 

,

,)(

)()(  1

110

Q

vv

)()()()( 2   nnnn   vxCy   +=

[ ]

==

k n

k nnk n E 

  H 

,

,)()()(  2

220

Qvv

Page 5: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 5/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013DHT, HCMUT5

7. Kalman Filter: State-Space Formulation (3)

Assumed that the initial state x(0) is uncorrelated to 

v1(n) and v2(n) for n ≥ 0 and v1(n) and v2(n) arestatistically independent.

Statement of Kalman filterring: Using entire observed

data y(1), y(2),…, y(n), to find for each n ≥1 the minimummean-squared estimates of the components of the state

x(i). If

i=n: Filtering problem

i>n: Predicting problem

n>i ≥1: Smoothing problem

Page 6: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 6/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013DHT, HCMUT6

7. Kalman Filter: Algorithm (1)

Detail derivation in [1]

Page 7: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 7/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013DHT, HCMUT7

7. Kalman Filter: Algorithm (2)

where (n) is innovation process and G(n) is Kalman

gain.

K(n+1,n) is the

predicted state-error correlation

matrix:

with (n+1, n): the predicted state-error vector:

),1(),1(),1(   nnnn E nn  H 

++=+   εεK

)1(ˆ)1(),1(   +−+=+   nnnn   xxε

Page 8: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 8/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013DHT, HCMUT8

7. Kalman Filter: Example 1 (1)

Formulate a scalar voltage measurement experiment

using state-space equations if the true voltage is 0.5 andthe process and measurement noise variances are 0.001

and 0.1 respectively. Investigate the performance of the

Kalman filter for this problem.

Page 9: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 9/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013DHT, HCMUT9

7. Kalman Filter: Example 1 (2)

Page 10: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 10/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013DHT, HCMUT10

7. Kalman Filter: Example 2 (1)

Formulate the state-space equations for a particle

moving with a constant velocity and apply the Kalmanfilter to track its trajectory.

Page 11: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 11/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013DHT, HCMUT11

7. Kalman Filter: Example 2 (2)

Page 12: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 12/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013DHT, HCMUT12

7. Kalman Filter: Example 3 (1)

Consider the system identification problem shownbelow:

v(n) is a zero-mean, white noise sequences with variance

0.1. If H ( z) = 1+0.5z-1 - z-2+0.3 z-3 - 0.4 z-4, evaluate theperformance of the Kalman filtering algorithm whenu(n) is (a) a white noise sequence, and (b) a colorednoise sequence.

Page 13: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 13/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013DHT, HCMUT13

7. Kalman Filter: Example 3 (2)

Page 14: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 14/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013DHT, HCMUT14

7. Kalman Filter: Example 3 (3)

Page 15: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 15/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013DHT, HCMUT15

7. Kalman Filter: Example 4 (1)

Consider the system identification problem shown below:

v(n) is a zero-mean, white noise sequences with variance 1. Theunknown system has a time-varying impulse responserepresented by h(n)=a h(n-1)+b(n), where a is the modelparameter, b(n) is a white noise process with variance of 0.01,and h(0)=[1 0.5 -1 0.3 -0.4]. Evaluate the tracking performanceof the Kalman filtering algorithm when u(n) is (a) a white noisesequence, and (b) a colored noise sequence.

Page 16: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 16/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013DHT, HCMUT16

7. Kalman Filter: Example 4 (2)

Page 17: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 17/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013DHT, HCMUT17

7. Kalman Filter: Example 4 (3)

Page 18: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 18/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013DHT, HCMUT18

7. Kalman Filter: Example 4 (4)

Page 19: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 19/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013DHT, HCMUT19

7. Kalman Filter: Example 4 (5)

Page 20: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 20/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013DHT, HCMUT

 Method of Steepest Descent. Least-Mean-Square Algorithm.

Examples of Adaptive Filtering:

Adaptive Equalization and

Adaptive Beamforming.

