79
Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous supersymmetry breaking on the lattice David Baumgartner, Kyle Steinhauer and Urs Wenger Albert Einstein Center for Fundamental Physics University of Bern Workshop on Strongly-Interacting Field Theories 29 November – 1 December 2012 Jena (Germany)

Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Spontaneous supersymmetry breakingon the lattice

David Baumgartner, Kyle Steinhauer and Urs Wenger

Albert Einstein Center for Fundamental PhysicsUniversity of Bern

Workshop on Strongly-Interacting Field Theories29 November – 1 December 2012

Jena (Germany)

Page 2: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Outline

Spontaneous supersymmetry breaking:Witten index and sign problem

New approach for simulating fermions on the lattice:Loop formulation for Majorana Wilson fermionsSolution of the sign problem

Two examples:N = 2 supersymmetric QMN = 1 Wess-Zumino model in d = 2

Page 3: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Supersymmetry and its breaking

Unbroken supersymmetry:Vanishing ground state energyDegenerate mass spectrum

Broken supersymmetry:No supersymmetric ground stateParticle masses not degenerateEmergence of Goldstino mode

Page 4: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Spontaneous SUSY breaking (SSB) and the Witten index

Witten index provides a necessary but not sufficientcondition for SSB:

W ≡ limβ→∞

Tr(−1)F exp(−βH) ⇒{

= 0 SSB may occur$= 0 no SSB

Index counts the difference between the number ofbosonic and fermionic zero energy states:

W ≡ limβ→∞

[TrB exp(−βH) − TrF exp(−βH)

]= nB − nF

Index is equivalent to partition function with periodic b.c.:

W =

∫ ∞

−∞Dφ det [/D(φ)] e−SB[φ] = Zp

⇒ Determinant (or Pfaffian) must be indefinite for SSB.

Page 5: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Example: N = 2 SUSY QM

Consider the Lagrangian for N = 2 supersymmetricquantum mechanics

L =12

(dφ

dt

)2+

12P

′(φ)2 + ψ

(ddt + P′′(φ)

)ψ ,

real commuting bosonic ’coordinate’ φ,complex anticommuting fermionic ’coordinate’ ψ,superpotential P(φ)

Two supersymmetries in terms of Majorana fields ψ1,2:

δAφ = ψ1εA, δBφ = ψ2εB ,δAψ1 = dφ

dt εA, δBψ1 = −iP′εB ,δAψ2 = iP′εA, δBψ2 = dφ

dt εB.

Page 6: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Example: N = 2 SUSY QM

Integrating out the fermion fields yields (indefinite)determinant

∫Dψ Dψ exp

(−ψD(φ)ψ

)= detD(φ)

The (regulated) fermion determinant can be calculatedexactly:

det[∂t + P′′(φ)

∂t +m

]= sinh

∫ T

0

P′′(φ)

2 dt =⇒ Z0 − Z1

If under some symmetry φ ↔ φ̃ of SB(φ) we have∫ T

0

P′′(φ̃)

2 dt = −∫ T

0

P′′(φ)

2 dt =⇒ Z0 = Z1 and SSB

Page 7: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Spontaneous SUSY breaking (SSB) and the sign problem

On the lattice we find with Wilson type fermions

det [∇∗ + P′′(φ)] =∏

t[1 + P′′(φt )] − 1 .

For odd potentials, e.g. P(φ) = m2

2λ φ + 13λφ3 we have

det [∇∗ + P′′] =∏

t[1 + 2λφt ] − 1

no longer positive... ⇒ sign problem!

Every supersymmetric model which allows SSB must havea sign problem:

SUSY QM with odd potential,N = 16 Yang-Mills quantum mechanics [Catterall, Wiseman ’07],N = 1 Wess-Zumino model in 2D [Catterall ’03; Wipf, Wozar ’11],. . .

Page 8: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Solution of the sign problem

We propose a (novel) approach circumventing theseproblems:⇒ fermion loop formulation.

Alternative way of simulating fermions on the lattice:based on the exact hopping expansion of the fermionaction,eliminates critical slowing down,allows simulations directly in the massless limit,

⇒ solves the fermion sign problem.

Applicable to Wilson fermions in theO(N) Gross-Neveu model in d = 2 dimensions,Schwinger model in the strong coupling limit in d = 2 and 3,SUSY QM,N = 1 and 2 supersymmetric Wess-Zumino model,supersymmetric matrix QM.

Page 9: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Exact hopping expansion for Wilson fermions

Fermionic part of N = 2 SUSY QM,

L = ψ(∂t + P′′(φ))ψ .

Using Wilson lattice discretisation yields backwardderivative

∇∗ψ(t) = ψ(t) − ψ(t − a)

and eliminates fermion doubling in 1D.

Using the nilpotency of Grassmann elements we expandthe Boltzmann factor

∫DψDψ

t

(1 −M(t)ψ(t)ψ(t)

) ∏

t

(1 + ψ(t)ψ(t − a)

)

where M(t) = 1 + P ′′(φ(t)).

Page 10: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Exact hopping expansion for Wilson fermions

At each site t , the fields ψ and ψ must be exactly paired togive a contribution to the path integral:

∫DψDψ

t

(−M(t)ψ(t)ψ(t)

)m(t) ∏

t

(ψ(t)ψ(t − a)

)nf (t)

with occupation numbersm(t) = 0, 1 for monomers,nf (t) = 0, 1 for fermion bonds (or dimers),

satisfying the constraint

m(t) +12 (nf (t) + nf (t − a)) = 1.

Only closed paths survive the integration.

Page 11: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Exact hopping expansion for scalar fields

Analogous treatment for the bosonic field [Prokof’ev, Svistunov ’01]:(∂tφ)2 → φt+aφt ,expand hopping term exp{−φt+aφt} to all orders:∫

Dφ∏

t

nb(t)

1nb(t)!

(φtφt+a)nb(t) exp (−V (φt )) M(φt )

m(t)

with bosonic bond occupation numbers nb(t) = 0, 1, 2, . . .

Integrating out φ(t) yields bosonic site weights

Q(N) =

∫dφ φN exp (−V (φ))

where N includes powers from M(φ).

Page 12: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Loop formulation of SUSY QM

Loop representation in terms of fermionic monomers anddimers and bosonic bonds.

Especially simple for supersymmetric QM:

{nf = 0,m = 1} ⇒ no fermion, bosonic vacuum{nf = 1,m = 0} ⇒ fermion present, fermionic vacuum

!!! ! ! !!!! ! ! !0 1 2 Lt − 1

Partition functions sum over all bond configurations:

Zp = Z0 − Z1 ⇒ Witten indexZa = Z0 + Z1 ⇒ finite temperature

Page 13: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Exact calculation using a transfer matrix

Loop representation allows the construction of a transfermatrix.

Each state on the link is characterised by the bondoccupation numbers, i.e. |nf ,nb〉,

!!!t

!!! !!!t

Tn′;n takes the system from state |nf ,nb〉 to state |n′f ,n′b〉.

Tn′;n block diagonalises into T nf=0n′b;nb

and T nf=1n′b;nb

.

Page 14: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Exact calculation using a transfer matrix

Loop representation allows the construction of a transfermatrix.

Each state on the link is characterised by the bondoccupation numbers, i.e. |nf ,nb〉,

!!!t T 0

2;4

!!! !!!t T 1

0;4

Tn′;n takes the system from state |nf ,nb〉 to state |n′f ,n′b〉.

Tn′;n block diagonalises into T nf=0n′b;nb

and T nf=1n′b;nb

.

Page 15: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Exact calculation using a transfer matrix

Specifically,

T 1n′,n =

Q(n′ + n)√n′! n!

with Q(N) =

∫dφ φN exp (−V (φ))

and T 0 analogously.

Exact lattice partition functions given by Znf = Tr[(Tnf )Lt

],

Witten index by W ≡ Zp = Z0 − Z1.

Mass gaps from ratios of eigenvalues of T 0 and T 1.

Exact results for other observables (n-point functions, etc.)

Page 16: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Witten index for unbroken supersymmetry, P = 12mφ2 + 1

4gφ4

0 0.01 0.02 0.03 0.04 0.05a/L

0.9975

0.998

0.9985

0.999

0.9995

1

Z p/Za

mL = 30mL = 10mL = 5

g/m2 = 1.0

Page 17: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Witten index for broken supersymmetry, P = − 12λm2φ + 1

3λφ3

0 0.01 0.02 0.03 0.04 0.05a/L

-1

-0.5

0

Z p/Za

mL = 0.1mL = 0.2mL = 0.5mL = 0.8mL = 1.0mL = 2.0mL = 5.0mL = 8.0mL =10.0mL =12.0mL =16.0mL =20.0mL =30.0

/m3/2=1.0

Page 18: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Mass gaps for unbroken SUSY

Z0 Z1

0

Page 19: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Mass gaps for unbroken SUSY

Z0 Z1

0

""

""# m0F0

Page 20: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Mass gaps for unbroken SUSY

Z0 Z1

0 $m0B0

Page 21: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Mass gaps for unbroken SUSY

Z0 Z1

0

%%

%%

%%

%%&

m0F1

Page 22: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Mass gaps for unbroken SUSY

Z0 Z1

0 $

m0B1

Page 23: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Mass gaps for unbroken SUSY

Z0 Z1

0

'''''''''''''(

m0F2

Page 24: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Mass gaps for unbroken SUSY

Z0 Z1

0 $

m0B2

Page 25: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Mass gaps for unbroken SUSY

Z0 Z1

0

Page 26: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Mass gaps for broken SUSY

Z0 Z1

E0 = 0.1685

Page 27: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Mass gaps for broken SUSY

Z0 Z1

E0 = 0.1685

)m0F0

Page 28: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Mass gaps for broken SUSY

Z0 Z1

E0 = 0.1685

**

*+m0F1

Page 29: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Mass gaps for broken SUSY

Z0 Z1

E0 = 0.1685

$m0B0

Page 30: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Mass gaps for broken SUSY

Z0 Z1

E0 = 0.1685

$m1B0

Page 31: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Mass gaps for broken SUSY

Z0 Z1

E0 = 0.1685

%%

%%

%%%&

m0F2

Page 32: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Mass gaps for broken SUSY

Z0 Z1

E0 = 0.1685

$

m0B1

Page 33: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Mass gaps for broken SUSY

Z0 Z1

E0 = 0.1685

$

m1B1

Page 34: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Mass gaps for broken SUSY

Z0 Z1

E0 = 0.1685

Page 35: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Mass gaps for unbroken SUSY, Q1-exact action (twisted SUSY)

Z0 Z1

Page 36: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Ward identity for unbroken SUSY

Ward identity 〈δO〉 = 〈OδS〉:O = ψxφx → W = 〈ψxψy 〉 + 〈(∆− + P′)xφy 〉

0 0.2 0.4 0.6 0.8 1t / L

-0.1

-0.05

0

0.05

0.1

W(t)

aPBC

Lt = 50Lt = 100Lt = 200Lt = 300Lt = 600

fg = 1 µL = 4

Page 37: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Ward identity for unbroken SUSY

Ward identity 〈δO〉 = 〈OδS〉:O = ψxφx → W = 〈ψxψy 〉 + 〈(∆− + P′)xφy 〉

0 0.2 0.4 0.6 0.8 1t / L

-0.1

-0.05

0

0.05

0.1

W(t)

PBC

Lt = 50Lt = 100Lt = 200Lt = 300Lt = 600

fg = 1 µL = 4

Page 38: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Ward identity for unbroken SUSY, continuum limit

Ward identity 〈δO〉 = 〈OδS〉:O = ψxφx → W = 〈ψxψy 〉 + 〈(∆− + P′)xφy 〉

0 0.1 0.2 0.3 0.4a µ

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

W(L

t/2)

µL = 3 for aPBCµL = 4 for aPBCµL = 5 for aPBCµL = 7 for aPBCµL = 10 for aPBCµL = 3 for PBCµL = 4 for PBCµL = 5 for PBCµL = 7 for PBCµL = 10 for PBC

fg = 1

Page 39: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Ward identity for unbroken SUSY, Q-exact action

Ward identity 〈δO〉 = 〈OδS〉:O = ψxφx → W = 〈ψxψy 〉 + 〈(∆− + P′)xφy 〉

0 0.2 0.4 0.6 0.8 1t / L

-0.01

0

0.01

0.02

0.03

0.04

0.05

W(t)

Lt = 30 for PBCLt = 60 for PBCLt = 90 for PBCLt = 120 for PBCLt = 30 for aPBCLt = 60 for aPBCLt = 90 for aPBCLt = 120 for aPBC

fg = 1 µL = 10

Page 40: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Ward identity for unbroken SUSY, Q-exact action, continuum limit

Ward identity 〈δO〉 = 〈OδS〉:O = ψxφx → W = 〈ψxψy 〉 + 〈(∆− + P′)xφy 〉

0 0.1 0.2 0.3 0.4a µ

0

0.02

0.04

0.06

0.08

0.1

W(L

t/2)

all µL for PBCµL = 3 for aPBCµL = 4 for aPBCµL = 5 for aPBCµL = 10 for aPBC

fg = 1

Page 41: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

MC simulation of fermion loops: proof of concept

0 0.1 0.2 0.3 0.4 0.5 0.6am

1

1.2

1.4

1.6

1.8

2

mX/m

mF, mL=17.0mB, mL=17.0mF, mL=31.0mB, mL=31.0mF, mL=10.0mB, mL=10.0

continuum limit, g/m2=1.0, Q-exact action

Page 42: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

MC simulation of fermion loops: proof of concept

Page 43: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

N = 1 Wess-Zumino model

The N = 1 Wess-Zumino model in 2D:

L =12 (∂µφ)2 +

12P

′(φ)2 +12ψ (∂/ + P′′(φ)) ψ

with ψ a two component Majorana field,and φ real bosonic field,superpotential, e.g. P(φ) = −m2

4g φ + 13gφ3.

Symmetries:Supersymmetry

δφ = εψ

δψ = (∂/φ − P′)ε

δψ = 0

ZZ (2) chiral symmetry

φ → −φ

ψ → γ5ψ

ψ → −ψγ5

Page 44: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Classical potential

The scalar potential is a standard φ4 theory:

12P

′(φ)2 = −12m2

2 φ2 +12g

2φ4 + const

ZZ (2) symmetry may bebroken.

-g/2m 0 +g/2m0

m4/g2

P’( )2/2

Witten index is vanishing (W = 0) with one bosonic andone fermionic ground state.

Integrating out Majorana fermions yields indefinite Pfaffian.

Page 45: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

ZZ (2) and supersymmetry breaking

For large mg the ZZ (2) symmetry is spontaneously broken,

φ = ±m/2g selects a definite ground state:

φ = +m/2g =⇒ bosonicφ = −m/2g =⇒ fermionic

⇒ SUSY unbroken

For small mg the ZZ (2) symmetry is unbroken,φ = 0 allows both bosonic and fermionic ground state:

⇒ SUSY broken

Tunneling between the two ground states:

⇒ Goldstino mode, PfMpp = 0

Page 46: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

N = 1 Wess-Zumino model on the lattice

Using Wilson lattice discretisation for the fermionic part

L =12ξTC(γµ∂̃µ − 1

2∂∗∂ + P′′(φ))ξ ,

and expanding the Boltzmann factor,∫

Dξ∏

x

(−M(x)ξT (x)Cξ(x)

)m(x) ∏

x,µ

(ξT (x)CΓ(µ)ξ(x + µ̂)

)bµ(x)

where M(x) = 2 + P ′′(φ).m(x) = 0, 1 and bµ(x) = 0, 1 satisfy the constraint

m(x) +12

µ

bµ(x) = 1.

Only closed, non-intersecting paths survive the integration.

Page 47: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Fermion loop formulation

Loop representation in terms of fermionic monomers anddimers and bosonic fields φ.

Partition function becomes a sum over all non-oriented,self-avoiding fermion loops +

ZL =

∫Dφ

{$}∈L

ω[+, φ], L ∈ L00 ∪ L10 ∪ L01 ∪ L11

= ZL00 + ZL10 + ZL01 + ZL11

Represents system with unspecified fermionic b.c. [Wolff ’07].

Simulate fermions by enlarging the configuration space byone open fermionic string [Wenger ’08].

Page 48: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Reconstructing the fermionic boundary conditions

The open fermionic string corresponds to the insertion of aMajorana fermion pair {ξT (x)C, ξ(y)} at position x and y :

It samples the relative weights between ZL00 ,ZL10 ,ZL01 ,ZL11 .Reconstruct the Witten index a posteriori

W ≡ Zpp = ZL00 − ZL10 − ZL01 − ZL11 ,

or a system at finite temperature

Zpa = ZL00 − ZL10 + ZL01 + ZL11 .

Page 49: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

ZZ (2) broken phase

ZZ (2) broken phase with 〈|φ|〉 - 2 at m/g = 4

0 5×105 1×106

MC time

-4

-2

0

2

4|

⇒ tunneling suppressed for L→ ∞ or m/g → ∞

Page 50: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

ZZ (2) broken phase

ZZ (2) broken phase with 〈|φ|〉 - 2 at m/g = 4

-4 -2 0 2 40

1000

2000

3000

4000

5000

6000

7000

Z00Z10Z01Z11Z

|

〈φ〉 - −2 : Z00 - Z10 - Z01 - Z11 ⇒ Zpp - −Zpa〈φ〉 - +2 : Z00 - 1,Z10 - Z01 - Z11 - 0 ⇒ Zpp - Zpa

Page 51: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

ZZ (2) broken phase

ZZ (2) broken phase with 〈|φ|〉 - 2 at m/g = 4

-4 -2 0 2 40

1000

2000

3000

4000

5000

6000

7000

Z00Z10Z01Z11Z

|

supersymmetry restored (at least in the limit L→ ∞)

Page 52: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

ZZ (2) symmetric phase

ZZ (2) symmetric phase with 〈φ〉 - 0 at m/g = 0.16

2×105 3×105

MC time

-4

-2

0

2

4|

⇒ ZZ (2) exact only in the limit a→ 0

Page 53: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

ZZ (2) symmetric phase

ZZ (2) symmetric phase with 〈φ〉 - 0 at m/g = 0.16

-4 -2 0 2 40

5000

10000

15000

20000

Z00Z10Z10Z11Z

|

〈φ〉 - 0 ⇒ Z00 - Z10 + Z01 + Z11 ⇒ Zpp - 0supersymmetry broken

Page 54: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Scanning for the transition

0 0.05 0.1 0.15 0.2a m

-0.5

0

0.5

1Z pp

/Z

L= 8

a g = 0.03125

Page 55: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Scanning for the transition

0 0.05 0.1 0.15 0.2a m

-0.5

0

0.5

1Z pp

/Z

L= 8L=16

a g = 0.03125

Page 56: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Scanning for the transition

0 0.05 0.1 0.15 0.2a m

-0.5

0

0.5

1Z pp

/Z

L= 8L=16L=32

a g = 0.03125

Page 57: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Scanning for the transition

0 0.05 0.1 0.15 0.2a m

-0.5

0

0.5

1Z pp

/Z

L= 8L=16L=32L=64

a g = 0.03125

Page 58: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Scanning for the transition

0 0.05 0.1 0.15 0.2a m

-0.5

0

0.5

1Z pp

/Z

L= 8L=16L=32L=64L=128

a g = 0.03125

Page 59: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Supersymmetry breaking phase transition

0 0.05 0.1 0.15 0.2a m

-0.5

0

0.5

1Z pp

/ZL= 8L=16L=32L=64L=128L=256

a g = 0.03125

bosonic vacuum preferred (ZZ (2)χ broken at a $= 0)amc - 0.05 for L→ ∞

Page 60: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Supersymmetry breaking phase transition

0 0.2 0.4 0.6 0.8 1a m

0

0.2

0.4

0.6

0.8

1Z pp

/Zpa

gL=2gL=4gL=6gL=8

Witten index W ∝ Zpp/Zpa as an order parameter

Page 61: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Supersymmetry breaking phase transition

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1a m

0

0.05

0.1

0.15

0.2P’

ag=0.25ag=0.125ag=0.0625

Ward identity 〈P ′〉 as an order parameter,volumes gL = 2, 4, 6, 8

Page 62: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

ZZ (2) breaking phase transition

0 0.05 0.1 0.15 0.2a m

0

0.2

0.4

0.6

0.8

1

<s> pa

L= 8L=16L=32L=64L=128L=256

a g = 0.03125

Page 63: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

ZZ (2) breaking phase transition

0.05 0.1 0.15 0.2am

0

0.1

0.2

0.3

0.4Is

ing

L=16L=32L=64L=128L=256

0 100 200 300 400L

2

4

6

8

max

’Ising susceptibility’ χm with m = 1/V∑

x sign[φx ]

Page 64: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

ZZ (2) breaking phase transition

0.06 0.08 0.1 0.12 0.14am

0.1

0.2

0.3

0.4

0.5

0.6

0.7Bi

nder

cum

ulan

tL=16L=32L=64L=128L=256

Binder cumulant

Page 65: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

ZZ (2) breaking phase transition

0 0.5 1 1.51/gL

0.04

0.06

0.08

0.1

0.12

0.14am

c

IsingBinder cumulant

Thermodynamic limit

Page 66: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

ZZ (2)/SUSY breaking phase transition

0 0.5 1 1.5 2 2.5 31/gL

0

0.05

0.1

0.15

0.2

amc

Thermodynamic limit

Page 67: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

ZZ (2)/SUSY breaking phase transition

0 0.05 0.1 0.15 0.2 0.25ag

1

1.5

2

2.5

3f c-1

= m

c/gmc

bare

mcR

Continuum limit: 1-loop renormalised critical coupling

Page 68: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Boson mass spectrum

Boson field correlator in the SUSY symmetric/ZZ (2) brokenphase:

0 10 20 301.8

1.805

1.81

1.815

1.82

Cag=0.25, am=0.71, 64x128

0 10 20 301e-06

1e-05

0.0001

0.001

0.01

Cco

nn

0 10 20 30t/a

0.420.440.460.480.5

0.520.54

mef

f

perfect fit with e−MBt plus constant shift

Page 69: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Boson mass spectrum

Boson field correlator in the SUSY broken/ZZ (2) symmetricphase, ZZ (2) odd state φ:

0 10 20 30 40

0.050.1

0.150.2

Cag=0.25, am=0.20, 64x128

0 10 20 30 400.0001

0.001

0.01

Cco

nn

0 10 20 30 40t/a

0.080.1

0.120.140.160.180.2

mef

f

perfect fit with A0e−M(0)B t + A1e−M

(1)B t

Page 70: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Boson mass spectrum

Boson field correlator in the SUSY broken/ZZ (2) symmetricphase, ZZ (2) even state φ:

0 10 20 30 400.22

0.2250.23

0.2350.24

0.2450.25

Cag=0.25, am=0.20, 64x128

0 10 20 30 40

0.0001

0.01

Cco

nn

0 10 20 30 40t/a

0.20.40.60.8

1

mef

f

perfect fit with e−M(2)B t plus constant shift

Page 71: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Fermion mass spectrum

Fermion field correlator in the SUSY symmetric/ZZ (2) brokenphase (spans O(107) due to fermion loop algorithm):

0 10 20 300

0.5

1

1.5

2

Cag=0.25, am=0.71, 64x128

0 10 20 301e-06

0.0001

0.01

1

C

0 5 10 15 20 25 30t/a

0

0.5

1

1.5

2

mef

f

perfect fit with e−MF t

Page 72: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Fermion mass spectrum

Fermion field correlator in the SUSY broken/ZZ (2) symmetricphase, ZZ (2) even/odd state ψ and ψφ:

0 10 20 30 40 50

0.60.70.80.9

1

Cag=0.25, am=0.20, 64x128

0 10 20 30 40 500

0.02

0.04

0.06

C

0 5 10 15 20 25 30t/a

00.20.40.60.8

1

mef

f

Z(2) even state

Z(2) odd state

good fits with A0e−M(0)F t + A1e−M

(1)F t and e−M

(2)F t

Page 73: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Boson mass spectrum

0 0.5 1 1.5 2 2.5 3am

0

0.5

1

1.5

2aM

B

MB bosonic sector

MB(2) bosonic sector

ag=0.25, gL=16

0 0.1 0.2 0.3 0.4 0.5

MB bosonic sector

MB(2) bosonic sector

~(mc2-m2)3/4

~(m-mc)1/2

Page 74: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Boson mass spectrum

0 0.5 1 1.5 2 2.5 3am

0

0.5

1

1.5

2aM

B

MB bosonic sector

MB(2) bosonic sector

ag=0.25, gL=16

0 0.1 0.2 0.3 0.4 0.5

MB bosonic sector

MB(2) bosonic sector

MB fermionic sector

MB(2) fermionic sector

~(mc2-m2)3/4

~(m-mc)1/2

Page 75: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Fermion mass spectrum

0 0.5 1 1.5 2 2.5 3am

0

0.5

1

1.5

2aM

F

MF bosonic sector

MF(2) bosonic sector

ag=0.25, gL=16

0 0.1 0.2 0.3 0.4 0.5

Page 76: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Fermion mass spectrum

0 0.5 1 1.5 2 2.5 3am

0

0.5

1

1.5

2aM

F

MF bosonic sector

MF(2) bosonic sector

ag=0.25, gL=16

0 0.1 0.2 0.3 0.4 0.5

Goldstino amplitudeGoldstino mass

Page 77: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Fermion mass spectrum

0 0.5 1 1.5 2 2.5 3am

0

0.5

1

1.5

2aM

F

MF bosonic sector

MF(2) bosonic sector

MF fermionic sector

MF(2) fermionic sector

ag=0.25, gL=16

0 0.1 0.2 0.3 0.4 0.5

Page 78: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Combined mass spectrum

0 0.5 1 1.5 2 2.5 3am

0

0.5

1

1.5

2

aMF

MF bosonic sector

MF(2) bosonic sector

ag=0.25, gL=16

0 0.1 0.2 0.3 0.4 0.5

0 0.5 1 1.5 2 2.5 3am

0

0.5

1

1.5

2

aMB

MB bosonic sector

MB(2) bosonic sector

ag=0.25, gL=16

0 0.1 0.2 0.3 0.4 0.5

MB bosonic sector

MB(2) bosonic sector

~(mc2-m2)3/4

~(m-mc)1/2

Page 79: Spontaneous supersymmetry breaking on the latticegies/Conf/SIFT2012/jena12_wenger.pdfOverview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model Spontaneous

Overview SUSY breaking and sign problem N = 2 supersymmetric QM N = 1 Wess-Zumino model

Conclusions

Reformulation of Majorana fermions in terms of fermionloops:

separation into bosonic and fermionic sector,avoids the fermion sign problem,allows simulations without critical slowing down.

Transfer matrix yields exact results for SUSY QM.

Determination of the critical coupling for the ZZ (2)/SUSYbreaking phase transition for the N = 1 WZ model.

Determination of the particle mass spectrum above andbelow the transition.

Complete non-perturbative description of aspontaneous supersymmetry breaking phase transition.