14
SpringerSeriesin SOLID-STATE SCIENCES 126 Springer-Verlag Berlin Heidelberg GmbH

Springer-Verlag Berlin Heidelberg GmbH978-3-642-58434...Preface The discovery in 1984 of crystals with "forbidden" symmetry, materials that were dubbed quasicrystals, opened a new

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Springer-Verlag Berlin Heidelberg GmbH978-3-642-58434...Preface The discovery in 1984 of crystals with "forbidden" symmetry, materials that were dubbed quasicrystals, opened a new

Springer Series in

S O L I D - S T A T E S C I E N C E S 126

Springer-Verlag Berlin Heidelberg GmbH

Page 2: Springer-Verlag Berlin Heidelberg GmbH978-3-642-58434...Preface The discovery in 1984 of crystals with "forbidden" symmetry, materials that were dubbed quasicrystals, opened a new

Springer Series in

S O L I D - S T A T E S C I E N C E S

Series Editors: M . Cardona P. Fulde K. von Klitzing R. Merlin H.-J. Queisser H. Stornier

126 Physical Properties of Quasicrystals Editor: Z.M. Stadnik

Volumes 1-125 are listed at the end of the book.

Page 3: Springer-Verlag Berlin Heidelberg GmbH978-3-642-58434...Preface The discovery in 1984 of crystals with "forbidden" symmetry, materials that were dubbed quasicrystals, opened a new

Zbigniew M. Stadnik (Ed.)

Physical Properties of Quasicrystals

With 221 Figures

Springer

Page 4: Springer-Verlag Berlin Heidelberg GmbH978-3-642-58434...Preface The discovery in 1984 of crystals with "forbidden" symmetry, materials that were dubbed quasicrystals, opened a new

Professor Dr. Zbigniew M . Stadnik

University of Ottawa, Department of Physics 150 Louis Pasteur, Ottawa Ontario K i N 6N5, Canada e-mail: [email protected]

Series Editors:

Professor Dr., Dres. h . c. Manuel Cardona Professor Dr., Dres. h . c. Peter Fulde* Professor Dr., Dres. h . c. Klaus von Kl i tz ing Professor Dr., Dres. h . c. Hans-Joachim Queisser

Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany * Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38

D-01187 Dresden, Germany

Professor Dr. Roberto M e r l i n Department of Physics, 5000 East University, University of Michigan A n n Arbor, M I 48109-1120, U S A

Professor Dr. Horst Stornier Dept. Phys. and Dept. Appl . Physics, Columbia University, New York, N Y 10023 and Bell Labs., Lucent Technologies, Murray H i l l , NJ 07974, U S A

ISSN 0171-1873

ISBN 978-3-642-63593-9 ISBN 978-3-642-58434-3 (eBook) DOI 10.1007/978-3-642-58434-3

Library of Congress Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme Physical properties of quasicrystals I Zbigniew M . Stadnik (ed.). Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong; London ; Milan; Paris; Singapore ; Tokyo : Springer 1999 (Springer series in solid-state sciences; 126) ISBN 978-3-642-63593-9

This work is subject to copyright. Al l rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1999

Originally published by Springer-Verlag Berlin Heidelberg New York in 1999

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typesetting: Data conversion by Satztechnik Katharina Steingraeber, Heidelberg, using the Springer TgX macro package "clmultoi"

Cover concept: eStudio Calamar Steinen Cover production: design & production GmbH, Heidelberg

SPIN: 10653237 57/3144 - 5 4 3 2 10 - Printed on acid-free paper

Page 5: Springer-Verlag Berlin Heidelberg GmbH978-3-642-58434...Preface The discovery in 1984 of crystals with "forbidden" symmetry, materials that were dubbed quasicrystals, opened a new

Preface

The discovery in 1984 of crystals with "forbidden" symmetry, materials that were dubbed quasicrystals, opened a new branch of crystallography and solid­state physics. These structures possess long-range aperiodic order and crys­tallographically forbidden rotational symmetries, and are thus fundamentally different from the two other known types of solid structure, crystalline and amorphous. The literature devoted to the physical properties of quasicrystals has been growing so rapidly that it is very difficult for a scientist to remain well informed on more than a narrow speciality within this area. Some def­inite and intriguing new physical phenomena have already been discovered, and other surprising results will probably follow. Our knowledge of the physi­cal properties of quasicrystals has now reached such a maturity that it seems necessary to provide a comprehensive review. I think this is an opportune time to produce a research-level monograph on the subject. As yet, no com­prehensive treatise exists at this level. It is very unlikely that a single author could produce a monograph at the level and depth that is needed to do jus­tice to the physical properties of quasicrystals. I hope that this book comes close to being such a monograph.

This book is intended for researchers in the field of the physics of qua­sicrystals, solid-state physicists, materials scientists, crystallographers, as well as for graduate students working in the area of new materials. Written by active researchers in their respective fields, it summarizes in a critical fash­ion much of our present knowledge and understanding of the complex, yet exciting physical properties of quasicrystals. I hope that it conveys some of the fascination I have found during my work in this field. We are still far from a complete understanding of these materials; this book will have served its purpose if it stimulates new research and helps to guide that research in fruitful directions.

I wish to thank the authon, for their thorough and competent work. I thank my departmental colleague, Dr. Brian A. Logan, for his assistance with the English of the book. I am grateful to Dr. Claus Ascheron from Springer-Verlag for his advice and friendly patience concerning some unex­pected delays. Finally, I express my thanks to Dr. Gerhard Stroink from Dalhousie University who introduced me in 1986 to the fascinating research area of quai'iicrystals.

Ottawa, September 1998 Zbigniew M. Stadnik

Page 6: Springer-Verlag Berlin Heidelberg GmbH978-3-642-58434...Preface The discovery in 1984 of crystals with "forbidden" symmetry, materials that were dubbed quasicrystals, opened a new

Contents

1. Introduction Zbigniew M. Stadnik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

References ..................................................... 3

2. Metallurgy of Quasicrystals An Pang Tsai .................................................. 5

2.1 Introduction............................................... 5 2.2 Preparation of Quasicrystals ................................ .

2.2.1 Rapid Solidification .................................. . 2.2.2 Vapor Condensation .................................. . 2.2.3 Mechanical Alloying .................................. . 2.2.4 Crystallization of Melt-Quenched Amorphous Ribbons .... . 2.2.5 Conventional Solidification ............................ .

6 6 7 8 9 9

2.3 Structural Classification from Diffraction Patterns. . . . . . . . . . . . .. 10 2.3.1 Three-Dimensional Quasicrystals . . . . . . . . . . . . . . . . . . . . . . .. 11 2.3.2 Two-Dimensional Quasicrystals ........................ 13 2.3.3 One-Dimensional Quasicrystals ......................... 17

2.4 Quasicrystalline Alloy Systems and the Formation of Quasicrystals . . . . . . . . . . . . . . . . . . . . . . . . . .. 17 2.4.1 Metastable Quasicrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 17 2.4.2 Stable Quasicrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20 2.4.3 Quasicrystals as Hume-Rothery Phases .................. 23

2.5 Phase Transformation from Amorphous to Icosahedral Phase. . . . . . . . . . . . . . . . . . . . . . . .. 26

2.6 Phase Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 29 2.6.1 AI-Li-Cu............................................. 29 2.6.2 AI-Cu-Fe............................................. 31 2.6.3 Al-Pd-Mn............................................ 31 2.6.4 Zn-Mg-Y............................................. 33 2.6.5 Al-Ni-Co............................................. 33

2.7 Growth of Quasicrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 35 2.7.1 Morphologies of Quasicrystals .......................... 35 2.7.2 Solidification of Quasicrystals. . . . . . . . . . . . . . . . . . . . . . . . . .. 39 2.7.3 Growing Large Single Grains. . . . . . . . . . . . . . . . . . . . . . . . . .. 43

Page 7: Springer-Verlag Berlin Heidelberg GmbH978-3-642-58434...Preface The discovery in 1984 of crystals with "forbidden" symmetry, materials that were dubbed quasicrystals, opened a new

VIII Contents

2.8 Summary.................................................. 44 References ..................................................... 45

3. Crystallography of Quasicrystals Walter Steurer and Torsten Haibach. . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. 51

3.1 Introduction............................................... 51 3.2 N-Dimensional Description of Quasicrystals. . . . . . . . . . . . . . . . . . .. 52

3.2.1 Embedding of Direct and Reciprocal Space. . . . . . . .. . . . . .. 52 3.2.2 Structure Factor ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 57

3.3 One-Dimensional Quasicrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 58 3.3.1 Indexing............................................. 59 3.3.2 Symmetry............................................ 60 3.3.3 Example of a One-Dimensional Quasicrystal:

Fibonacci Phase ...................................... 60 3.4 Decagonal Quasicrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 65

3.4.1 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 65 3.4.2 Symmetry............................................ 66 3.4.3 Example of a Decagonal Phase: Layers of Penrose Tilings .. 68

3.5 Icosahedral Quasicrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 76 3.5.1 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 76 3.5.2 Symmetry............................................ 79 3.5.3 Example of a Three-Dimensional Quasilattice:

Ammann Tiling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 82 References ..................................................... 89

4. Experimental Determination of the Structure of Quasicrystals

Michel Boudard and Marc de Boissieu . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 91

4.1 Introduction............................................... 91 4.2 X-ray and Neutron Diffraction ............................... 94

4.2.1 Patterson Analysis .................................... 95 4.2.2 Contrast Variation .................................... 96

4.3 Structure of the AI-Pd-Mn Icosahedral Phase. . . . . .. .. . . . . . . . .. 97 4.3.1 Space Group Determination. . . . . . . . . . . . .. . . . . . . . . . . . . .. 98 4.3.2 Patterson Analysis .................................... 101 4.3.3 First-Order Model ..................................... 105 4.3.4 About the Resulting Atomic Structure ................... 106 4.3.5 Limitations of the Direct Approach ...................... 110 4.3.6 Modeling ............................................. 110

4.4 Structure of the AI-Ni-Co Decagonal Quasicrystal .............. 119 4.5 Conclusions ................................................ 124 References ..................................................... 124

Page 8: Springer-Verlag Berlin Heidelberg GmbH978-3-642-58434...Preface The discovery in 1984 of crystals with "forbidden" symmetry, materials that were dubbed quasicrystals, opened a new

Contents IX

5. Electronic Transport Properties of Quasicrystals - Experimental Results

Osten Rapp .................................................... 127

5.1 Introduction ............................................... 127 5.1.1 Background .......................................... 127 5.1.2 Resistance Anomalies .................................. 128 5.1.3 Outline .............................................. 130

5.2 Experimental Results ....................................... 130 5.2.1 Overview ............................................ 130 5.2.2 High-Temperature Electrical Resistivity .................. 134 5.2.3 Hall Effect and Thermoelectric Power .................... 135 5.2.4 Icosahedral Approximants .............................. 137 5.2.5 Decagonal Quasicrystals ............................... 138

5.3 Towards Understanding Transport Properties .................. 140 5.3.1 Strong Sensitivity to Electron Concentration .............. 141 5.3.2 Magnitude of the Electrical Resistivity ................... 144 5.3.3 The Magnetoresistivity ................................ 147 5.3.4 p(T) at Low and Intermediate Temperatures .............. 154 5.3.5 Is There a Metal-Insulator Transition

in Icosahedral AI-Pd-Re? ............................... 156 5.4 Concluding Remarks ........................................ 159 References ..................................................... 162

6. Theory of Electronic Structure in Quasicrystals

Takeo Fujiwara ................................................. 169

6.1 Introduction ............................................... 169 6.2 Electronic Structure

in One- and Two-Dimensional Quasilattices . . . . . . . . . . . . . . . . . . .. 172 6.2.1 One-Dimensional Quasilattice: Fibonacci Lattice .......... 172 6.2.2 Two-Dimensional Quasilattice: Penrose Lattice ............ 175

6.3 Electronic Structure in Quasicrystals .......................... 179 6.3.1 Method of Calculations:

Tight-Binding LMTO and Related Methods . . . . . . . . . . . . . . 179 6.3.2 Quasi-Brillouin Zone

and Modification of DOS of Model Icosahedral Al ......... 180 6.3.3 Electronic Structure in MI-Type Icosahedral Quasicrystals . 181 6.3.4 Electronic Structure in TC-Type Icosahedral Quasicrystals . 185 6.3.5 Electronic Structure in Decagonal Quasicrystals ........... 185 6.3.6 General Characteristics of DOS and Wave Functions ....... 188 6.3.7 Experimental Study of Electronic Structures .............. 194

6.4 Transport Properties in Quasicrystals ......................... 194 6.4.1 Scenario of Transport in Random Systems ................ 194 6.4.2 Experimental Observations ............................. 196

Page 9: Springer-Verlag Berlin Heidelberg GmbH978-3-642-58434...Preface The discovery in 1984 of crystals with "forbidden" symmetry, materials that were dubbed quasicrystals, opened a new

X Contents

6.4.3 Effects of Randomness ................................. 196 6.4.4 Boltzmann Theory and Relaxation-Time Approximation ... 197 6.4.5 Anomalous Diffusion ................................... 200 6.4.6 Scaling Behavior ...................................... 200 6.4.7 Scenario of Transport in Quasicrystals ................... 202

6.5 Summary .................................................. 203 References ..................................................... 204

7. Elementary Excitations and Physical Properties

Jurgen Hafner and Marian KrajCf ................................. 209

7.1 Introduction ............................................... 209 7.1.1 Quasiperiodic Structure ................................ 209 7.1.2 Physical Properties .................................... 210 7.1.3 Spectral Properties of Quasiperiodic Hamiltonians ......... 211

7.2 Quasiperiodicity, Symmetry, and Elementary Excitations .................................. 214

7.3 Modelling Quasicrystalline Structures and Approximant Phases .................................... 216 7.3.1 Icosahedral Quasicrystals ............................... 216 7.3.2 Decagonal Quasicrystals ............................... 218 7.3.3 Approximant Structures ............................... 219

7.4 Numerical Characterization of Elementary Excitations ................................... 222 7.4.1 Direct Diagonalization ................................. 222 7.4.2 Real-Space Recursion .................................. 223 7.4.3 Comparison With Experiment .......................... 224

7.5 Phonons in Quasicrystals .................................... 224 7.5.1 Interactomic Force Law

and Quasiperiodicity - Modulated Quasicrystals .......... 224 7.5.2 Phonons in Icosahedral Quasicrystals .................... 226 7.5.3 Phonons in Decagonal Quasicrystals ..................... 231 7.5.4 Phonons - Summary ................................... 234

7.6 Electrons in Quasicrystals ................................... 234 7.6.1 s,p-Bonded Icosahedral Alloys as Hume-Rothery Phases ... 235 7.6.2 Icosahedral

and Decagonal Aluminum-Transition Metal Alloys ......... 238 7.6.3 Titanium-Based Quasicrystals .......................... 242 7.6.4 Fine Structure of the Electronic Spectrum,

Pseudogaps, and Real Gaps ............................ 242 7.6.5 Band-Structure Effects in Electronic Transport ........... 246 7.6.6 Magnetic Properties of Quasicrystals .................... 248 7.6.7 Electrons - A Summary ................................ 249

7.7 Final Remarks ............................................. 251 References ..................................................... 251

Page 10: Springer-Verlag Berlin Heidelberg GmbH978-3-642-58434...Preface The discovery in 1984 of crystals with "forbidden" symmetry, materials that were dubbed quasicrystals, opened a new

Contents XI

8. Spectroscopic Studies of the Electronic Structure

Zbigniew M. Stadnik ............................................ 257

8.1 Introduction ............................................... 257 8.2 Theoretical Predictions ...................................... 258

8.2.1 Pseudogap in the Density of States ...................... 258 8.2.2 Fine Strucure of the Density of States ................... 259

8.3 Experimental Results ....................................... 260 8.3.1 s,p-Bonded Icosahedral Alloys .......................... 260 8.3.2 AI-Cu-Transition Metal Icosahedral Alloys ................ 263 8.3.3 AI-Pd-Mn Icosahedral Alloys ........................... 271 8.3.4 AI-Pd-Re Icosahedral Alloys ............................ 275 8.3.5 AI-Co-Cu Decagonal Alloys ............................. 277 8.3.6 AI-Ni-Co and AI-Ni-Rh Decagonal Alloys ................. 278 8.3.7 Fine Structure of the Density of States ................... 280

8.4 Uniqueness of the Electronic Structure of Quasicrystals ............................................ 284

8.5 Quasiperiodicity and Unusual Physical Properties ............... 287 8.6 Conclusions and Outlook .................................... 288 References ......................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

9. Magnetic Properties of Quasicrystals Kazuaki Fukamichi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

9.1 Introduction ............................................... 295 9.2 AI-Based Quasicrystals ...................................... 296

9.2.1 Paramagnetism, Effective Magnetic Moment and Saturation Magnetization .......................... 296

9.2.2 Fraction of Magnetic Mn Atoms and Giant Magnetic Moment ........................... 299

9.2.3 Difference Between Magnetic Moments in Icosahedral and Decagonal Phases .......... . . . . . . . . . . . . . . . . . . . . . . . 301

9.2.4 Spin-Glass Behavior ................................... 303 9.2.5 Low-Temperature Specific Heat ......................... 306 9.2.6 Model for Magnetism and Pauling Valence ............... 308 9.2.7 Phasons, Diamagnetism, and Pauli Paramagnetism ........ 309 9.2.8 Ferromagnetism ....................................... 312

9.3 Mg-RE-Zn Quasicrystals ..................................... 315 9.3.1 Susceptibility and Spin-Glass Behavior ................... 316 9.3.2 Low-Temperature Specific Heat ......................... 318 9.3.3 Antiferromagnetism ................................... 321

9.4 Summary .................................................. 323 References ..................................................... 324

Page 11: Springer-Verlag Berlin Heidelberg GmbH978-3-642-58434...Preface The discovery in 1984 of crystals with "forbidden" symmetry, materials that were dubbed quasicrystals, opened a new

XII Contents

10. Surface Science of Quasicrystals Patricia A. Thiel, Alan I. Goldman, and Cynthia J. Jenks ............ 327

10.1 Introduction ............................................... 327 10.1.1 Background ......................................... 327 10.1.2 Outline ............................................. 328

10.2 Oxidized Surfaces ........................................... 328 10.2.1 Overview ........................................... 328 10.2.2 Oxide Composition ................................... 329 10.2.3 Oxide Depth ........................................ 329 10.2.4 Comparison to Crystalline Materials .................... 331 10.2.5 Oxide Structure ...................................... 333 10.2.6 Oxidation-Induced Phase Transformations ............... 333

10.3 Surface Energies ............................................ 334 10.4 Clean Surfaces ............................................. 337

10.4.1 Methods of Clean Surface Preparation .................. 337 10.4.2 Surface Composition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 10.4.3 Surface Structure and Topography ..................... 341 10.4.4 Surface Chemistry .................................... 351

10.5 Friction ................................................... 352 10.6 Concluding Remarks ........................................ 355 References ..................................................... 355

11. Mechanical Properties of Quasicrystals Knut Urban, Michael Feuerbacher, Markus Wollgarten, Martin Bartsch, and Ulrich Messerschmidt ......................... 361

11.1 Introduction ............................................... 361 11.2 Low-Temperature Mechanical Properties ....................... 362

11.2.1 Mechanical Property Data ............................. 362 11.2.2 Fracture ............................................ 363

11.3 Dislocations in Quasicrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 11.3.1 Background ......................................... 365 11.3.2 Dislocations in a Quasilattice ......................... 366 11.3.3 Dislocation Analysis .................................. 368

11.4 High-Temperature Plastic Deformation ........................ 371 11.4.1 Background ......................................... 371 11.4.2 Theoretical .......................................... 371 11.4.3 Results of Mechanical Testing .......................... 375 11.4.4 Microscopic Observations ............................. 380

11.5 Discussion ................................................. 388 11.5.1 Model of Dislocation Friction in Quasicrystals ........... 392

11.6 Concluding Remarks ........................................ 396 References ..................................................... 397

Page 12: Springer-Verlag Berlin Heidelberg GmbH978-3-642-58434...Preface The discovery in 1984 of crystals with "forbidden" symmetry, materials that were dubbed quasicrystals, opened a new

Contents XIII

12. Toward Industrial Applications Patrick C. Gibbons and Kenneth F. Kelton ........................ 403

12.1 Introduction ............................................... 403 12.2 The Relevant Properties of Quasicrystals ...................... 403

12.2.1 Electronic Structure and Transport ..................... 403 12.2.2 Visible and Infrared Optical Properties ................. 405 12.2.3 Thermopower ........................................ 406 12.2.4 Lattice Dynamics .................................... 407 12.2.5 Ductility ............................................ 409 12.2.6 Surface Properties .................................... 411 12.2.7 Corrosion Resistance ................................. 413 12.2.8 Hydrogen Storage .................................... 414

12.3 Possible Applications ........................................ 421 12.3.1 Coatings ............................................ 421 12.3.2 Dispersion Hardening of Crystalline, Quasicrystalline,

and Amorphous Alloys ................................ 423 12.3.3 Selective Absorbers for Solar-Thermal Converters ........ 424 12.3.4 Thermoelectric Devices ............................... 425 12.3.5 Hydrogen Storage and Battery Applications ............. 425

12.4 Conclusion ................................................. 426 References ..................................................... 427

Subject Index ................................................ 433

Page 13: Springer-Verlag Berlin Heidelberg GmbH978-3-642-58434...Preface The discovery in 1984 of crystals with "forbidden" symmetry, materials that were dubbed quasicrystals, opened a new

List of Contributors

Martin Bartsch Max-Planck-Institut fur Mikrostrukturphysik, Weinberg 2 D-06120 Halle/S. Germany

Michel Boudard Laboratoire de Thermodynamique et de Physico-Chimie Metallurgiques UMR 5614 CNRS, INPG, UJF, BP 75,38402 Saint Martin d'Heres Cedex France

Marc de Boissieu Laboratoire de Thermodynamique et de Physico-Chimie Metallurgiques UMR 5614 CNRS, INPG, UJF, BP 75,38402 Saint Martin d'Heres Cedex France

Michael Feuerbacher Institute fUr Festkorperforschung Forschungszentrum Jiilich GmbH D-52425 Julich Germany

Takeo Fujiwara Department of Applied Physics University of Tokyo Hongo 7-3-1, Bunkyo-ku Tokyo 113 Japan

Kazuaki Fukamichi Department of Materials Science Faculty of Engineering Tohoku University Sendai 980-77 Japan

Patrick C. Gibbons Department of Physics Washington University St. Louis, Missouri 63130 USA

Alan I. Goldman Department of Physics and Astronomy, and Ames Laboratory Iowa State University Ames, IA 50011 USA

J iirgen Hafner Institute fUr Theoretische Physik and Center for Computational Materials Science Technische Universitiit Wien A-1040 Wien Austria

Torsten Haibach Laboratory of Crystallography ETH-Zurich, 8092-Zurich Switzerland

Page 14: Springer-Verlag Berlin Heidelberg GmbH978-3-642-58434...Preface The discovery in 1984 of crystals with "forbidden" symmetry, materials that were dubbed quasicrystals, opened a new

XVI List of Contributors

Cynthia Jenks Department of Chemistry and Ames Laboratory Iowa State University Ames, IA 50011 USA

Kenneth F. Kelton Department of Physics Washington University St. Louis, Missouri 63130 USA

Marian Krajci Institute of Physics Slovak Academy of Sciences SK-84228 Bratislava Slovak Republic

Ulrich Messerschmidt Max-Planck-Institut fUr Mikrostrukturphysik, Weinberg 2 D-06120 Halle/S. Germany

Osten Rapp Physics Department Kungliga Tekniska Hogskolan SE 100 44 Stockholm Sweden

Zbigniew M. Stadnik Department of Physics University of Ottawa Ottawa, Ontario KIN 6N5 Canada

Walter Steurer Laboratory of Crystallography ETH-Ziirich, 8092-Ziirich Switzerland

Patricia A. Thiel Department of Chemistry and Ames Laboratory Iowa State University Ames, IA 50011 USA

An Pang Tsai National Research Institute for Metals Tsukuba 305 Japan

KnutUrban Institute fiir Festkorperforschung Forschungszentrum Jiilich GmbH D-52425 Jiilich Germany

Markus Wollgarten Centre d'Etudes de Chimie Metallurgique 15, rue Georges Urbain F-94407 Vitry-sur-Seine Cedex France