Chapter 8:

Adaptive Filter

Page 21: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 21/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013

DHT, HCMUT21

8. Linear Adaptive Filter: Principles

General principle of adaptive filter

Page 22: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 22/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013

DHT, HCMUT22

8. LAF: Method of Steepest Descent

The method of steepest descent is the iterative solution

of the Wiener-Hopf equations.

Wiener-Hopf equations:

Cost function:

MMSE:

pRw   =opt 

Rwwwppww  H  H  H 

d nene E  J    +−−==   2* )()()(   σ 

pRpwpw   122min   )(  −

−=−==  H d opt  H d opt  J  J    σ σ 

[ ]   M 

 H  M  M  H 

C nd n E 

C nn E 

∈=

=∈=  ×

)()(

,)()(

*up

RRuuR

Page 23: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 23/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013

DHT, HCMUT23

8. LAF: Steepest Descent Algorithm (1)

Summary:

1. Begin with an initial guess of the weight vector:w(0)

2. Compute the direction of steepest descent pointing

from the initial location on the error surface

3. Compute the next guess of the weight vector w bymaking a change in accordance with the direction

of steepest descent

4. Go back to step 2 and repeat the process

Page 24: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 24/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013

DHT, HCMUT24

8. LAF: Steepest Descent Algorithm (2)

Weight vector at iteration n+1:

Therefore:where µ  is the stepsize, controls the incrementalcorrection.

Question: 

How to choose µ  ?

How many iterations to obtain the optimum weightvector ?…

( )

( ))(

)(

)(

)(

)()()1(

*

*

nn

n J 

n

n J 

nn

Rwpw

w

w

www

+−=∂

−=+   µ 

( ))()()1(   nnn   Rwpww   −+=+   µ 

Page 25: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 25/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013

DHT, HCMUT25

8. LAF: Stability of the Algorithm

To meet the stability, choosing µ  in accordance with:

where is the maximum eigenvalue of the correlation

matrix R.

Other useful criterion for choosing µ : 

max

20λ 

µ  <<

)0(

2

)(

20

 Mr trace=<<

Rµ 

Page 26: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 26/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013

DHT, HCMUT26

8. LAF: Examples (1)

Refer to Example 1, Chapter 5

Page 27: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 27/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013

DHT, HCMUT27

8. LAF: Examples (2)

Page 28: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 28/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013

DHT, HCMUT28

8. LAF: Examples (3)

Page 29: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 29/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013

DHT, HCMUT29

8. LAF: Least Mean Square (LMS) Algorithm (1)

The LMS algorithm is a stochastic gradient algorithm

consisting of 2 basic processes:

Filtering process: computing the output of FIR filter

y(n)=w H (n)u(n) and generating an estimation error e(n)

Adaptation process: automatic adjustment of the weight

vector of the FIR filter in accordance with the estimation

error e(n)

Page 30: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 30/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013

DHT, HCMUT30

8. LAF: LMS Algorithm (2)

The steepest descent algorithm is given by:

Note that this equation requires the knowledge of the

autocorrelation matrix R and the crosscorrelation vector

p.

In the LMS formulation, these matrix and vector are

replaced by the instantaneous values, i.e.,

R(n) = u(n)u H (n) and p(n) = u(n)d *(n).

With this replacement, the weight update equation

becomes:

))(()()1(   nnn   Rwpww   −+=+   µ 

)()()()1(   *nennn   uww   µ +=+

Page 31: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 31/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013

DHT, HCMUT31

8. LAF: Convergence Analysis (1)

Because of the use of instantaneous estimates of the

autocorrelation matrix and the crosscorrelation vector, the

convergence of the LMS algorithm is noisy.

Similar to the steepest descent algorithm, the

convergence of the LMS algorithm is controlled by the

stepsize µ .

The bounds on µ  for the stability of LMS adaptation are 0

≤ µ  ≤ 2/ λ max, where λ max is the maximum eigenvalue of

the input autocorrelation matrix.

Other useful criterion for choosing µ : 

[ ]∑−

=

==<<1

0

2)(

2

)0(

2

)(

20

 M 

k nu E  Mr trace  R

µ 

Page 32: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 32/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013

DHT, HCMUT32

8. LAF: Convergence Analysis (2)

Convergence criterion in mean square:

The average time constant of the LMS algorithm is

given by:

Thus smaller values of the stepsize parameter, µ , result

in longer convergence times.

∞→→=   nne E n J    as constant,)()(  2

∑===

 M 

k k av

avavmse  M    1,

1

 where,2

1

  λ λ µλ τ 

Page 33: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 33/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013

DHT, HCMUT33

8. LAF: Excess Mean-Squared Error (1)

Let J (n) denote the mean-squared error due to LMS

algorithm at iteration n:

where J min is the minimum mean-squared error produced

by the optimum Wiener filter, and J ex

(n) is the excess

mean-squared error.

⇒ The LMS algorithm alaways produces mean-squared

error J (n) that is in excess of minimum mean-squared error

 J min 

)()()( min

2n J  J ne E n J  ex+==

Page 34: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 34/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013

DHT, HCMUT34

8. LAF: Excess Mean-Squared Error (2)

When the LMS algorithm is convergent in the mean

square, J ex(n)→

  J ex(∞

): is steady-state value as n→∞

:

Smaller values of the stepsize µ , will therefore provide

lower excess mean-squared error.

Misadjustment K : is a measure providing how close the

mean-squared error of the LMS algorithm is to the

minimum mean-squared error J min (after completing

adaptation process)

∑=   −

=∞

= M 

i   i

iex

 J 

 J K 

1min   2

)(

µλ 

µλ 

∑=   −

=−∞=∞ M 

i   i

iex   J  J  J  J 

1

minmin2

)()(µλ 

µλ 

Page 35: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 35/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013

DHT, HCMUT35

8. LAF: Example of Adaptive Predictor (1)

Consider the first-order AR model, u(n)+a1u(n-1)=v(n),

where v(n) is zero-mean white noise. Evaluate theperformance of the steepest-descent, and LMS algorithms

when,

a1 = 0.9;

use different µ  values. Assume that the variance of v(n) isunity.

See p. 406, [1]

Page 36: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 36/53

Dept. of Telecomm. Eng.Faculty of EEE

SSP2013

DHT, HCMUT36

8. LAF: Example of Adaptive Predictor (2)

Page 37: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 37/53

Dept. of Telecomm. Eng.

Faculty of EEE

SSP2013

DHT, HCMUT37

8. LAF: Example of Adaptive Predictor (3)

Page 38: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 38/53

Dept. of Telecomm. Eng.

Faculty of EEE

SSP2013

DHT, HCMUT38

8. LAF: Example of Adaptive Predictor (4)

Page 39: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 39/53

Dept. of Telecomm. Eng.

Faculty of EEE

SSP2013

DHT, HCMUT39

8. LAF: Example of Adaptive Equalizer (1)

The following block diagram shows a typical adaptive

equalizer. The input xn is a zero-mean Bernoulli random

variable with unit variance. The noise v(n) has zero-

mean and a variance of 0.001.

Page 40: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 40/53

Dept. of Telecomm. Eng.

Faculty of EEE

SSP2013

DHT, HCMUT40

8. LAF: Example of Adaptive Equalizer (2)

Characterize the performance of the LMS algorithm

when the impulse response of the channel is given by the

raised cosine, W = 2.9:

See p. 412, [1]

Page 41: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 41/53

Dept. of Telecomm. Eng.

Faculty of EEE

SSP2013

DHT, HCMUT41

8. LAF: Example of Adaptive Equalizer (3)

Page 42: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 42/53

Dept. of Telecomm. Eng.

Faculty of EEE

SSP2013

DHT, HCMUT42

8. LAF: Example of Adaptive Equalizer (4)

Page 43: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 43/53

Dept. of Telecomm. Eng.

Faculty of EEE

SSP2013

DHT, HCMUT43

8. LAF: Example of Adaptive Equalizer (5)

8 A f A i i (6)

Page 44: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 44/53

Dept. of Telecomm. Eng.

Faculty of EEE

SSP2013

DHT, HCMUT44

8. LAF: Example of Adaptive Equalizer (6)

8 LAF E l f Ad i E li (7)

Page 45: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 45/53

Dept. of Telecomm. Eng.

Faculty of EEE

SSP2013

DHT, HCMUT45

8. LAF: Example of Adaptive Equalizer (7)

8 LAF E l f Ad i E li (8)

Page 46: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 46/53

Dept. of Telecomm. Eng.

Faculty of EEE

SSP2013

DHT, HCMUT46

8. LAF: Example of Adaptive Equalizer (8)

8 LAF E l f Ad ti B f (1)

Page 47: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 47/53

Dept. of Telecomm. Eng.

Faculty of EEE

SSP2013

DHT, HCMUT47

8. LAF: Example of Adaptive Beamformer (1)

8 LAF E l f Ad ti B f (2)

Page 48: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 48/53

Dept. of Telecomm. Eng.

Faculty of EEE

SSP2013

DHT, HCMUT

8. LAF: Example of Adaptive Beamformer (2)

The fixed beamforming approaches, mentioned in chapter 5, which

included the maximum SIR, the MSE method, and the MV method

were assumed to apply to fixed arrival angle emitters. If the arrivalangles don’t change with time, the optimum array weights won’t need

to be adjusted. However, if the desired arrival angles change with time,

it is necessary to devise an optimization scheme that operates on-the-

fly so as to keep recalculating the optimum array weights. The receiver

signal processing algorithm then must allow for the continuousadaptation to an ever-changing electromagnetic environment. The

adaptive beamforming (with adaptive algorithms) takes the fixed

beamforming process one step further and allows for the calculation

of continuously updated weights. The adaptation process must satisfy

a specified optimization criterion.

Several examples of popular optimization techniques include LMS,

SMI, recursive least squares (RLS), the constant modulus algorithm

(CMA), conjugate gradient, etc.

48

8 LAF E l f Ad ti B f (3)

Page 49: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 49/53

Dept. of Telecomm. Eng.

Faculty of EEE

SSP2013

DHT, HCMUT

8. LAF: Example of Adaptive Beamformer (3)

Example: Adaptive beamforming using LMS algorithm:

An M = 8-element array with spacing d = .5 λ has a received signal

arriving at the angle θ 0 = 30◦ , an interferer at θ 1 = −60◦. Use MATLAB

to write an LMS routine to solve for the desired weights. Assume that

the desired received signal vector is defined by xs(k) = a0s(k), where

s(k) = cos(2π  t(k)/T); with T = 1 ms and t = (1:100)T/ 100. Assume the

interfering signal vector is defined by xi(k) = a

1i(k ), where

i(k) = randn(1,100). Both signals are nearly orthogonal over the time

interval T. Let the desired signal d(k) = s(k). Assumed that the step size

 μ = .02.

49

8 LAF E l f Ad ti B f (4)

Page 50: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 50/53

Dept. of Telecomm. Eng.

Faculty of EEE

SSP2013

DHT, HCMUT

8. LAF: Example of Adaptive Beamformer (4)

Magnitude of array weights (convergence after about 60 iterations):

50

8 LAF E l f Ad ti B f (5)

Page 51: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 51/53

Dept. of Telecomm. Eng.

Faculty of EEE

SSP2013

DHT, HCMUT

8. LAF: Example of Adaptive Beamformer (5)

Mean-square error (convergence after about 60 iterations):

51

8 LAF E l f Ad ti B f (6)

Page 52: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 52/53

Dept. of Telecomm. Eng.

Faculty of EEE

SSP2013

DHT, HCMUT

8. LAF: Example of Adaptive Beamformer (6)

Final array factor (after convergence) which has a peak at the

desired direction of 30◦ and a null at the interfering direction of

−60

◦:

52

8 LAF: E ample of Adapti e Beamformer (7)

Page 53: SSP (IU) Chapter78 2013

7/23/2019 SSP (IU) Chapter78 2013

http://slidepdf.com/reader/full/ssp-iu-chapter78-2013 53/53

Dept of Telecomm Eng SSP2013

8. LAF: Example of Adaptive Beamformer (7)

The array output acquires and tracks the desired signal after about

60 iterations: