139
DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 1 I Highlights Advanced highestdensity and highestbandwidth FPGA Over 1.7 million effective lookuptables Abundant embedded hard IP for communications applications Fully reprogrammable, SRAM based Synchronous core and I/O Built on Intel’s advanced 22nm 3D TriGate process technology Large capacity Up to 1.7 million effective lookuptables Up to 138 Mb of Block RAM 80 Kb block RAMs running at 750 MHz 640 bit logic RAM (LRAM) running at 750 MHz Industrystandard register transfer level (RTL) synthesis support: SynplifyPro from Synopsys Precision Synthesis from Mentor Graphics Rapid timing closure yielding significant timetomarket advantages Embedded (Hard IP) 10/40/100 gigabit Ethernet MAC PCI Express Gen 1/2/3, x1, x4, x8 with DMA engine DDR 1/2/3 72 bits wide Interlaken Up to 64 channels of embedded 12.75 Gbps SerDes and 16 channels of embedded 28 Gbps SerDes supporting protocols including: PCI Express Gen 1/2/3 10/40/100 gigabit Ethernet (XFI, XAUI, XLAUI, CAUI) Interlaken Fibre Channel SATA/SAS OC48 CEI6 SR/LR, CEI11 SR GPON/EPON CPRI/OBSAI Product Table x Speedster22i HD FPGA Family DS004 Rev. 1.8– Sept 24, 2012 Advance Table 1: Speedster22i HD FPGA Family Members Features HD210 HD680 HD1000 HD1500 Logic Capacity inc. embedded IP (effective 4-input LUTs) 265,000 660,000 1,045,000 1,725,000 Programmable LUTs 100,000 400,000 700,000 1,100,000 Number of Block RAMs (80 Kb) 200 600 1,026 1,728 Block RAM (total Kb) 16,000 48,000 82,080 138,240 Distributed RAM (total Kb) 256 1,024 3,940 6,636 Multiplier/Accumulators (BMACs) 110 240 756 864 SerDes Lanes 12.75 Gb/s 24 32 64 64 SerDes Lanes 28 Gb/s - 4 - 16 10G Ethernet MAC 12 24 24 48 40G Ethernet MAC 3 6 6 12 100G Ethernet MAC 1 2 2 4 Interlaken LLC 1 1 2 4 PCI Express LLC 2 2 2 2 DDR3/DDR2 Controller 2 4 6 6 Number of PLLs 16 16 16 16 User (Programmable) I/Os 372 684 996 996

Speedster22i HD FPGA Family

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Speedster22i HD FPGA Family

I

Highlights• Advanced highest‐density and highest‐bandwidth

FPGA

Over 1.7 million effective look‐up‐tables

Abundant embedded hard IP for communica‐tions applications

Fully reprogrammable, SRAM based

Synchronous core and I/O

Built  on  Intel’s  advanced  22‐nm  3‐D Tri‐Gateprocess technology

• Large capacity

Up to 1.7 million effective look‐up‐tables

Up to 138 Mb of Block RAM

80 Kb block RAMs running at 750 MHz

640  bit  logic  RAM  (LRAM)  running  at750 MHz 

• Industry‐standard  register  transfer  level  (RTL)synthesis support:

Synplify‐Pro from Synopsys

Precision Synthesis from Mentor Graphics

Rapid timing closure yielding significant time‐to‐market advantages

• Embedded (Hard IP)

10/40/100 gigabit Ethernet MAC

PCI Express Gen  1/2/3,  x1,  x4,  x8 with DMAengine

DDR 1/2/3 72 bits wide

Interlaken

• Up to 64 channels of embedded 12.75 Gbps SerDesand 16 channels of embedded 28 Gbps SerDes sup‐porting protocols including:

PCI Express Gen 1/2/3

10/40/100 gigabit Ethernet (XFI, XAUI, XLAUI,CAUI)

Interlaken

Fibre Channel

SATA/SAS

OC48

CEI‐6 SR/LR, CEI‐11 SR

GPON/EPON

CPRI/OBSAI

Product Tablex

Speedster22i HD FPGA FamilyDS004 Rev. 1.8– Sept 24, 2012 Advance

Table 1: Speedster22i HD FPGA Family Members

Features HD210 HD680 HD1000 HD1500

Logic Capacity inc. embedded IP (effective 4-input LUTs) 265,000 660,000 1,045,000 1,725,000

Programmable LUTs 100,000 400,000 700,000 1,100,000

Number of Block RAMs (80 Kb) 200 600 1,026 1,728

Block RAM (total Kb) 16,000 48,000 82,080 138,240

Distributed RAM (total Kb) 256 1,024 3,940 6,636

Multiplier/Accumulators (BMACs) 110 240 756 864

SerDes Lanes 12.75 Gb/s 24 32 64 64

SerDes Lanes 28 Gb/s - 4 - 16

10G Ethernet MAC 12 24 24 48

40G Ethernet MAC 3 6 6 12

100G Ethernet MAC 1 2 2 4

Interlaken LLC 1 1 2 4

PCI Express LLC 2 2 2 2

DDR3/DDR2 Controller 2 4 6 6

Number of PLLs 16 16 16 16

User (Programmable) I/Os 372 684 996 996

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 1

Page 2: Speedster22i HD FPGA Family

Packaging Options Speedster22i HD FPGA Family

Packaging OptionsSpeedster22i FPGAs are available in a variety of package options. Most adjacent family members are available inthe  same  package  and  are  pin‐compatible,  allowing migration  between  the members without  a  board  layoutchange. 

The package options are listed in Table 2.

Table 2: Speedster22i FPGA Packaging

Package OptionsAvailable SerDes and I/O

(12.75 Gbps SerDes, 28 Gbps SerDes, User I/O)

HD210 HD680 HD1000 HD1500

FBGA2597 (52.5-mm x 52.5-mm, 1-mm ball pitch) 64, 0, 996 48, 16, 996

FBGA1936 (45-mm x 45-mm, 1-mm ball pitch) 32, 4, 684 32, 0, 684 20, 4, 684

FBGA2597 (45-mm x 45-mm, 0.82-mm ball pitch) 32, 4, 684 64, 0, 996 64, 16, 996

FBGA2597 (52.5-mm x 52.5-mm, 1-mm ball pitch) 24, 0, 372 12, 4, 684

FBGA2597 (52.5-mm x 52.5-mm, 1-mm ball pitch) 24, 0, 372

PAGE 2 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 3: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Device Overview

Device OverviewSpeedster22i® HD devices  run at a maximum  rate of750  MHz  and  have  effective  densities  of  up  to  1.7Million  LUTs.  Based  on  the  Intel  22nm  process,Speedster22i HD  devices  are  SRAM  based  and  fullyreconfigurable.  Logic  resources  are  provided  usingstandard, synchronous, 4‐input Look Up Tables (LUT).A reconfigurable logic block (RLB) contains ten LUTs,and  has  ten  registers.  Speedster22i HD  devices  alsocontain block RAMs. Each block RAM is 80 kbit in sizeand allows true dual port access. 

The  I/O  Frame  contains  embedded  controller  IP,configurable I/Os, SerDes, clock generator blocks withphase lock loops (PLLs), and the device configurationlogic.  Speedster22i  FPGAs  contain  up  to  sixty  fourlanes of 12.75 Gbps SerDes, up  to  sixteen  lanes of 28Gbps SerDes and up  to an additional 996 high‐speed

reconfigurable  I/Os.  Additional  dedicated  hard  IPincludes up to six DDR1/2/3 PHY and controllers, up toforty eight 10 Gb Ethernet controllers, up to twelve 40GEthernet  controllers  and  up  to  four  100G  Ethernetcontrollers.  There  are  also  are  up  to  four  Interlakencontrollers  and  two  PCI  Express  controllers,  allavailable as embedded hard IP and therefore use noneof  the  reconfigurable  logic  fabric  and  achievemaximum  performance without  the  need  for  timingclosure/optimization.

There  are  also  dedicated  I/Os  for  the  embeddedprogramming and configuration logic (CFG) designedto  support  a  variety  of  programming  options.Dedicated clock I/O pins are located near the corners ofeach Speedster device. Figure 1 gives an overview ofSpeedster22i Devices

Figure 1: Speedster22i HD Device Overview

PLLs PLLsSerDes

Interlaken LLC (×6, ×8, ×10, ×12)

PCI Express LLC(×1, ×4, ×8)

& DMA Controller

10/40/100G EthernetPCS & MAC

PLLs PLLsSerDes

PCI Express LLC(×1, ×4, ×8)

& DMA Controller

Interlaken LLC

Configuration Logic

DD

R1/2

/3 P

HY a

ndCo

ntro

ller

DD

R1/2

/3 P

HY a

ndCo

ntro

ller

DD

R1/2

/3 P

HY a

ndCo

ntro

ller

GPIO

DD

R1/2

/3 P

HY a

ndCo

ntro

ller

DD

R1/2

/3 P

HY a

ndCo

ntro

ller

DD

R1/2

/3 P

HY a

ndCo

ntro

ller

GPIO

Programmable Core:Logic (RLBs)Block RAMs (BRAMs)Local RAMs (LRAMs)Block Multipliers (BMULTs)

D100001 v1.0Not drawn to scale

10/40/100G EthernetPCS & MAC

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 3

Page 4: Speedster22i HD FPGA Family

FPGA Core Speedster22i HD FPGA Family

FPGA CoreThe  core  of  an  Achronix  Speedster22i  HD  FPGAcontains  columns  of  Logic,  Memory  andMultiplier/Accumulators  (BMACs)  connected  with  aglobal  interconnect  as  shown  in  figure  2  below.Columns  of  Reconfigurable  Logic  Blocks  (RLBs)  are

interspersed with Columns  of Block RAMs  (BRAMs)and Local Rams  (LRAMs) and BMACs. The core alsoincludes  global  and  local  clock  networks  as well  asreset  networks.  The  columns  of  Logic  resources  areshown in Figure 2:

Figure 2: Programmable Core ‐ Columns of RLBs, BRAMs, LRAMs and BMACs

PLLs PLLsSerDes

Interlaken LLC (×6, ×8, ×10, ×12)

PCI Express LLC(×1, ×4, ×8)

& DMA Controller

10/40/100G EthernetPCS & MAC

PLLs PLLsSerDes

PCI Express LLC(×1, ×4, ×8)

& DMA Controller

Interlaken LLC10/40/100G Ethernet

PCS & MACConfiguration Logic

DD

R1/2

/3 P

HY

and

Cont

rolle

rD

DR1

/2/3

PH

Y an

dCo

ntro

ller

DD

R1/2

/3 P

HY

and

Cont

rolle

r

GPI

O

DD

R1/2

/3 P

HY

and

Cont

rolle

rD

DR1

/2/3

PH

Y an

dCo

ntro

ller

DD

R1/2

/3 P

HY

and

Cont

rolle

r

GPI

O

D100002 v1.0Not drawn to scale

RLB

Colu

mn

RLB

Colu

mn

RLB

Colu

mn

RLB

Colu

mn

RLB

Colu

mn

RLB

Colu

mn

RLB

Colu

mn

RLB

Colu

mn

RLB

Colu

mn

RLB

Colu

mn

RLB

Colu

mn

RLB

Colu

mn

BRA

M C

olum

n

LRA

M C

olum

n

BRA

M C

olum

n

BMAC

Col

umn

BMAC

Col

umn

PAGE 4 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 5: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family FPGA Core

Global Interconnect

The RLBs, BRAMs, LRAMs and BMACs are connectedby  a  uniform  global  interconnect.  This  enables  therouting of signals between core elements. Switch Boxesmake  the  connection  points  between  vertical  and

horizontal routing tracks. Inputs to and Outputs fromeach RLB/BRAM/LRAM/BMAC  connect  to  the globalinterconnect. An example of an RLB with 8 used inputsand 2 outputs is shown in Figure 3.

Figure 3: Global Interconnect Routing (Conceptual)

RLB RLB

RLBRLB

RLBRLB

BRAM

BRAM

BRAM

SwitchBox

SwitchBox

SwitchBox

SwitchBox

D100003 v1.0Not drawn to scale

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 5

Page 6: Speedster22i HD FPGA Family

FPGA Core Speedster22i HD FPGA Family

The Reconfigurable Logic Block (RLB)

The Reconfigurable Logic Block (RLB), is comprised offive Logic Clusters, each of which contains  two LUTsand  two  registers.  This  gives  a  total  of  ten,  4‐inputLUTs in a single RLB. 

There are  two  types of Logic Cluster,  the Light LogicCluster  (LLC)  and  the  Heavy  Logic  Cluster  (HLC).Each RLB has three LLCs and two HLCs. The HLC is a

super‐set of the LLC, as it includes an advanced carrychain not present in the LLC.

The RLB  is  illustrated  in Figure 4. Essentially, an RLBconsists of five pairs of Logic Clusters, two pairs with acarry chain. This carry chain has its own RLB input andoutput  to  allow  chaining  to  be  cascaded  throughmultiple RLBs.

Efficient RLB Feedback

There are several feedback mechanisms within the RLBto  allow  efficient  feedback,  i.e  feedback  signals  thatstay within  the RLB  instead of having  to use externalrouting resources. 

A  single  signal  matrix  exists  in  the  RLB.  Thismultiplexes:

• Inputs – Routes the RLB inputs and Internal Feed‐back signals to the Logic Clusters

• Outputs – Routes the Logic Cluster outputs (regis‐tered  and  unregistered)  to  the  RLB  outputs  and

also  back  to  the  Input Matrix where  feedback  isrequired

Figure 4: The Reconfigurable Logic Block

LLC

LLC

Carry In

HLC

HLC

LLC

D100001 v1.0

Switch Matrix

Switch Matrix

Carry Out

From Global Interconnect

To Global Interconnect

Internal Loopback

PAGE 6 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 7: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family FPGA Core

The details of  internal RLB feedback paths are shownin Figure 5:

Both Registered  and  unregistered  outputs  from  eachLUT  can also be  routed  from  the output matrix backinto the input matrix without leaving the RLB. 

The outputs from the RLB can also be routed back intothe  inputs  via  the  external  Routing  if  needed  (notshown). 

The Light Logic Cluster

The Light Logic Cluster (LLC) is illustrated in Figure 6.

The  standard  4‐input  LUT  is  the  fundamental  logicbuilding block of the fabric. Each LUT has four inputsand a single output, and can be configured to make theoutput reflect any combinatorial (truth table) functionof the inputs. The two four‐input LUTs can implementa single five‐input LUT function with the utilization ofthe MUX2. The MUX2 also enables the implementationof certain six, seven, eight and nine‐input functions.

Multiplexing blocks (shown in Figure 5) provide flexibleaccess to the two register outputs. 

Figure 5: The Reconfigurable Logic Block

LUT

LUT

LUT

LUT

LUT

SwitchBox

D100004 v1.0

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 7

Page 8: Speedster22i HD FPGA Family

FPGA Core Speedster22i HD FPGA Family

The Heavy Logic Cluster

The  Heavy  Logic  Cluster  (HLC)  is  illustrated  inFigure 7.  All  functionality  possible  with  the  LightLogic Cluster  can  also be  implemented  in  a HLC.  Inaddition, each cluster has a 2‐bit adder as well as  the

logic  needed  for  generation  of  an  arithmetic  carrysignal and propagation to the HLC to the north basedon  the  RLB  inputs  and  the  carry  in  signal  from  itsneighbor to the south

Figure 6: The Light Logic Cluster

LUTB

LUTA

B4

B3

B2

B1

B0

A0

A1

A2

A3

A4

Shift In

Shift Out

OUTL[0]

OUTL[1]

OUT[0]

OUT[1]

D100005 v1.0

Figure 7: Heavy Logic Cluster

LUTB

LUTA

B4

B3

B2

B1

B0

A0

A1

A2

A3

Shift In

Shift Out

OUTL[0]

OUTL[1]

OUT[0]

OUT[1]

D100005 v1.0

10

Carry Out

Carry In

A4

ADD2

b0b1d1load

a0a1d0

s1s0

co

ci

PAGE 8 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 9: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Memory Resources

Memory ResourcesBlock RAMs (BRAM)

The  Block  RAM  (BRAM)  contained  within  theSpeedster22i  is  an  80Kbit,  true  dual  port memory  (2independent  read/write  ports).  The  BRAM  providessupport  for write‐through  and  no‐change modes  (nosupport for read‐first mode).

The key features (per Block RAM) are summarized  inTable 3, and illustrated in Figure 8

Organization

The  organization  of  each  block  RAM  port  can  beindependently configured (the available organizationsare listed in Table 3).

NOTE: Access from opposite ports are not required to havethe same organization; however, the number of total memorybits on each port must be the same.

Operation

The read and write operations are both synchronous. Forhigher  performance  operation,  an  addition  outputregister can be enabled. Enabling the output register willadd an additional cycle of read latency. 

Write  Enable  (wea/web)  controls  provide  10‐bit  enablecontrol for port widths of 20 or 40 bit. 

The initial value of the memory contents may be specifiedby  the  user  from  either  parameters  or  a  memoryinitialization  file.  The  initial/reset  values  of  the  outputregisters may  also  be  specified  by  the  user.  The  resetvalues are  independent of  the  initial  (power‐up) values.(They donʹt need to match.)

The  porta_write_mode/portb_write_mode  parametersdefine the behavior of the output data port during a write

operation. When porta_write_mode/portb_write_mode isset to write_first, the douta/doutb is set to the value be‐ingwritten on  the dina/dinb port during a write operation.Setting  porta_write_mode/  portb_write_mode  tono_change keeps the douta/ doutb port unchanged duringa write operation to porta/portb. 

Built in FIFO Controller

Each BRAM has a FIFO  controlled built  into  it. EachFIFO  is  capable  of  operating with  two  independentports and asynchronous or synchronous access.

Error Correction

The  40‐bit  bus width provides  an  8  bit  overhead  foruser  implementation  of  parity  or  Error  CorrectionCodes  (ECC),  on  a  32‐bit wide  data  bus. Of  course,these overhead bits can be used for other purposes aswell: tagging, various control functions, etc.

Initialization and Reset

Initial  content  of  the  block  RAMs  is  loaded  duringdevice configuration. On  reset,  the RAM contents areunchanged.

The initial state of the RAM read outputs is also loadedduring  device  configuration. Unlike  the  RAM  content,this default output state is restored on reset.

Table 3: Block RAM Key Features

Feature Value

Block RAM Size 80 Kb

Organization 2k x 40, 2k x 36, 2k x 32, 4k x 20, 4k x 18, 4k x 16, 8k x 10, 8k x 9, 8k x 8, 16k x 5, 16k x 4, 32k x 2, 64k x 1

Performance 750 MHz

PhysicalImplementation

Columns throughout device

Number of Ports Dual port (independent read and write)

Port Access Synchronous

Figure 8: Block RAM I/O

BRAM80K

addra[15:0]dina[31:0]dinpa[3:0]

dinpxa[3:0]wea[3:0]

pearstlatcha

outregceaclka

douta[31:0]doutpa[3:0]

doutpxa[3:0]

addrb[15:0]dinb[31:0]dinpb[3:0]dinpxb[3:0]web[3:0]pebrstlatchboutregcebclkb

doutb[31:0]doutpb[3:0]doutpxb[3:0]

D100007 v1.0

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 9

Page 10: Speedster22i HD FPGA Family

Memory Resources Speedster22i HD FPGA Family

Logic RAM (LRAM)

The  Local  RAM  (LRAM640)  implements  a  640‐bitmemory block with one write port and one read port.LRAMs  are  included  in  dedicated  columns  spreadthroughout the device. Each LRAM  is a single 640‐bitblock  of  dedicated  memory.  A  summary  of  LRAMfeatures is shown in Table 4.

The LRAM ports are shown in Figure 9.

Organization

The  LRAM640  can  be  configured  as  either  a  64x10simple dual‐port (1 write port, 1 read port) RAM or a64x10 single port (1 read/write port) RAM. 

Initialization and Reset

By default,  the contents of the LRAM640 memory areundefined.  If  the user wants  the  initial contents  to bedefined, he may assign them from either a file pointedto by the mem_init_file parameter or assign them fromthe value of the mem_init parameter.

Operation

The LRAM640 has a synchronous write port. The readport  can  be  configured  for  either  asynchronous  orsynchronous read operations. The read port output hasa register that can be bypassed. 

The memory  is  organized  as  little‐endian with  bit  0mapped to bit zero of parameter mem_init and bit 639mapped to bit 639 of parameter mem_init.

Table 4: Logic RAM Key Features

Feature Value

Logic RAM size 640 bits

Organization 64 x 10

Performance 750 MHz

Physical Implementation Dedicated Columns

Number of Ports Simple dual port (one read, one write), or Single port (one read/write port)

Port Access Synchronous writes, Asynchronous or Synchronous Reads

Figure 9: Logic RAM I/O

LRAM640

waddr[5:0]din[9:0]

wrendinpxa[3:0]

wclk

rdaddr[5:0]rstregn

outregcerdclk

dout[9:0]

D100008 v1.0

PAGE 10 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 11: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Multipliers / BMAC56

Multipliers / BMAC56The  Multiplier  /  Accumulator  (BMACC56)  blockimplements a signed 28x28 multiplier  followed by anoptional accumulator block. The multiplier produces a56‐bit result which  is  fed  into  (or bypasses)  the 56‐bitaccumulator.  The  key  features  are  summarized  inTable 5.

Multiplication and Accumulation is an important part ofreal‐time  digital  signal  processing  (DSP)  applicationsranging  from  digital  filtering  to  image  processing.Speedster  22i HD  devices  have  numerous  BMACC56instances  arranged  in  columns. Each BMACC56 blockhas  a  56‐bit  cascaded  path  interconnecting  adjacent(north/south) BMACC56 blocks. 

The BMAC I/O are illustrated in Figure 10.

The internal block diagram is shown in Figure 11

Table 5: Multiplier Features

Feature Value

Arithmetic Type Two's complement (signed)

Performance 750 MHz

Multiplier Size 28 X 28

Accumulate Size 56bits

Cascade Size 56bits

Figure 10: BMAC I/O

a[27:0]ce_arst_a

b[27:0]ce_brst_b

mask_addace_mask_addarst_mask_adda

subce_subrst_sub

cince_cinrst_cin

cascade_in[55:0]

cascade_out[55:0]

clk

dout[55:0]

cout

ce_doutrst_dout

BMACC56

Figure 11: BMAC Block Diagram

qced

r

5656

1cascade_in[55:0]

qced

r

qced

r

qced

r

qced

r

28

28

a[27:0]:b[27:0]

01

qced

r

qced

r

cout

dout[55:0]

cascade_out[55:0]

mask_addace_mask_adda

rst_mask_adda

a[27:0]ce_a

rst_a

b[27:0]ce_b

rst_b

subce_sub

rst_sub

cince_cin

rst_cin

ce_doutrst_dout

Signedadd/sub

adda

addb

sub

cin

dout

cout

multout[55:0]

mult[55:0]

qd

01

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 11

Page 12: Speedster22i HD FPGA Family

Clocking and Reset Resources Speedster22i HD FPGA Family

Clocking and Reset ResourcesGlobal Clock Network

Speedster22i  FPGAs  have  a  hierarchical  global  clocknetwork.  Input  clock  sources  are  channeled  to  theClock Hub,  located  in  the center of  the device. Theseinputs  include  ‐ direct clock  input pins, PLL outputs,Byte  lane Clocks  from  the  I/O  and  recovered  SerDesinput  clocks.  The  north  and  south  side  of  the ClockHub  have  separate  inputs  and  outputs,  but  the  hub

itself  can  multiplex  signals  between  the  twogeographies. Each clock input bus (north, south) is 104bits wide. Each clock output bus from the Clock Hub is32bits wide. The global clock routing structures ensurevery low skew occurs from the Clock Hub to the ClockRegion  inputs. The global  clock network  is  shown  inFigure 12. 

Figure 12: Global Clock DistributionD100001 v1.0

Clock Region

Clock Region

Clock Region

Clock Region

Clock Region

Clock Region

Clock Region

Clock Region

Clock Region

Clock Region

Clock Region

Clock Hub

Clock Region

PLL

GCGs

PLLPLLs

SerDes

SerDes

32

32

I/O Bank

I/O Bank

Byt

e La

nes

Byt

e La

nes

Byt

e L

ane

sB

yte

La

nes

Byt

e L

anes

Byt

e L

anes

Byt

e La

nes

Byt

e L

anes

I/O Bank

I/O Bank

Byt

e La

nes

Byt

e La

nes

Byt

e L

ane

sB

yte

La

nes

Byt

e La

nes

Byt

e La

nes

Byt

e L

ane

sB

yte

La

nes

PLLs

PLLs

Clock Buffers

32

32

12

20

166

South Clock Tree

North Clock Tree

PLL

GCGs

PLLPLLsClock

Buffers 166

20

PLLs

32

32

32

PLLsPLL

GCGs

PLLPLLs Clock Buffers

16

6 PLL

GCGs

PLLPLLsClock

Buffers 6

16

2020

PAGE 12 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 13: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Clocking and Reset Resources

Clock Regions

Each  Clock  Region  can  select  12  inputs  from  the  32supplied by the associated global clock network (Northor South). 

A  clock  region  comprises  of  135  columns  of  logicfabric. Each column has either 36 RLBs, or 6 BRAMs, or36  LRAMs  or  6  BMACs  depending  on  the  columncontents. 

The total resources for a Clock Region are:

• 4320 RLBs (43K LUTs)

• 120 80Kbit BRAMs

• 4320 LRAMs

• 120 28x28 BMACs.

Each Clock Region has 12 internal clocks. These 12 aremuxed  in  from  the 32 Global Clocks delivered by  thelow  skew  global  clock  network.  The  Region  ClockManager  (RCM)  provides  the  ability  to  dynamicallyclock  gate  the  region,  as  well  as  dynamically  selectamong  the  32 global  clocks  for  routing  into  the  localClock Region

Figure 13 below shows an example Clock Region.

Global Clock I/O buffer

As  shown  in  Figure 12,  page  12,  each  corner  of  aSpeedster22i FPGA has eight Global Clock I/O buffers(CBs).  These  buffers  can  be  used  as  either  fourdifferential  I/Os  or  eight  single‐ended  I/Os.  If  theseinputs are not used as clock buffers, they can be usedas generic inputs. 

Global Clock Generator

Each  corner  of  a  Speedster22i FPGA has  four GlobalClock  Generators  (GCGs),  consisting  of  a  PLL  withprogrammable  clock  synthesizers  at  the output. Eachof four outputs (Figure 14, page 15) can pick any of the

eight phases of the output clock. Each PLL output canalso dynamically step through the phases sequentially.

One of the four outputs from each PLL in a corner can berouted to any of the eight I/Os of the clock bank  in thatcorner. Hence,  the output  from  the PLL can be sent outdirectly through any I/O of the clock bank in that corner. 

Note: This output has a unique pin designation in the macro library element for the PLL.

The Clock Generator  PLL  performance  specificationsare listed in Table 6, page 14.

Each  PLL  output  has  an  additional  programmableOutput Synthesizer  (OS) which can be bypassed. TheOS output  frequency  can be a divided version of  the

Figure 13: Clock Regions

Low Skew Clock Network

3212

Clock Region

RLBsBRAMsMULTs RLBsRLBsBRAMsMULTs LRAMs

RLBsBRAMsMULTs RLBs

RLBsBRAMsMULTs RLBs

RLBsBRAMsMULTs LRAMs

RLBsBRAMsMULTs LRAMs

RLBsBRAMsMULTs RLBs

RLBsBRAMsMULTs RLBs

RLBsBRAMsMULTs LRAMs

RLBsBRAMsMULTs LRAMs

RLBsBRAMsMULTs RLBsRLBsBRAMsMULTs LRAMs

RCM

Dynamic Gating

Dynamic Switching

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 13

Page 14: Speedster22i HD FPGA Family

Clocking and Reset Resources Speedster22i HD FPGA Family

input  from  1  (bypassed)  to  2,046.  There  areindependent 10‐bit  count  settings available  to  controlthe pulse width for the high and low cycle of the clockoutput.  The  sum  of  these  two  counter  settingsdetermines the frequency divisor. In addition, the highcycle on  the clock can optionally be extended by onehalf cycle. This feature is useful when a 50% duty cycleoutput is desired for an odd divisor. 

Each output has an Output Gate (OG) circuit. The OGcircuit synchronizes the clock enable (clken) input fromthe FGPA  logic  fabric with  the clock output  from  theOS. This synchronized signal can enable or disable theclock output. This capability can be selectively enabledor  disabled  individually  for  each  output  in  theconfiguration  of  the  Global  Clock  Generator.  Theoutput clock and input of the OS will be phase aligned.The  input  clock  of  the  Global  Clock  Generator  cancome from:

• Global Clock I/O buffer

• Other Global Clock Generator

The  feedback  input  of  a  Global  Clock  Generator  (Figure 15)  receives  its  inputs  from  Global  Clock Networkendpoints, Global Clock Input Buffers and from its own output.

Table 6: Clock Generator PLL Performance Specifications

Performance SpecificationsReference clock frequency range

30 MHz – 400 MHz

Divide by 1 output frequency range(VCO output internally divided by 2 for 50% DC)

200 MHz – 1 GHz

Reference divider values 1–64Feedback divider values 8 (2 to 255)

In fractional mode, only supports 8 to 254

External feedback divider values

1

Output divider values 1–8

Number of adjustable phase outputs

4

Number of internal phases 16Internal phase separation 6.25% output cycleInternal phase accuracy ±2.5% output cycle at

1 GHzDivide by 1 output multiples of div. reference

2–512

Bandwidth adjustment div. range

1–4096

Feedback signal delay (max)

Output duty cycle(nominal tolerance)

50%, ±2%

Static phase error (max) ±1% div. reference cyclePeriod jitter (P-P) (max) ±2.5% output cycleInput-to-output jitter (P-P) (max)

±1.25% div. reference cycle

Power dissipation (nom) 5 mA at 500 MHz (Divide by 1 output)

Reset pulse width (min) 5 usReset divide by 1 output frequency range

10 MHz – 100 MHz

Lock time (min allowed) 500 div. reference cyclesFrequency overshoot (full-~/half-~) (max)

40%/50%

Reference input jitter (long-term P-P, max)

2% div. reference cycle

Reference/feedback pulse width (min)

190 ps

Supply voltage (VDD, VDDA) (nominal tolerance)

1.0 V ±10%

Table 6: Clock Generator PLL Performance Specifications

Performance Specifications

1.51GHz FREF

--------------------------------------

PAGE 14 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 15: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Clocking and Reset Resources

Figure 14: PLL Block Diagram

ReferenceClock

FeedbackClock

NF÷

(1 - 256)

NR÷

(1 - 64)

OD÷

(1 - 8)

OD÷

(1 - 8)

OD÷

(1 - 8)

OD÷

(1 - 8)

PhaseFrequencyDetector

VoltageControlledOscillator

PLL_CLKOUT[0]

PLL_CLKOUT[1]

PLL_CLKOUT[2]

PLL_CLKOUT[3]

ds001_31_v03

Figure 15: Global Clock Generator

PLL

clkout[0]

clkout[1]

clkout[2]

clkout[3]

OS

OS

OS

OS

readyclken

fbclk

refclk

OG

OG

OG

OG

ds001_35_v02

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 15

Page 16: Speedster22i HD FPGA Family

Clocking and Reset Resources Speedster22i HD FPGA Family

Byte-Lane Clock Networks

Separate  from  the  Global  Clock  Network,  each  I/OBank in a Speedster22i FPGA has an independent Byte‐Lane Clock Network designed for source‐synchronousinterfaces. 

A byte lane in a Speedster22i FPGA consists of 12 I/Obuffers. Two of these I/O Buffers are clock capable andcan be used  to  receive or  send a  clock. These bufferscan be used as one differential pair for a clock or as twosingle‐ended  buffers  for  two  clocks.  Each  of  thesereceived clocks can optionally be delayed using a DLL. 

The Byte‐Lane Clock Network supports four byte lanesin  a  repeating  fashion.  For  example,  there  are  threeByte‐Lane  Clock  Networks  in  an  I/O  Bank  with  12bytes: byte 0 to 3, byte 4 to 7, and byte 8 to 11. 

Each Byte‐Lane Clock Network can function as follows:

• Eight by‐9 clock networks

• Four by‐18 clock network

• One by‐36 clock network

Speedster22i Reset Resources

Reset Input Block

Each corner of a Speedster22i FPGA has an individualReset  Input  Block.  This  block  receives  external  resetinputs as well as inputs generated internally within thedevice. External  reset  inputs  are driven by dedicatedclock  pads.  Internal  reset  inputs  are  driven  using  adedicated reset network within the logic fabric and canbe driven into the Reset Input Blocks.

The  inputs  to  the  Reset  Input  Block  generated  eitherexternally or internally are required to be active‐Low andglitch free. The input resets can be either asynchronous orsynchronous. An asynchronous reset is synchronized forde‐assertion to each and every clock domain where it isutilized.  A  synchronous  reset  does  not  need  to  besynchronized  to  the  same  clock  domain  but  issynchronized when used in any other clock domain notsynchronous with the current clock domain. 

Each reset output generated by the Input Reset Block issynchronized  to  a  selectable  clock domain by  a  resetsynchronizer. The clock domain  is selected by a clockmultiplexer  located within a bank physically  close  tothe  Input Reset Block, ensuring  that  the  synchronouselements in the device have balanced  latency for boththe clock and associated reset.

The  input  to  the  reset  synchronizer  is  driven  by  aninput reset multiplexer, allowing selection of one of theinputs from the Input Reset Block

Reset Network

The  reset  outputs  of  the  Input  Reset  Blocks  aredistributed to each of the I/O banks and major blocks ofthe device using a hierarchical reset distribution network.A  balanced  reset  assertion  and, more  importantly,  de‐assertion  latency  is  required  across  the  entire  device,made possible by pipelining the reset distribution usingthe  clock  to which  the  reset  is  synchronized. The  resetnetwork consists of two hierarchies: 

• Global Reset Network

• Bank Reset Network

Global Reset Network

Each side of the device has two groups of reset signalsrunning in opposite directions. Each group consists ofeight reset signals each, spanning the entire edge of thedevice in a pipelined manner. The two groups of resetsignals  are  tapped  at  each  I/O  bank  or  logic  blocks(such  as  DDR  controller,  SERDES,  etc.),  using  aconfigurable  pipeline  multiplexer  with  configurablepipelined  latency.  The  configuration  is  set  for  eachmultiplexer individually to balance the latency for eachreset signal across the entire device. The outputs of thepipeline multiplexer  are  subsequently  distributed  tothe bank reset network.

Bank Reset Network

Each  I/O  bank  receives  the  outputs  of  the  pipelinemultiplexers. For example, the I/O bank at the bottomleft of the device (BSW) receives 16 reset inputs, eightfrom the reset group driven North and eight from thereset  group  driven  South.  The  16  reset  inputs  aredistributed across the entire bank and are received byreset  multiplexers  associated  with  each  clockmultiplexer.  The  reset  multiplexers  then  select  theappropriate  reset  associated  with  the  clock  inputselected by the corresponding clock multiplexer. Thereare  two‐pipeline  multiplexers  for  each  reset  line  todrive  across  the  I/O  bank. Each  logic  block  similarlyreceives  the outputs of  the pipeline multiplexers  andfeeds the reset signals into a reset multiplexer presentfor each clock multiplexer within the block. 

PAGE 16 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 17: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Embedded (Hard) IP

Embedded (Hard) IPSpeedster22i  HD  devices  include  several  embedded(Hard)  IP  blocks.  These  implement  the  followingprotocols:

• DDR 1/2/3

• PCI Express Gen 1/2/3, x1, x4, x8

• 10/40/100Gbit Ethernet

• Interlaken ‐ up to 12 lanes (two cores can be com‐bined to make a single 24 lane interface)

• DMA engine for PCIe

This section provides an overview of the capabilities ofthese IP blocks and their connectivity to the fabric forthe user to interface to.

The  following  diagram  shows  the  quantity  andlocation of the IP blocks on the HD1000. 

Figure 16: Speedster Device Overview

PLLs PLLsSerDes

Interlaken LLC(×6, ×8, ×10, ×12)

PCI Express LLC(×1, ×4, ×)8

& DMA Controller

10/40/100G Ethernet PCS & MAC

PLLs PLLsSerDes

PCI Express LLC(×1, ×4, ×8)

& DMA Controller

Interlaken LLC

10/40/100G EthernetPCS & MAC

Configuration Logic

DD

R1/2

/3 P

HY

and

Cont

rolle

rD

DR1

/2/3

PH

Y an

dCo

ntro

ller

DD

R1/2

/3 P

HY

and

Cont

rolle

r

GPI

O

DD

R1/2

/3 P

HY

and

Cont

rolle

rD

DR1

/2/3

PH

Y an

dCo

ntro

ller

DD

R1/2

/3 P

HY

and

Cont

rolle

r

GPI

OProgrammable Core

D100009 v1.0Not drawn to scale

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 17

Page 18: Speedster22i HD FPGA Family

Embedded (Hard) IP Speedster22i HD FPGA Family

DDR Controller

Speedster22i HD  devices  contain  up  to  6  embeddedDDR1/2/3  controllers which  can  be  used  to  interfacewith  and  control  off‐chip DDR3 memory  devices  or

DIMMs. Each of  the DDR3 controllers supports up  to72 bits wide data up to 2133 Mbps (1066MHz DDR). 

The  DDR3  controller  supports  both  “auto”  and“custom” modes. When in the “auto” mode, functionssuch  as  (but  not  limited  to)  activating/prechargingbanks/rows,  running  calibration  algorithms,  andinitialization  sequences  are  handled  transparently  tothe  user  (by  the  DDR  Core  logic)  in  the  embeddedDDR Controller.  The mapping of byte lanes to pins ishandled transparently by the embedded DDR PHY. 

When  in  “custom” mode  the  user  has  the  option  tomanually override functions such as automated refreshand initialization engines/sequences

Features:

• 2133 Mbps data rate

The controller and PHY runs up to 1066MHz.To achieve 2133Mbps data rate a 2X Clock set‐ting must be enabled, allowing the logic fabricto operate at half rate (533MHz). The 2X clock

setting  can be  enabled  regardless  of  the datarate, allowing the interface to the fabric to runat half the rate of the Hard IP controller

• 8:1 DQ:DQS ratio

The controller support 8 DQ signals for everyDQS.

A 4:1 ratio can be used at  the cost of half  theavailable memory space

• 4 Chip Selects (Ranks) per controller

The  external memory  connected  to  each  con‐troller can comprise of up  to 4 ranks (either 4single‐rank DIMMs or 2 dual‐rank DIMM) 

• Registered DIMM and Unbuffered DIMM support

Each  controller  can  independently  supporteither rDIMMs or uDIMMs 

• Address  mirroring  is  supported.  This  feature  istypically required for dual‐rank uDIMMs

Figure 17: Embedded DDR 1/2/3 Controller

PLLs PLLsSerDes

Interlaken LLC(×6, ×8, ×10, ×12)

PCI Express LLC (×1, ×4, ×8)

& DMA Controller

10/40/100G Ethernet PCS & MAC

PLLs PLLsSerDes

PCI Express LLC(×1, ×4, ×8)

& DMA Controller

Interlaken LLC

10/40/100G EthernetPCS & MAC

Configuration Logic

DDR1

/2/3

PHY

and

Cont

rolle

rDD

R1/2

/3 P

HY a

ndCo

ntro

ller

DDR1

/2/3

PHY

and

Cont

rolle

r

DDR1

/2/3

PHY

and

Cont

rolle

rDD

R1/2

/3 P

HY a

ndCo

ntro

ller

DDR1

/2/3

PHY

and

Cont

rolle

r

Programmable Core

D100010 v1.0Not drawn to scale

NW

WC

SW

NE

EC

SW

PAGE 18 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 19: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Embedded (Hard) IP

• Multi‐Burst Mode

Each controller supports multi‐burst mode, upto a burst  length of 252 (DDR2) / 254 (DDR)  /248(DDR3). This allows the embedded control‐ler  to  automatically  issue up  to  252  cascadedread  or  write  commands  and  automaticallyincrement  addresses  based  on  a  single  com‐mand from the Core Fabric.

• Backwards‐Compatible

The  embedded DDR  controllers  can  supportDDR3  (up  to  2133 Mbps),  DDR2  (up  to  800Mbps) and DDR protocols. 

• Bypassable

If the user does not require all 6 DDR control‐lers,  any  (or  all)  can be bypassed  to  leverageuse of the designated I/Os for other purposes.

If  the user does not  require  all  72 bits of  thedata bus, unused bits are available for generalpurpose I/O.

• Minimal LUT use

The  DDR  controllers  are  embedded,  and  assuch do not use any of  the LUTs  in  the CoreFabric

LUTs are  required  to drive  the DDR Control‐lers;  this  driving  logic  is  user‐defined,  andminimal in size.

DDR Control logic

Speedster22i HD devices contain six embedded (HardIP)  DDR  Controller  instances.  Each  instance  iscomprised of a DDR1/2/3 Controller and  a DDR1/2/3PHY,  and  is  controlled  using  dedicated  DDR  Corelogic. 

The DDR3 Controller IP interfaces are illustrated in theFigure 18.

Figure 18: The Embedded DDR 1/2/3 Controller

Read/WriteShared Interface

Write Interface

Read Interface

General MemoryControl Interface

Manual RefreshControl Interface

ControlInterface

DDR Driver Logic DDR Control LogicDDR

Memory(off-chip)l_busy_align

l_busyl_addr[33:0]l_b_size[7:0]l_w_reql_d_reql_d_req_earlyl_d_req_alignl_d_req_early_alignl_data_in[287:0]l_dm_in[17:0]l_r_reql_data_out[287:0]l_r_validl_r_valid_earlyl_r_valid_alignl_r_valid_early_alignl_auto_pchl_self_refresh[1:0]l_power_down[1:0]l_ref_reql_zq_cal_req[1:0]l_ref_ackl_zq_cal_ackInit_ackInit_wlvl_done

reset_ddr_nreset_n

clk_ddrACX_PLL

ACX

DD

R Co

ntro

ller

ACX

DD

R PH

Y

sd_clk_out[2:0]

sd_clk_out_n[2:0]

sd_reset_n

sd_cas_n

sd_ras_n

sd_we_n

sd_a[15:0]

sd_ba[2:0]

sd_cs_n[1:0]

sd_odt[1:0]

sd_cke[1:0]

sd_dq[71:0]

sd_dqs[8:0]

sd_dqs_n[8:0]

sd_dm[8:0]

sd_dummy[8:0](NC)

sd_pad(NC)

D100011 v1.0

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 19

Page 20: Speedster22i HD FPGA Family

Embedded (Hard) IP Speedster22i HD FPGA Family

The  embedded  DDR1/2/3  controller  performs  thefollowing:

• All  required  initialization  sequences  such  as  theprogramming of AL and CL values based on user‐defined parameters

• All required calibration algorithms including writelevelization

• DQS Enable  (to  control  read‐write  turnaround ofDQ/DQS bi‐directional busses)

• DQS Delay  (to skew  the DQS by 90 degrees rela‐tive  to  the corresponding DQ, such  that  the  lattercan be sampled in the middle of the bit transition)

• Translation of READ and WRITE requests receivedfrom  the DDR driver  into DDR protocol  i.e. RAS,CAS and WE. 

• Translation between SDR and DDR 

• Maintains integrity of memory contents by issuingperiodic auto‐refresh and zqcal commands

• Manages the activating and pre‐charging of mem‐ory banks and rows, as required.

• Manages  the driving of  the memory address pins(with column or  row  information, as well as A10function (precharge‐all, auto‐precharge, etc).

• Provides  a  data  request  signal  (‘l_d_req’)  to  theDDR driver  logic,  some number  of  cycles  after  acorresponding  write  transaction  request  isreceived.   This ensures  that CAS  latency, additivelatency and burst length are all managed internallyto  the ACX DDR controller.  It also provides earlydata request signal  (‘l_d_req_early’) which can beused if more time is required to generate data.

• Provides data request signal  (‘l_d_req_align’) andearly data request signal  (‘l_d_req_early_align’)  if2x mode is selected for 2133Mbps.

• Providing a  read data valid  signal  (‘l_r_valid’)  toaccompany read data in response to a read request.This  ensures  that  the  round‐trip  latency  to  (andthrough) the memory is managed internally to theACX DDR  controller.  It  also  provides  early  datavalid  signal  (‘l_r_valid_early’) which  can be usedto latch read data.

• Provides data request signal (‘l_r_valid_align’) andearly  data  valid  signal  (‘l_r_valid_early_align’)  if2X Clock mode is selected for 2133Mbps.

• Provides  signal  (‘l_busy’)  to DDR Driver  logic  toindicate  that  the DDR3 Controller  is busy  and  isnot acceptiong new requests.

PAGE 20 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 21: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Embedded (Hard) IP

PCI Express

The Speedster22i PCI Express hard IP core implementsall  three  layers  (Physical, Data Link, and Transaction)defined by the PCI Express standard. 

Key features

• PCI Express Base Specification Revision 3.0 version0.9  compliant;  backward  compatible  with  PCIExpress 2.1/2.0/1.1/1.0a

• x1, x4 or x8 PCI Express Lanes

• 8.0GT/s, 5.0 GT/s,and 2.5 GT/s line rate support

• Operates as Endpoint only

• PIPE‐Compatible  PHY  interface  for  easy  connec‐tion to PIPE PHY

• Support for Autonomous and Software‐ControlledEqualization

• Flexible Equalization methods  (Algorithm, Preset,User‐Table)

• Transaction Layer Bypass option

• Selectable Data Widths

32‐bit (x1, x4)

64‐bit (x2, x8)

128‐bit (x4, x8)

256‐bit (x8,)

• Complete error‐handling support

• Flexible  core  options  allow  for  design  complex‐ity/feature tradeoffs:

AER (Advanced Error Reporting Capability)

ECRC (End‐End CRC)

MSI‐X and Multi‐Vector MSI

• Supports Lane Reversal

• Implements  Type  0  Configuration  Registers  inEndpoint Mode

The PCI Express 3.0 Core  implements all  three  layersdefined by the PCI Express Specification: Transaction,Data Link, and Physical. 

User‐side  interfaces  include  a  Transmit  Interface(VC0_TX),  a  Receive  Interface  (VC0_RX),  aManagement  Interface  (MGMT),  a Message  Interface

(MSG),  and  a  Configuration  Register  ExpansionInterface (CFG_EXP). 

The  Transmit  and  Receive  Interfaces  are  intuitivepacket‐based  interfaces  that are used  to  transfer databetween  the  PCI  Express  3.0  Core  and  the  user’sapplication logic. 

Figure 19: PCI Express Block Diagram

PCI Express Core

TXPHYLayer

TXDataLink

Layer

TXTrans.Layer

RXPHYLayer

RXDataLink

Layer

RXTrans.Layer

PH

Y(I

nteg

rate

dor

Dis

cret

e)

PH

Y In

terfa

ce

CLK, Configuration, AndManagement

ConfigurationRegisters

Serial TX

Serial RX

PHYTX

PHYRX

Status/ErrorInfo

VC0_TX

VC0_RX

MSG

MGMT

CFG_EXP

PC

I Exp

ress

(×1

, ×4,

or

×8)

Loca

l Int

erfa

ce

D100012 v1.0

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 21

Page 22: Speedster22i HD FPGA Family

Embedded (Hard) IP Speedster22i HD FPGA Family

The  Table  below  shows  the  internal  interfacewidth/speed  options  available  with  the  EmbeddedPCIe Controllers. 

In addition, there is an Achronix provided shim for useto widen the bus for a lower bus speed.

Table 7: PCI Express core interface width and speed

Standard PCIE width Internal data width and Speed

PCIe 3.x (8GT/s per lane)

x8256bit at 250 MHz

128 bits at 500 MHz

x4128 bits at 250 MHz

64 bits at 500 MHz

x1 32 bits at 250 MHz

PCIe 2.x (5GT/s per lane)

x8

256bit at 125 MHz

128 bits at 250 MHz

64 bits at 500 MHz

x4

128 bits at 125 MHz

64 bits at 250 MHz

32 bits at 500 MHz

x1 32 bits at 125 MHz

PCIe 1.x (2.5GT/s per lane)

x8

256bit at 62.5 MHz

128 bits at 125 MHz

64 bits at 250 MHz

x4

128 bits at 62.5 MHz

64 bits at 125 MHz

32 bits at250 MHz

x1 32 bits at 62.5 MHz

PAGE 22 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 23: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Embedded (Hard) IP

10/40/100G Ethernet MAC

The 10 / 40 / 100 Gigabit Ethernet MAC and PCS Coreis designed  to  comply with  the  IEEE P802.3ba Speci‐fication Draft 2.2. The Core can be used  in either NIC(Network  Interface  Card)  or  Ethernet  Switchingapplications.  A  set  of  configuration  registers  isavailable to dynamically set the Core to terminate andform MAC  frames  (NIC application) or  to pass MACframes without modification to the User application orto  the  Ethernet  line  (Switching  application).  Whenused  in  NIC  or  Switching  applications,  the  Coreprovides support for IEEE managed objects, IETF MIB‐II  and  RMON  for  management  applications  (e.g.SNMP).

The  Channelized  MAC  and  PCS  Core  can  beconfigured  to  support  either  one  of  the  following  5configurations:

• 1‐12 x 10 Gigabit Ethernet Channels

• 1 x 100 Gigabit, 1‐2 x 10 Gigabit Ethernet Channels

• 1‐3 x 40 Gigabit Ethernet Channels

• 1‐4 x 10 Gigabit, 1‐2 x 40 Gigabit Ethernet Channels

• 1‐8 x 10 Gigabit, 1 x 40 Gigabit Ethernet Channels

Figure 20  shows  a  high  level  block  diagram  of  the10/40/100G Ethernet core and its main interfaces. 

FIFO Interface

The 10 / 40 / 100 Gigabit Ethernet MAC and PCS Coreimplements a flexible FIFO interface that  is connectedto  the  internal  FPGA  fabric.  This  interface  isdecoupled, and therefore asynchronous to the Ethernetcore.  The  transmit  and  receive  FIFOs  are  alsodecoupled  and  therefore  can  operate  at  completelyunrelated frequencies. 

In  order  to  allow  for  the  start of  frame  to  always bealigned  on  lane  0,  the  transmit  and  receive  interfaceclocks  have  to  run  faster  than  the  nominal  required

clock frequency (100Gbps/384b = 260.42 MHz). In 100Gmode  of  operation,  worst  case  are  97‐byte  packets,which consume only 117 bytes (97‐byte packet + 8‐bytepreamble  +  12‐byte  IPG)  on  the  Ethernet  line,  butrequire  3 x  48‐byte words  in  the FIFO. Therefore  theminimum required transmit and receive interface clockspeed is 144/117 x 260.42 MHz = 320.51 MHz.

All  transfers  to/from  the user application are handledindependently  of  the  Core  operation,  and  the  Coreprovides a simple  interface to user applications basedon  a  credit  scheme.  Figure 21  shows  the  10/40/100GEthernet core FIFO interface. 

Figure 20: The Embedded10/40/100G Ethernet Controller

MAC PCS

ChannelizedTx MAC

ChannelizedRx MAC

ChannelizedTx PCS

ChannelizedRx PCS

Configuration/control/statisticsMDIOMaster

Tran

smitt

er F

IFO

Inte

rface

Rec

eive

FIF

OIn

terfa

ce

Register Interface PriorityFlow Control

Statistic CounterTriggers

Pm

at T

rans

mit

Inte

rface

Pm

a R

ecei

veIn

terfa

ceP

HY

Man

agem

ent

D100017 V1.0

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 23

Page 24: Speedster22i HD FPGA Family

Embedded (Hard) IP Speedster22i HD FPGA Family

Figure 21: The Embedded10/40/100G Ethernet FIFO Interface

MACTx

RS

MACRx

RS

App

licat

ion

Inte

rfac

e FI

FO

384+64

384+64

66 66 20Buffer Gearbox

66 66 20Buffer Gearbox

66 66 20Buffer Gearbox

66 66 20Buffer GearboxGT

PMA/PCS

PMA_clk

PMA

Ref_clk

MLDReference Clock(min. 650 MHz)

MAC/RS/PCS

PCS MLD

66 66 20Block Sync GearboxDeskew Buf

66 66 20Block Sync GearboxDeskew Buf

66 66 20Block Sync GearboxDeskew Buf

66 66 20Block Sync GearboxDeskew Buf

PCS

MLD

FIFO Clock(min. 320.51 MHz)

515.625 MHzrecovered clocks

D100018 v1.0

PAGE 24 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 25: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Embedded (Hard) IP

Interlaken

Interlaken  is  a  scalable  chip‐to‐chip  interconnectprotocol designed to enable transmission speeds from10Gbps  to  100Gbps  and  beyond.  Using  the  latestSerDes  technology  and  a  flexible  protocol  layer,Interlaken minimizes  the pin and power overhead ofchip‐to‐chip  interconnect  and  provides  a  scalablesolution that can be used throughout an entire system. 

In addition, Interlaken uses two levels of CRC checkingand a self‐synchronizing data scrambler to ensure dataintegrity and link robustness.

Speedster22i devices include a high‐performance, low‐power  and  flexible  implementation  of  the  InterlakenProtocol.  The  core  is  compliant  with  the  InterlakenProtocol  Definition,  Revision  1.1,  and  offers  a  fast,turnkey  Interlaken  interface  for  chip‐to‐chipinterconnect.

One of  the benefits of  Interlaken  is  its  scalability andflexibility to accommodate different system designs.

Features

The Interlaken core has the following features:

• Support for any serial data rate up to 12.75Gbps 

• Up  to 12  lanes wide per controller.  (some deviceshave multiple controllers which can be combinedto provide up to 24 lanes)

• Data striping and de‐striping across 1 to 12 lanes

• Programmable  BurstMax,  BurstShort  andMetaFrameSize parameters

• 64/67 encoding and decoding

• Automatic word and lane alignment

• Self‐synchronizing data scrambler

•  Data bus width of 512 bits

• CRC24  generation  and  checking  for  burst  dataintegrity

• CRC32  generation  and  checking  for  lane  dataintegrity

• Data  scrambling  and  disparity  tracking  to mini‐mize baseline wander and maintain DC balance

• Support  for  all  Synchronization,  Scrambler  State,Diagnostic, and Skip Word Block Types

• Programmable Rate Limiting circuitry

• Robust error condition detection and recovery

• Channel‐level  and  link‐level  flow  control mecha‐nism

• Support for 256 different logical channels

• Segment‐mode and Packet‐mode transmission for‐mat

• Segment‐mode and Packet‐mode receive format

• BurstMax size can be programmed up to 256 bytes

• Support for BurstShort requirement of 32 bytes

• In‐band flow control

• Support for link‐level flow control

• Flow control mechanism supports stopping pack‐ets in mid‐stream – head of line blocking

• Rate matching with granularity of 1 Gbps

• Meta Frame Length programmable between 128 to8K words

• Support for status messaging

• Lane decommissioning and resiliency

The block diagram of  the  Interlaken core  is shown  inFigure 22: 

Figure 22: Interlaken Block Diagram

PCS / LLC

20 bits

512 bits @ 470 MHz

10 GbpsSerDes

SerDes

SerDes

20 bits

20 bits

10 Gbps

10 Gbps

512 bits @ 470 MHz

D100001 v1.0

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 25

Page 26: Speedster22i HD FPGA Family

Embedded (Hard) IP Speedster22i HD FPGA Family

DMA Engine

Direct  Memory  Access  (DMA)  is  the  process  ofcopying large amounts of data efficiently between twodevices (typically the host ‘system’ memory and a busdevice,  or  ‘card’)  with  minimal  host  processorinvolvement.

DMA requires a dedicated hardware resource – a DMAEngine –  to do  the memory copy. The DMA Engine’sjob  is  to do  the copy operation specified by software.When using a DMA Engine, the software only needs toimplement  the  control  function  of  the  copy  (tell  theDMA Engine where  to  copy  from and  to, etc.)  ratherthan having to actually move the data itself to performthe copy.

There are two primary advantages of using DMA

• A DMA Engine is much better at copying memorythan software; DMA Engines can issue large bursttransactions  (as  large as  the underlying hardwareprotocol  allows) while  the  processor  typically  isonly capable of very  small burst  transactions;  theprotocol  efficiency,  which  is  the  ratio  ofpayload_transferred  /  (payload_transferred  +hardware_protocol_overhead),  is  typicallyextremely poor with  the  small payload  size usedby  the  processor  and  very  good with  the  largerpayload  size  used  by  a  DMA  Engine;  a  DMA

Engine  may  produce  10  to  100  times  greaterthroughput than a non‐DMA software copy

• Software offloads the time‐consuming copy task tothe DMA Engine and  thus  frees  the processor  forother tasks for which software is better suited. Thecopy operation  is a  repetitive  task  requiring onlysimple decisions  and  is well  suited  for hardwareacceleration via DMA. Processor resources are bet‐ter utilized on tasks which software is better suitedfor  such  as  running  the  user’s  applications  andprocessing  (converting,  parsing,  displaying,  etc.)the DMA data.

Features

The Hard  IP DMA  Engine  included  in  Speedster22idevices  is  directly  attached  to  the  PCI  expressController and thus to a host system. (as the PCIe Coreis typically a Slave, not Master). The DMA Engine usesthe ARM AXI  bus  standard  for  connecting with  thelocal  ‘card’ memory  (DDR1/2/3)  or  any  other  FPGAresources  that  will  be  part  of  a  DMA  transaction.(Ethernet, Interlaken etc)

The DMA  Engine  block  diagram  is  shown  below  inFigure 23.

Figure 23: DMA Engine Block Diagram

D100001 v1.0

DMA PCIe Interface

AXI Target Interface

AXI DMA C2S InterfaceAXI DMA C2S Interface

AXI DMA C2S InterfaceAXI DMA S2C Interface

AXI3/4 Master

AXI3/4 Master or AXI4-Stream Slave

AXI3/4 Master or AXI4-Stream Master

PCI Express Core Interface

PAGE 26 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 27: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Embedded (Hard) IP

The DMA Engine consists of 3 main blocks

• AXI  Target  interface.  Used  when  the  SystemHost/Master  is outside of  the Speedster22i FPGAand the Host connects to the FPGA using PCIe. Inthis case the PCIe is acting as a slave and the DMAEngine translates accesses received via the PCIe toan AXI master, which can in turn access other AXIslaves within the FPGA.

• AXI  DMA  C2S.  This  is  the  engine  that  controlsCard to System (C2S) transfers, i.e. data flow fromthe user logic in the FPGA fabric, to the PCIe RootComplex via the FPGAs embedded PCIe endpointcontroller

• AXI DMA S2C. This is the engine that controls Sys‐tem to Card (S2C) transfers, i.e. the data flow fromthe  PCIe  Root  complex  to  the  User  logic  in  theFPGA

The  internal  interfaces  of  the  DMA  block  are  fullycompliant  with  the  ARM  AXI  3  and  AXI  4  speci‐fications. Bus Bridges to translate AXI transactions to the nativeformat of the other Speedster22i Hard IP are availablefrom  Achronix.  This  allows  a  system  designer  toconnect  all  Hard  IP  using  the  AXI  bus  protocol,simplifying the IP interconnection process. 

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 27

Page 28: Speedster22i HD FPGA Family

Configuration Interface Speedster22i HD FPGA Family

Configuration InterfaceThe embedded programming and configuration logic is designed to support a variety of programming options.Figure 24 outlines the basic block diagram of the programming and configuration logic, including additional logicto implement security features. The configuration management unit controls the startup and shutdown sequencefrom configuration mode to the user mode and back. The configuration management unit includes the provisionsfor configuring the device with a secure bitstream using a 256‐bit Advanced Encryption Standard (AES) algorithmin Cipher Block Chaining  (CBC) mode. The device contains a small non‐volatile memory  for  the storage of  therequired AES key.

Supported Programming and Configuration Modes

Several  programming  and  configuration  modes  areused  to  support FPGA development and deploymentphases.  To  avoid  confusion,  the  term  programmingrefers  to  the action of writing a bitstream  to  flash,  sothat  on  the  next  power‐on  cycle,  the  newly  writtenbitstream can be used to configure the FPGA. The termconfiguration  refers  to  the process of  configuring  theFPGA to implement the required user functionality.

Note: The recommended memory space to store the configuration data for the Speedster22iHD is 32 MB.

The supported programming modes are:

• Serial flash (SPI) programming (SFP)

The supported configuration modes are:

• JTAG FPGA configuration (JFC)

• Serial flash (SPI) FPGA configuration (SFC)

• External CPU FPGA configuration (EFC)

• Multiple Serial Flash (SPI) interfaces (MSF)

Note: All flash modes listed are master (where an external clock is routed to the flash memory from the FPGA, controlling the configuration timing).

A  simplified  diagram  showing  the  supportedconfiguration modes is shown in Figure 25, page 29.

JTAG FPGA Configuration (JFC)

The  JFC  mode  allows  the  FPGA  to  be  configureddirectly via a JTAG download cable. This mode is usedduring user‐logic development and testing cycles.

Serial Flash Configuration (SFC)

The SFC mode allows serial flash PROMs to be used toconfigure  the  FPGA.  In  this mode  the  FPGA  is  themaster, and therefore supplies the clock to the PROM. 

Figure 24: Configuration Logic Overview

Configuration Logic

FPGA

User Logic

JTAGUSB JTAG CableJTAG

Interface

External CPU CPU SlaveController

Serial (SPI)Flash

SPI FlashController

SerialData

ds001_25_v03

• •FPGA

ConfigurationManagement

Unit

SRAM ScanChain

AESDecode

AES NVKey

Storage

Mode and Status Pins

PAGE 28 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 29: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Configuration Interface

External CPU FPGA Configuration (EFC)

The EFC mode configures the FPGA from an externalCPU after a system power‐up cycle. This mode can beused both during user‐logic development as well as ina production environment.

Multiple Serial Flash (SPI) Interfaces (MSF)

To  reduce  programming  timing  without  adding  thecomplexity of a parallel flash controller, a parallel arrayof four SPI  flash devices can be used. A by‐four arrayreduces the data‐loading time to approximately 150 ms.

Figure 25: Simplified Configuration Diagram

Configuration Logic

FPGA

User LogicJTAGUSB JTAG Cable

JTAGInterface

Serial (SPI)Flash

SPI FlashController

SerialData

ConfigurationManager

ds001_26_v04

External CPU CPU SlaveController

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 29

Page 30: Speedster22i HD FPGA Family

Configuration Interface Speedster22i HD FPGA Family

Configuration Pin Descriptions

Table 8  below  describes  the  FPGA  pins  used  for  the  various  supported  configuration modes. Dedicated  pinsbetween modes can be shared (Serial Flash by 1, Serial Flash by 4, CPU modes) since the function is determined bythe  static  state  selected by  the CONFIG_MODESEL[2:0]  inputs. Figure 26  through Figure 29, page 31  illustrateeach of the supported configuration interfaces.

Table 8: Pins Used for Support Configuration Modes

External Pin Name EFC SFC MSF JFC

SDI DQ[0] Serial data output to flash memory –

SDO[3] DQ[1] – Input of configu-ration data from flash –

SDO[2] DQ[2] – Input of configu-ration data from flash –

SDO[1] DQ[3] – Input of configu-ration data from flash –

SDO[0] DQ[4] Input of configuration data from flash –

HOLDN DQ[5] Hold output to flash –

CSN[3] DQ[6] – Active-low chip select –

CSN[2] DQ[7] – Active-low chip select –

CSN[1] Unused – Active-low chip select –

CSN[0] Active-low chip select –

CPU_CLK CPU clock – – –

CONFIG_RSTN Active-low configuration reset

CONFIG_DONE Open-drain configuration done output

CONFIG_STATUS Open-drain SRAM initialization complete output

CONFIG_MODESEL[2:0] Configuration mode select; must be ‘100’

Configuration mode select; must be ‘001’

Configuration mode select; must be ‘010’

Configuration mode select; Don't care

CONFIG_SYSCLK_BYPASSBypass configuration system clock. Don't-care

Bypass configuration system clock. Set to ‘0’ Bypass configuration system clock; Don't care

CONFIG_CLKSEL Selects configuration clock. set to ‘0’ Don’t care

Figure 26: JTAG Configuration Interface

JTAGController

TCK TCK

TMS TMS

TRSTN TRSTN

TDI TDI

TDO TDO

SpeedsterFPGA

ds001_27_v02

Figure 27: SPI Flash PROM Configuration Interface

SPIFlash

SCLK SCK

HOLDN HOLDN

DI SDI

CSN CSN[0]

DO SDO[0]

SpeedsterFPGA

ds001_28_v02

PAGE 30 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 31: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Configuration Interface

Figure 30, page 31 shows a simplified block diagram of FPGA configuration control logic. Regardless of the configu‐ration control settings, if the programming hardware is connected to JTAG pins driving the FCU, the configu‐ration clock (CFG_CLK) is automatically driven by TCK. In single or multiple flash configuration mode, if not overridden by JTAG circuitry, users can select between internally generated (SYSCLK) or externally driven configuration clock (CPU_CLK) using CONFIG_SYSCLK_BYPASS pin.

Figure 28: Slave CPU Configuration Interface

CPU CPU_CLK CPU_CLK

CSN[0]

CSN[2]

CSN

DATA[7]

SpeedsterFPGA

ds001_29_v03

CSN[3]DATA[6]

HOLDNDATA[5]

SDO[0]DATA[4]

SDO[1]DATA[3]

SDO[2]DATA[2]

SDO[3]DATA[1]

SDIDATA[0]

Figure 29: By-Four SPI Flash Programming

SPIFlash

SCLK

HOLDN

DI

CSN

DO

SPIFlash

SCLK

HOLDN

DI

CSN

DO

SPIFlash

SCLK

HOLDN

DI

CSN

DO

SPIFlash

SCLK

HOLDN

DI

CSN

DO

SCK

HOLDN

SDI

SpeedsterFPGA

CSN[0]

SDO[0]

CSN[1]

SDO[1]

CSN[2]

SDO[2]

CSN[3]

SDO[3]

ds001_30_v02

Figure 30: FPGA Configuration Logic (Simplified View)

ds001_42_v01

CPU_CLK

SYSCLK

CONFIG_SYSCLK_BYPASS

CONFIG_CLKSELJTAG_CLKSEL

(from Interal FCU)

TCKCFG_CLK

1

0

1

0

1

0

3'b100

CONFIG_MODESEL[2]

CONFIG_MODESEL[1]

CONFIG_MODESEL[0]

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 31

Page 32: Speedster22i HD FPGA Family

12.75 Gbps SerDes Speedster22i HD FPGA Family

12.75 Gbps SerDesOverview

All  members  of  the  Speedster22i  family  includeembedded  SerDes, which  can  be  used  to  implementprotocols  running  at  between  1.0625 Gbps  and  12.75Gbps per lane. Each SerDes can be used for:

• Chip‐to‐chip signaling

• Backplane signaling

• Line signaling (coax, twisted pair, etc.)

As  clocking  is  typically  embedded  in  the  data,  theSerDes  receiver must  extract  the  clock  from  the datastream. This  activity  is  referred  to  as  clock  and datarecovery  (CDR). For  signaling  across  a backplane  (or

other impaired medium) at about 5 Gbps or greater, acombination  of  transmit  equalization  and  decisionfeedback equalization (DFE) is most likely required.

Block  diagrams  of  the  transmit  and  receive  sectionsrespectively are shown in Figure 31 and Figure 32.

As  shown  in  Figure  17  below,  the  traismit  datapathconsists of both the Physical Media Access (PMA) andthe Physical Coding Sublayer (PCS). The PMA handlesthe  low  level data signaling,  functions, while  the PCShandles the interface to protocol controllers as well asany data encoding which may be required. 

Figure 31: 12.75G SerDes – Transmit Section

Figure 32: 12.75G SerDes – Receive Section

PCS Features PMA Features

From Fabric(8/10/16/20 Bit)

Line-Rate Clock(From PLL)

FabricBoundaryInterface

Encoding8B/10B

64B/66B64B/67B

128B/130B

Parallel toSerial

Conversion

Pre-Emphasisand Multi-TapFeed-ForwardEqualization

OOBSignaling

andPowerdown

Conrol

DifferentialSignal

ds001_20_v04

WordAlignment

PCS Features

PMA Features

DifferentialSignal

Decoding8B/10B

64B/66B64B/67B

128B/130B

DeskewElastic Buffer

Line-Rate Clock(From PLL)

Serialto

ParallelConversion

Clock/DataRecovery

andDecisionFeedback

Equalization

OOBSignaling

andPowerdown

Conrol

ds001_21_v02

PCS Features

To Fabric(8/10/16/20 Bit)

Bit-Slider

FabricBoundaryInterface

PAGE 32 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 33: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family 12.75 Gbps SerDes

PMA Features

The PMA has the following feature set:

•  Operating  bitrate  of  1.0625Gbps  ‐  12.75 Gbps per

lane

•  DC coupling or external AC coupling

•  Lock to reference clock or lock to data

• Data  oversampling  for  capture  of  un‐encoded  as

well as slower speed traffic

•  DFE  support  for high‐speed operation over  lossy

channels

•  Auto‐calibration of DFE

•  Rx  scope  function:  Measurements  of  data‐eye

(width and height) and BER

•  Tx de‐emphasis support

•  Tx PLL for every serdes lane providing maximum

bitrate flexibility

•  Locking  of  Tx  serdes  on  same  side  of  device  to

common clock

• Built‐in  self‐test  (BIST)  including  near/far  endloopback and prbs 7, 23 & 31 generation/checking

PCS Features

The PCS supports the following functions:

•  Support  for  8B/10B,  64B/66B,  64B/67B  and

128B/130B encoding & decoding

•  Symbol alignment

•  Clock compensation

•  Lane‐to‐Lane de‐skew

•  Manual bit‐wise de‐skew

•  Near and far end loopback

•  Clocking and reset  for  interface  to programmable

fabric

Control Plain Features

• Programmable interface for status monitoring anddynamic configuring of serdes operation

Transmit Datapath

On the transmit data path the PCS block receives 8/10or  16/20  bits  of  data  per  lane  from  the  fabric  and

delivers it to the PMA layer. The encoder can be in thepath  or  can  be  bypassed.  If  the  encoder  is  used,  theinterface to the fabric will be 8 or 16‐bits wide (with 1or 2 extra bits  for  the encoder  to distinguish betweencontrol (K) and data (D) characters) and the interface tothe PMA will be 10 or 20‐bits wide.  If  the encoder  isbypassed,  the data width  from  the  fabric  to  the PMAwill be identical.

The  transmit  data  path  consists  of  the  followingfunctions:

• Polarity and bit reversal

• 8b/10b encoder

• 64b/66b encoder

• 64b/67b encoder

• 128b/130b encoder

• 66/16 gearbox (combined with 64/66 encoder‐ bothmodules are not separately accessible)

Polarity and bit reversal

This  function  can  be  used  to  optionally  change  thepolarity or bit‐ordering of the transmit data. There are2 instances of the polarity and bit reversal function thatcan be independently controlled. 

Encoders

The  encoder  generates  a  encoded  words  from  un‐encoded  data  at  the  PCS  input.  The  encoders  cansupport a single 8 bit or a double 16 bit word, with theencoders  cascaded  for  the  16  bit  case.  The  encoderoutput is passed to the PMA for serialization. 

8b/10b encoder

The  8b/10b  encoder  function  includes  extra  logic  tofully support Gigabit Ethernet, XAUI and PCIe (gen1,gen2) protocols. 

64b/66b encoder

The  64b/66b  encoder  function  includes  extra  logic  tofully  support  10/40/100  GbE  and  other  >=10Gbpsprotocols. 

64b/67b encoder

The 64b/67b encoder function supports Interlaken.

128b/130b encoder

The  128b/130b  encoder  is  specifically  to  support  thePCIe gen3 protocol. The function will be compliant tothe  PIPE  specification  from  Intel  Corp  and  will

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 33

Page 34: Speedster22i HD FPGA Family

12.75 Gbps SerDes Speedster22i HD FPGA Family

interoperate with  the  PCIe  embedded  IP  to  providegen3 support.

Other  protocols  that  require  a  generic  8b/10b  or128b/130b encoder can also make use of this functionalblock.

BIST pattern generation

The transmit datapath will include pattern generationlogic to be used in test mode for built‐in self test.  Thepatterns supported are :

PRBS 7, 15, 20, 31

User  defined  pattern  (up  to  40‐bits  that  will  berepeated continuously).

Receive Datapath

On the receive datapath the PCS receives 8/10/16/20‐bitdata from the PMA (except in the over‐sampling  CDRmode which can perform 4x or 8x over‐sampling) andtransfers 8/10/16/20‐bits of data to the fabric  interface.When  the  8b/10b  decoder  is  enabled  the  receivedatapath  gets  10/20‐bits  of  data  from  the  PMA  andtransfers 8/16‐bits of data to the fabric (along with 1‐2control bits).  If  the 8b/10b decoder  is not enabled  thedatapath width to the fabric is identical to the datapathwidth  to  the PMA  (except  in  the over‐sampling CDRmode).

A  byte  level de‐serializer  can  be  implemented  at  thefabric  interface  to  convert  16/20‐bit  data  to  32/40‐bitdata (to relax clock timing at the interface). 

The  receive  datapath  consists  of  the  followingfunctions:

• Phase picking logic

• Polarity and bit reversal

• Symbol alignment

• 128b/130b block synchronization and decode

• Lane to lane de‐skew (up to 12 channels)

• Clock compensation

• 8b/10b decoder

• Transition density checker

• Bit slider

• Symbol‐slip mode allows data  to be advanced ordelayed by 1 cycle in addition to general incrementof 1 cycle

Phase picking logic (PPL)

The phase picking logic, “PPL”, function is meant to beused in conjunction with the CDR over‐sampling modeof  operation  in  the PMA. The PPL  block  accepts  the

oversampled data  from  the PMA and  implements analgorithm  to  extract  the  receive  data  bits.  The  PPLblock also provides feedback on the phase change rateto  the  PMA.  This  can  be  used  to  account  for  anyfrequency offset between  the  receive data on  the  lineand  the  over‐sampling  clock.  The  following  config‐urations are supported for over‐sampling.

• 4x over‐sampling, up to 6.25 Gbps

• 8x over‐sampling, up to 3.125 Gbps

Polarity and bit reversal

There will  be  2  independently  configurable  polarityand bit  reversal blocks  in  the  receive datapath. Therewill also be an option  to  invert  the Rx data  from  thePMA dynamically.

Symbol alignment

The parallel data output from the serdes PMA needs tobe aligned to byte boundaries before it can be used bydownstream  logic.  The  transmit  side  typically  sendsunique  symbols  that  can  be used  for  alignment. Thesymbol  alignment block  looks  for  these  symbols  andsets  the  byte  boundary.  The  symbol  alignment  blocksupports alignment to 2 different symbols and can alsodetect a 4‐symbol sequence match.

• Manual mode

Aligns  to  a  pre‐defined  symbol  for  eachrequest from the fabric.

• Bit slip mode

Slips  1‐bit  of  data  for  each  request  from  thefabric.

• Automatic alignment

Configurable  state  machine  to  automaticallyalign  to  a  pre‐defined  symbol,  including  op‐tional  hysteresis  to  determine  loss  of  align‐ment.

128b/130b decode

The 128b / 130b decode block is to support PCIe gen3protocol. It will be compliant to the PIPE specificationfrom Intel Corp. 

Lane to lane de-skew

The  PCS  includes  support  for  lane  to  lane  de‐skewacross the serdes lanes on one side of the chip (up to 12lanes). De‐skew across  lanes on different  sides of  thechip  is not supported. The de‐skew function supportsup  to  2  different  de‐skew  patterns  (up  to  5‐symbolslong  each).  The  de‐skew  function  supports  thefollowing modes:

• Automatic de‐skew

PAGE 34 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 35: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family 12.75 Gbps SerDes

• Manual de‐skew

• Symbol slip

Data in a given lane is advanced or delayed by1‐2 cycles.

Clock compensation

The  receive  data  from  the  PMA  is  timed  to  therecovered clock that is output from the CDR (except inCDR over‐sampling mode). Some protocols need  thisdata  to  be  synchronized  to  an  internal  system  clock(typically  same  as  the  transmit  clock).  The  clockcompensation  function  uses  an  elastic  buffer  tocompensate  for  any  frequency  offset  between  therecovered  clock  and  the  internal  system  clock.  Thisfunction uses a  configurable  skip or pad  symbol  thatcan be dropped or  added  at  specific  instances  in  thereceive data  stream  to  compensate  for any  frequencyoff‐set.

8b/10b decoder

The 8B/10B decoder generates 8‐bit code groups and 1‐bit control  from 10‐bit encoded data.  It uses  the codegroup mapping specified in IEEE 802.3 clause 36. If thefabric  interface  is  16‐bit  data  path,  then  2  8B/10Bdecoders are cascaded to produce a 16‐bit width to thefabric. 

The 8b/10b decoder  includes error  indication  logic  toprovide  status  of  code  word  or  running  disparityerrors to downstream logic.

Bit slider

The bit slider is an 80‐bit barrel shifter that can be usedto  control  bit‐wise  alignment  from  the  fabric.  Thisfeature  can  be  used  to  implement  any  user  specificalgorithm  for  bit‐level  alignment  or  de‐skew  acrossmultiple  lanes.  It can be used  in conjunction with  thesymbol slip mode of the de‐skew function to achieve awide  range  of  de‐skew.  If  used  stand  alone  thisfunction can provide up to 30 UI of de‐skew.

Transition density checker

This  function monitors  the Rx parallel data  from  thePMA  and  keeps  track  of  consecutive  0s  or  1s.  If  thenumber  of  consecutive  0s  or  1s  exceeds  a  pre‐configured threshold it sends a status indication to thedownstream logic.

Control plane interface

The PCS and PMA blocks have a parallel bus controlplane interface to allow user logic to configure the datapath and also to monitor the status of key blocks.  Thecontrol  plane  interface  is  based  on  a  simple  request,acknowledge  handshake  protocol with  an  8‐bit  databus  read, write  data  bus  and  16‐bit  address  bus.  Tominimize  pin  usage  on  the  fabric  side,  a  serializedversion of  the control plane  interface  is supported foraccess  from  the  fabric. A  serial  to  parallel  converter,parallel to serial converter is implemented in the LogicCore to interface the fabric to the PMA and PCS controlplane.  Each  serdes  lane  has  its  own  control  planeinterface. 

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 35

Page 36: Speedster22i HD FPGA Family

12.75 Gbps SerDes Speedster22i HD FPGA Family

Support for Standard Protocols

Table 9 shows which standard protocols are supported. Any listed PCS feature can be bypassed if not needed.

Table 9: 12.75Gbps SerDes Supported Standards

Standard

General PCS PMA

Num

ber of Lanes

Gbps

(Per Lane)

Internal Bus Width

(Per Lane)

Coding

Word A

lignment

Lane Alignm

ent

Elastic Buffer

Spread Spectrum Clocking

Power-D

own

States

OO

B Signaling

PCIe 1.1 1 / 4 / 8 2.5 8 / 16 8B / 10B K28.5

PCIe 2.0 1 / 4 / 8 2.5 / 5.0 16 8B / 10B K28.5

PCIe 3.0 1 / 4 / 8 2.5 / 5.0 /8.0

16 128B / 130B

K28.5

SRIO 1 / 4 / 8 1.25/2.5/3.125/6.25

16 8B / 10B K28.5

Gigabit Ethernet 1 1.25 8 8B / 10B K28.5

10 Gigabit Ethernet (XAUI)

4 3.125 8 8B / 10B K28.5

10 Gigabit Ethernet (XFI)

1 10.3125 8 64B /66B

sync header

40 Gigabit Ethernet (XLAUI)

4 10.3125 8 64B /66B

sync header

100 Gigabit Ethernet (CAUI)

4 10.3125 8 64B /66B

sync header

SGMII 1 1.25 8 8B / 10B K28.5

Fibre Channel – 1 1 1.0625 8 8B / 10B K28.5

Fibre Channel – 2 1 2.125 8 8B / 10B K28.5

Fibre Channel – 4 1 4.25 16 8B / 10B K28.5

SATA Gen 1 1 1.5 10 8B / 10B K28.5

SATA Gen 2 1 3 10 8B / 10B K28.5

SATA Gen 3 1 6 10 8B / 10B K28.5

SAS 1 1.5 / 3.0 / 6.0

10 8B / 10B K28.5

Interlaken 6, 8, 10, 12, 24

4.6 – 12.75

20 64B / 67B

sync header (2)

CEI6 – SR 1 4.976 – 6.375

16

CEI6 – LR 1 4.976 – 6.375

16

CEI11 – SR 1 9.95 – 11.1

16

SPI–5 19 3.125 8 (2) (2)

SFI–5.1 (3) 19 2.488 – 3.125

8 (2) (2)

PAGE 36 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 37: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family 12.75 Gbps SerDes

SFI–5.2 (3) 19 9.95 - 11.1

8 (2) (2)

SFI–S (3) 19 9.95 - 11.1

8 (2) (2)

Infiniband 1 2.5 / 5.0 / 10.0

8 (2) (2)

OC48(1) 1 2.488 8 (2)

GPON 1 1.25 / 5.0 / 10.0

8 (2)

EPON 1 1.25 / 5.0 / 10.0

8 (2)

CPRI 1 1.228 / 2,456 . 3.072 / 6.144

8

(2)

OBSAI 1 1.536 / 2.456 / 6.144

8 (2)

Backplane Inter-connect (with DFE)

1–20 1.25 – 12.75 8/16

Notes: 1. Not supported by integrated PCS block (must be implemented in fabric).

2. Optional.

3. Bit slider is available for SFI Protocols 

Table 9: 12.75Gbps SerDes Supported Standards (Continued)

Standard

General PCS PMA

Num

ber of Lanes

Gbps

(Per Lane)

Internal Bus Width

(Per Lane)

Coding

Word A

lignment

Lane Alignm

ent

Elastic Buffer

Spread Spectrum Clocking

Power-D

own

States

OO

B Signaling

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 37

Page 38: Speedster22i HD FPGA Family

Programmable I/Os Speedster22i HD FPGA Family

Programmable I/OsI/O Types: Summary

Speedster22i device I/Os come in five categories, as shown in Table 10.

Programmable I/Os: Supported Standards

Each programmable I/O can be configured to conform to any of a large number of I/O standards, both single‐endedand differential, as summarized in Table 11, page 39. Each I/O can operate as an input, an output, or a bidirectionalI/O (Figure 33). Of course, a differential signal consumes two I/Os, whereas a single‐ended signal consumes only one.

Table 10: I/O Types

Full Name Description Count

Programmable I/O – Extended Feature

• User programmable• Complies with wide range of I/O standards• Low to medium bit rates• DLLs for input and output delay adjustments as required for

advanced memory and datapath interfaces

12 Nwhere N = byte-lane count (device/package dependent)

SerDes I/O • User programmable• Complies with wide range of SerDes-based standards• High bit rates

18 pins for a block of four SerDes (a Quad) composed of 16 data pins: (4 pins/lane 4 lanes) + 2 reference clock pins (shared by 4 lanes)

Clock I/O These I/O have connectivity to the “Global Clock Generator” in the corresponding corner.

24

Dedicated I/O Reserved for device configuration and test 23

Power / Ground Core power; I/O power; ground Device/package dependent

Figure 33: Programmable I/Os

a) Single-Ended Signaling b) Differential Signaling

Transmit Data

Receive Data

Transmit 3-State Control

I/O Pad Transmit Data

Transmit 3-State Control

Receive Data+

I/O Pad

I/O Pad

ds001_16_v05

PAGE 38 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 39: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Programmable I/Os

Table 11: Programmable I/O: Supported Standards

Type Volts Class

Interface Applications and Standards

StandardMax Clock

Rate(MHz)

Max Data Rate

(Mbps)

Sing

le-E

nded

Diff

eren

tial

LVCMOS 1.8V –General Purpose

300 30LVCMOS 1.5V – 300 300LVCMOS 1.2V 300 300HSTL 1.8V Class I

QDR II SRAM / RLDRAM II533 1066

HSTL 1.8V Class II 533 1066HSTL 1.5V Class I

Memory and Switch Fabric533 1066

HSTL 1.5V Class II 533 1066SSTL 1.8V Class I

DDR SDRAM / RLDRAM II400 800

SSTL 1.8V Class II 400 800SSTL 1.5V Class I

DDR2 SDRAM / FCRAM II533 1066

SSTL 1.5V Class IIPOD 1.8V - 400 800POD 1.5V - 400 800LVDS 1.8V – SPI4.2, SFI4.1 800 1600Differential HSTL 1.8V Class I

QDRII SRAM / RLDRAM II533 1066

Differential HSTL 1.8V Class II 533 1066Differential HSTL 1.5V Class I

Memory and Switch Fabric533 1066

Differential HSTL 1.5V Class II 533 1066Differential HSTL 1.2V Class II 533 1066Differential SSTL 1.8V Class II DDR 2 SDRAM 533 1066Differential SSTL 1.5V Class II 800 1600Differential SSTL 1.2V Class II 1066 2133HT 1.0 0.6V – 800 800

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 39

Page 40: Speedster22i HD FPGA Family

Programmable I/Os Speedster22i HD FPGA Family

Programmable I/O Grouping: Banks and Byte Lanes

Programmable  I/Os  are  deployed  in  banks. All  I/Oswithin a bank must share:

• The same VDDO

• The same VREF

The same RREFs  (used  for controlled‐impedance  I/Os,

as  described  in  “Programmable  I/O  Features(Common to All Banks),” on page 23).

The  following  sections  describe  Byte‐Lane  and  I/OBanks

Byte-Lane

I/O  Banks  consist  of  Byte‐Lanes.  Each  byte‐laneconsists of following:

• 12  I/O Buffers  consisting of 12 Bit‐Modules. Eachpair  of  two  IO Buffers  can  be  configured  as  twosingle‐ended  IO  Buffers  or  as  one differential  IOBuffer.

• 1 Master DLL and 12 slave delay elements – Thereis one  slave delay  element  for  each of  the 12 bit‐modules.

• Appropriate  Logical/Physical  Structures  for DQSpreamble  enable  &  postamble  shut‐off  forDDR2/DDR3 SDRAM application.

• Write‐pointer  and Read‐pointer  logic  for a Meso‐chronous Synchronizer. 

• Muxes and Buffers  for Source Synchronous  clocknetworks

• 2  I/O  Buffers  in  each  byte‐lane  are  capable  ofreceiving clocks from external devices. They can beused as one differential pair (e.g. to receive differ‐ential DQS for DDR2) or two single‐ended buffers(e.g. to receive clock CQ and CQn for QDR2). Theother 10 I/O buffers can be used as Data pins to belatched by the received clocks.

• Logic in each bit‐module to support SDR, DDR &QDR support for the  input and output directions,plus output enable logic.

• VREF is integrated in the Byte‐Lane.

I/O Banks

I/O  Buffers  in  Speedster22i  have  been  grouped  intomultiple Banks. There are three type of IO Banks – EFBank, Clock Bank and Configuration Bank. 

Enhanced Function, “EF”, Bank

An EF bank consists of following:

• 4 byte‐lanes (48 I/Os)

• Common  PVT  calibration  control  and  calibrationresistors for Driver Impedance

• Common  PVT  calibration  control  and  calibrationresistors for on‐die parallel termination and on‐diedifferential termination impedance

• All IO buffers use a common I/O Voltage VDDO

• All  IO  buffers  use  a  common  Reference  VoltageVREF

There are a total of 20 EF banks. 10 EF banks are on leftside, 10 EF banks are on right side.

Clock Bank

A Clock Bank consists of following:

• 6 IO Buffers for 6 single‐ended clocks or 3 differen‐tial clocks or any combination of single‐ended anddifferential clocks.

• All six IO buffers use a common IO Voltage VDDO

• All six IO buffers use a common Reference VoltageVREF

• Unlike the EF banks, the Clock Bank adds supportfor LVPECL 1.8V input clocks

• Unlike the EF banks, the Clock Bank does not havePVT calibration control.

There are a total of 4 Clock Banks, one  in each cornerfor a total of 24 clock input pins. As the name suggestsclock banks are for clock interfaces. 

Configuration Bank

The Configuration Bank is a special dedicated IO bankwhich  sits  on  the  bottom  edge  of  Speedster22i.  IObuffers  in  this  bank  are  used  for  JTAG  andConfiguration  Interfaces.  The  total  number  of  IObuffers in this bank is 36.

Figure 34  shows  a  conceptual  floorplan  of  a  devicewith  ten  banks. Clearly,  the  number  of  banks  variesfrom device to device. 

PAGE 40 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 41: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Programmable I/Os

Figure 34: I/O Banks (Bn = Bank #n; CBn = Clock Bank #n; CFG = Dedicated Configuration Bank)

ClockBank 0

EFBank 0

EFBank 1

EFBank 2

EFBank 9

ClockBank 1

ConfigBank

SerDes

SerDes

ClockBank 3

EFBank 19

EFBank 18

EFBank 17

EFBank 10

ClockBank 2

D100013 v1.0

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 41

Page 42: Speedster22i HD FPGA Family

Programmable I/Os Speedster22i HD FPGA Family

I/O Bank Resources

Each  I/O  Buffer  has  a  Bit‐Module  associated with  it.The Bit‐Module consists of appropriate logic blocks tofacilitate I/O Buffer interface with the FPGA core. Thelogic in a Bit‐Module consist of following blocks.

Receive Data Path

The receive data‐path has structures to interface incomingdata from the IO Buffer to the fabric. The incoming datacan  optionally  pass  through  a  delay  element  beforereaching any logic in the data‐path. The bit‐module in thereceive direction supports three modes:

• Combinatorial  to  the core  ‐  In  this mode  the datacoming from the input buffer is directly forwardedto the  FPGA core.

• SDR ‐ In this mode the data coming from the inputbuffer gets registered in the Bit‐Module before get‐ting forwarded to the FPGA core.

• DDR ‐ In this mode DDR data is received, and foreach bit,  two‐bit data  is  forwarded  to  the Fabric.This mode has two versions:

The  two bits are  forwarded  to  the Fabric coreon different clock‐edges

Both bits  are  forwarded  to  the Fabric  core  atthe same clock edge.

Figure 35  below  shows  the  Bit‐Module’s  receive  data‐path

Transmit Data Path

The  transmit  data‐path  has  structures  to  interface  datafrom  the  fabric  to  the  IO Buffer. The Bit‐Module  in  thetransmit direction supports three modes:

• Combinatorial ‐ In this mode the data coming fromFPGA core is directly forwarded to the output buf‐fer.

• SDR  ‐  In  this mode  the data  coming  from FPGAcore gets  registered  in  the Bit‐Module before get‐ting forwarded to the output buffer. 

• DDR ‐ In this mode two bits of data coming fromthe fabric gets converted to DDR data before beingforwarded to output buffer.

In each of the above three modes, the transmit data‐pathcan optionally include a delay element. 

Figure 35 below  shows  the Bit‐Module’s  transmit data‐path

Figure 35: Recieve Data path

1

01

0

1

0 1

0

1

0

Delay element

SR

DQ

R

+/-

SRDQ

R

+/-

SR

DQ

R

+/-E

SRDQ

R

+/-

clk

Data_b_to_core

Data_a_to_core

D100014 v1.0

PAGE 42 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 43: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Programmable I/Os

All  the  Flops  shown  above  can  be  configured  to  beeither positive or negative edge triggered. All the flopssupport an asynchronous or a synchronous reset. Theyalso have a common enable. When coming out of resetall the flops can be either set to “1” or reset to “0”.

Output Enable Path

The Output Enable path has  the  same  choices  as  theTransmit Data‐Path:

• Combinatorial  ‐  In  this mode  the  enable  comingfrom  the FPGA  fabric goes directly  to  the outputbuffer.

• SDR  ‐  In  this mode  the  enable  coming  from  theFPGA  fabric  gets  registered  in  the  Bit‐Modulebefore being forwarded to the output buffer. 

• DDR ‐ In this mode two bits of enable coming fromFPGA  fabric  get  converted  to  DDR  data  beforebeing forwarded to the output buffer.

Figure 37  below  shows  the  Bit‐Module’s  OutputEnable data‐path.

All  the  Flops  shown  above  can  be  configured  to  beeither positive or negative edge triggered. All the flopshave an asynchronous reset. When coming out of resetall the flops can be either set to “1” or reset to “0”.

Delay Element

Each  Bit‐Module  has  a Delay  Element which  can  beused in either the receive data‐path or in the transmitdata‐path.  The  delay  of  the  Delay  Element  is  set  atconfiguration or dynamically during operation. When

Figure 36: Transmit Data path

1

0

SR

D Q

R

+/-_core

f1a

SR

D Q

R

+/-E

SR

D Q

R

+/-E

1

0

SR

D Q

R

+/-

f1b

1

0 10

32

Delay element

clk

_core

Figure 37: Output Enable path

1

0

D Q

R

+/-

D100016 v1

Output_enable_a_from_core

D Q

R

+/-E

D Q

R

+/-E

1

0

D Q

R

+/-

1

0 10

32

Delay element

ENB

clk

Output_enable_b_from_core

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 43

Page 44: Speedster22i HD FPGA Family

Programmable I/Os Speedster22i HD FPGA Family

using a DLL as a master over  the Delay Element,  thedelay  element will maintain  a  set  delay  during  PVTvariations. In addition, when using the DLL, the delay

can be adjusted in increments of 1/64 the period of theDLL’s reference clock.

Table  6‐1  below  shows  the  full  specifications  of  thedelay element.

Advanced I/O Logic Resources

The Bit‐Module has additional logic blocks to supportthe  phy  function  of  various Memory  Interfaces  (e.g.DDR2/DDR3  SDRAM,  QDR2+  SRAM),  NetworkInterfaces  (e.g.  SPI4.2)  and  other  source  synchronousinterfaces.

Mesochronous Synchronizer

The receive data‐path has an 8‐bit FIFO Synchronizerfor mesochronous  applications  utilizing  the WindowMethod  for  moving  data  from  the  “capture  clockdomain”  over  to  the  core  clock  domain.  Windowmethod  is used  for DDR data application;  this allowsboth positive‐edged and negative‐edged received datato be valid for 4T cycles after capture. This provides thecore  a window  of  4T  to  transfer  captured data  to  itsclock‐domain. The synchronizer has a write‐pointer fordata written into the synchronizer, and a read‐pointerfor data to be read out of the synchronizer. The write‐pointer is clocked by the received Clock (e.g. DQS forDDR2,  CQ/CQn  for  QDR2), whereas  read‐pointer  isclocked  by  core  Clock.  In  mesochronous  mode,  thewpb_wr_ptr  counter  will  be  incremented  with  eachpositive  edge  of DQS, whereas  the wpb_rd_ptr willonly  be  incremented when  enabled  by  the  core.  Thecore  enables  this  counter  such  that  it  samples  thecaptured data in the middle of the window.

Phase Aligner

In many source‐synchronous interfaces, bus de‐skew isessential  at  the  I/O  for  proper  recovery  of  received

data. Data‐bits received across a bus may arrive at theFPGA  at  different  times  (called  channel‐to‐channelskew). To de‐skew  the channels and align  the bus onproper  word  boundary,  protocols,  such  as  SPI4.2,typically  require  the  transmitter  to  send  a  trainingpattern to the receiver during initialization and/or aftersome  interval.  Per‐bit  skew  is  a  way  to  effectivelyremove channel‐to‐channel skew and position the for‐warded  clock  at  the  center  of  the  data  eye  for  eachchannel. The Receive Data‐Path has a phase‐alignmentcircuit which, when used in conjunction with a trainingpattern and a delay element, can be used to achieve bit‐alignment using per‐bit skew.

Temperature Sensor

There  is  an  on‐chip  temperature  sensing  diode.  Theanode  and  cathode  for  the  internal  temperaturesensing  diode  are  connected  to  two  dedicated  pins(TEMP_DIODE_P and TEMP_DIODE_N).

In a typical application, the userʹs circuitry can monitorthe  temperature  and  use  the  result  as  a  decisioncriterion, for example:

•  Selectively  disabling  circuits  to  reduce  powerconsumption.

•  Delay  enabling  selected  circuits  until  a  specifiedcondition is reached.

Parameter Value

Reference Clock Frequency Range 165MHz – 1066MHz

Reference Input Duty Range 40% - 60%

Number of outputs per lane 1

Number of lanes per master 12

Slave Delay Adjustment 0% - 100% of Reference Clock Cycle

Output Phase Resolution 8-bits

Output Phase Accuracy +/- 4% of Reference Clock Cycle

Maximum Period Jitter +/- 2% peak-to-peak of Reference Clock Cycle

Maximum Duty Cycle Variation 50% +/- 2% at Reference Clock Cycle

Minimum High Low Slave Pulse width 25% of Reference Clock Cycle

Maximum Lock Time 500 Reference Clock Cycles

PAGE 44 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 45: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family DC and Switching Characteristics

DC and Switching CharacteristicsRecommended Operating Conditions

Table 12: Recommended Operating Conditions(1)

Symbol DescriptionCommercial

UnitsMin Typical Max

TJ Junction temperature 85 °C

VDDL Supply voltage for Internal logic fabric 0.9 0.95 1.0 V

VDD_CFG Supply voltage for configuration bank 0.9 0.95 1.0 V

VDD_CFGWL Supply voltage for configuration word line 0.8 0.85 0.9 V

VCC Digital Power 0.9 0.95 1.0 V

VDD_BRAM Supply Voltage for BRAMs 0.95 V

VDDO_B00 Supply Voltage for IO bank 1.2 - 1.8 V

VDDO_B01 Supply Voltage for IO bank 1.2 - 1.8 V

VDDO_B02 Supply Voltage for IO bank 1.2 - 1.8 V

VDDO_B10 Supply Voltage for IO bank 1.2 - 1.8 V

VDDO_B11 Supply Voltage for IO bank 1.2 - 1.8 V

VDDO_B12 Supply Voltage for IO bank 1.2 - 1.8 V

VDDO_B20 Supply Voltage for IO bank 1.2 - 1.8 V

VDDO_B21 Supply Voltage for IO bank 1.2 - 1.8 V

VDDO_B22 Supply Voltage for IO bank 1.2 - 1.8 V

VDDO_B30 Supply Voltage for IO bank 1.2 - 1.8 V

VDDO_B31 Supply Voltage for IO bank 1.2 - 1.8 V

VDDO_B32 Supply Voltage for IO bank 1.2 - 1.8 V

VDDO_B40 Supply Voltage for IO bank 1.2 - 1.8 V

VDDO_B41 Supply Voltage for IO bank 1.2 - 1.8 V

VDDO_B42 Supply Voltage for IO bank 1.2 - 1.8 V

VDDO_B50 Supply Voltage for IO bank 1.2 - 1.8 V

VDDO_B51 Supply Voltage for IO bank 1.2 - 1.8 V

VDDO_B52 Supply Voltage for IO bank 1.2 - 1.8 V

VDDO_JCFG Supply Voltage for configuration I/O 1.7 1.8 1.9 V

VDDO_CBNE Supply Voltage for IO bank 1.2-1.8 V

VDDO_CBNW Supply Voltage for IO bank 1.2-1.8 V

VDDO_CBSE Supply Voltage for IO bank 1.2-1.8 V

VDDO_CBSW Supply Voltage for IO bank 1.2-1.8 V

VPA_VDD1 SerDes low voltage 0.95 V

VPA_VDD2 SerDes high voltage 1.8 V

VDD_NOM_E Nominal Analog Voltage 1 V

VDD_NOM_W Nominal Analog Voltage 1 V

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 45

Page 46: Speedster22i HD FPGA Family

DC and Switching Characteristics Speedster22i HD FPGA Family

AVDD_PLL_NE0 Analog Supply Voltage for PLL 1.8 V

AVDD_PLL_NE1 Analog Supply Voltage for PLL 1.8 V

AVDD_PLL_NE2 Analog Supply Voltage for PLL 1.8 V

AVDD_PLL_NE3 Analog Supply Voltage for PLL 1.8 V

AVDD_PLL_NW0 Analog Supply Voltage for PLL 1.8 V

AVDD_PLL_NW1 Analog Supply Voltage for PLL 1.8 V

AVDD_PLL_NW2 Analog Supply Voltage for PLL 1.8 V

AVDD_PLL_NW3 Analog Supply Voltage for PLL 1.8 V

AVDD_PLL_SE0 Analog Supply Voltage for PLL 1.8 V

AVDD_PLL_SE1 Analog Supply Voltage for PLL 1.8 V

AVDD_PLL_SE2 Analog Supply Voltage for PLL 1.8 V

AVDD_PLL_SE3 Analog Supply Voltage for PLL 1.8 V

AVDD_PLL_SW0 Analog Supply Voltage for PLL 1.8 V

AVDD_PLL_SW1 Analog Supply Voltage for PLL 1.8 V

AVDD_PLL_SW2 Analog Supply Voltage for PLL 1.8 V

AVDD_PLL_SW3 Analog Supply Voltage for PLL 1.8 V

VREF_[B00 - B52] Reference Voltage for I/O Receivers [1] V

Notes: 1. 1/2 of corresponding VDDO

Table 12: Recommended Operating Conditions(1)

Symbol DescriptionCommercial

UnitsMin Typical Max

PAGE 46 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 47: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family I/O Electrical Specifications

I/O Electrical SpecificationsLVCMOS18

LVCMOS15

Table 13: LVCMOS18 Supply Voltage

Symbol Parameter Min Nom Max Units

VDDO Output supply voltage relative to GND 1.65 1.8 1.95 V

Table 14: LMCMOS18 DC Specifications

Symbol Description ConditionSpecification

UnitsMin Max

VIH Input High Voltage VOUT VOH 0.65 VDDO VDDO + 0.3 V

VIL Input Low Voltage VOUT VOL –0.3 0.35 VDDO V

VOH Output High Voltage

IOH = –4mA VDDO(min) – 0.4 V

IOH = –6mA VDDO(min) – 0.4 V

IOH = –8mA VDDO(min) – 0.4 V

IOH = –12mA VDDO(min) – 0.4 V

IOH = –16mA VDDO(min) – 0.4 V

VOL Output Low Voltage

IOL = 4mA 0.4 V

IOL = 6mA 0.4 V

IOL = 8mA 0.4 V

IOL = 12mA 0.4 V

IOL = 16mA 0.4 V

Table 15: LVCMOS15 Supply Voltages

Symbol Parameter Min Nom Max Units

VDDO Output supply voltage relative to GND 1.4 1.5 1.6 V

Table 16: LVCMOS15 DC Specifications

Symbol Description ConditionSpecification

UnitsMin Max

VIH Input High Voltage VOUT VOH 0.65 VDDO VDDO + 0.3 V

VIL Input Low Voltage VOUT VOL –0.3 0.35 VDDO V

VOH Output High Voltage

IOH = –4mA VDDO(min) – 0.4 V

IOH = –6mA VDDO(min) – 0.4 V

IOH = –8mA VDDO(min) – 0.4 V

IOH = –12mA VDDO(min) – 0.4 V

IOH = –16mA VDDO(min) – 0.4 V

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 47

Page 48: Speedster22i HD FPGA Family

I/O Electrical Specifications Speedster22i HD FPGA Family

LVCMOS12

VOL Output Low Voltage

IOL = 4mA 0.4 V

IOL = 6mA 0.4 V

IOL = 8mA 0.4 V

IOL = 12mA 0.4 V

IOL = 16mA 0.4 V

Table 17: LVCMOS12 Supply Voltages

Symbol Parameter Min Nom Max Units

VDDO Output supply voltage relative to GND 1.1 1.2 1.3 V

Table 18: LVCMOS15 DC Specifications

Symbol Description ConditionSpecification

UnitsMin Max

VIH Input High Voltage VOUT VOH 0.65 VDDO VDDO + 0.3 V

VIL Input Low Voltage VOUT VOL –0.3 0.35 VDDO V

VOH Output High Voltage

IOH = –4mA VDDO(min) – 0.4 V

IOH = –6mA VDDO(min) – 0.4 V

IOH = –8mA VDDO(min) – 0.4 V

IOH = –12mA VDDO(min) – 0.4 V

IOH = –16mA VDDO(min) – 0.4 V

VOL Output Low Voltage

IOL = 4mA 0.4 V

IOL = 6mA 0.4 V

IOL = 8mA 0.4 V

IOL = 12mA 0.4 V

IOL = 16mA 0.4 V

Table 16: LVCMOS15 DC Specifications (Continued)

Symbol Description ConditionSpecification

UnitsMin Max

PAGE 48 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 49: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family I/O Electrical Specifications

HSTL18

HSTL15

Table 19: HSTL18 General Specifications

Symbol Description Min Nom Max Units

VDDO Output supply voltage relative to GND 1.7 1.8 1.9 V

VREF Output reference voltage 0.8 0.9 1.1 V

VTT(1) Termination voltage for Class I and II outputs VDDO/2 V

Notes: 1. VTT must track VREF of receiving device.

Table 20: HSTL18 DC Specifications

Symbol Description ConditionSpecification

UnitsMin Max

VIH High input voltage(1) Single-ended VREF + 0.1 VDDO + 0.3 V

VIL Low input voltage(1) Single-ended –0.3 VREF – 0.1 V

VOH

High output voltage

Class I buffer IOH = 8 mA VDDO – 0.4 V

Class II buffer IOH = 16 mA VDDO – 0.4 V

VOL

Low output voltage

Class I buffer IOL = –8 mA 0.4 V

Class II buffer IOL = –16 mA 0.4 V

IDD Static Supply current mA

Notes: 1. Input buffer is single‐ended only.

Table 21: HSTL15 General Specifications

Symbol Description Min Nom Max Units

VDDO Output supply voltage relative to GND 1.4 1.5 1.6 V

VREF Output reference voltage 0.68 0.75 0.9 V

VTT(1) Termination voltage for Class I and II outputs VDDO/2 V

Notes: 1. VTT must track VREF of receiving device.

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 49

Page 50: Speedster22i HD FPGA Family

I/O Electrical Specifications Speedster22i HD FPGA Family

Table 22: HSTL15 DC Specifications

Symbol Description ConditionSpecification

UnitsMin Max

VIH High input voltage(1) Single-ended VREF + 0.1 VDDO + 0.3 V

VIL Low input voltage(1) Single- ended –0.3 VREF – 0.1 V

VOH

High output voltage

Class I buffer IOH = 8 mA VDDO – 0.4 V

Class II buffer IOH = 16 mA VDDO – 0.4 V

VOL

Low output voltage

Class I buffer IOL = –8 mA 0.4 V

Class II buffer IOL = –16 mA 0.4 V

IOZK Off-state leakage current(2) uA

IDD Static Supply current mA

Notes: 1. Input buffer is single‐ended only.

2. Bus Keeper Enabled

PAGE 50 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 51: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family I/O Electrical Specifications

SSTL18

Table 23: SSTL18 General Specifications

Symbol Description Min Nom Max Units

VDDO Output supply voltage relative to GND 1.62 1.8 1.98 V

VREF Output reference voltage 0.81 0.9 0.99 V

VTT Termination voltage 0.81 0.9 0.99 V

Table 24: SSTL18 DC Specifications

Symbol DescriptionSpecification

UnitsMin Max

VIH(DC) High DC input voltage VREF + 0.125 VDDO + 0.3 V

VIL(DC) Low DC input voltage –0.3 VREF – 0.125 V

IDD Static Supply current mA

Output Buffer RT = 25, RS = 20

IOH Output minimum source current(1) –13.4 mA

IOL Output minimum sink current(1) 13.4 mA

Notes: 1. VDDO = 1.7V, VOUT(MIN) = 833 mV, VTT = 40 mV

Table 25: SSTL18 AC Specifications

Symbol DescriptionSpecification

UnitsMin Max

VIH(AC) High AC input voltage VREF + 0.25 V

VIL(AC) Low AC input voltage VREF – 0.25 V

Class I Output Buffer RT = 50, RS = 25

VOH(AC) High AC output voltage(1) VTT + 0.57 V

VOL(AC) Low AC output voltage(1) VTT – 0.57 V

Class II Output Buffer RT = 25, RS = 25

VOH(AC) High AC output voltage(2) VTT + 0.76 V

VOL(AC) Low AC output voltage(2) VTT – 0.76 V

Notes: 1. Tested with RT = 50, RS = 20, CLOAD = 5 pF (JESD 8‐15 Figure 4).

2. Tested with RT = 50, RS = 20, CLOAD = 5 pF (JESD 8‐15 Figure 4).

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 51

Page 52: Speedster22i HD FPGA Family

I/O Electrical Specifications Speedster22i HD FPGA Family

SSTL15Table 26: SSTL15 General Specifications

Symbol Description Min Nom Max Units

VDDO Output supply voltage relative to GND 1.425 1.5 1.575 V

VREF Input reference voltage 0.7425 0.75 0.7575 V

VTT Termination voltage VREF -0.04 VREF VREF +0.04 V

Table 27: SSTL15 DC Specifications

Symbol DescriptionSpecification

UnitsMin Max

VIH(DC) High DC input voltage VREF + 0.100 V

VIL(DC) Low DC input voltage VREF – 0.100 V

VOH(DC) High DC output voltage 0.8 x VDDIO V

VOL(DC) Low DC output voltage 0.2 x VDDIO V

IOZK Off-state leakage current uA

IDD Static Supply current mA

Table 28: SSTL15 AC Specifications

Symbol DescriptionSpecification

UnitsMin Max

VIH(AC) High AC input voltage VREF + 0.175 V

VIL(AC) Low AC input voltage VREF – 0.175 V

VOH(AC) High AC output voltage VTT + 0.1 x VDDQ V

VOL(AC) Low AC output voltage VTT – 0.1 x VDDQ V

PAGE 52 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 53: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family I/O Electrical Specifications

POD18

POD15

Table 29: POD18 General Specifications

Symbol Description Min Nom Max Units

VDDO Output supply voltage relative to GND 1.7 1.8 1.9 V

VREF Output reference voltage 0.69*VDDO 0.70*VDDO 0.71*VDDO V

Table 30: POD18 DC Specifications

Symbol DescriptionSpecification

UnitsMin Max

VIH(DC) High DC input voltage VREF + 0.15 V

VIL(DC) Low DC input voltage VREF - 0.15 V

IL Input Leakage -5 5 μA

VOL(DC) Output Logic Low 0.76 V

Table 31: POD18 AC Specifications

Symbol DescriptionSpecification

UnitsMin Max

VIH(AC) High AC input voltage VREF + 0.25 V

VIL(AC) Low AC input voltage VREF -0.25 V

Table 32: POD15 General Specifications

Symbol Description Min Nom Max Units

VDDO Output supply voltage relative to GND 1.455 1.5 1.545 V

VREF Output reference voltage 0.69*VDDO 0.70*VDDO 0.71*VDDO V

Table 33: POD15 DC Specifications

Symbol DescriptionSpecification

UnitsMin Max

VIH(DC) High DC input voltage VREF + 0.12 V

VIL(DC) Low DC input voltage VREF - 0.12 V

IL Input Leakage TBD TBD μA

VOL(DC) Output Logic Low 0.62 V

Table 34: POD15 AC Specifications

Symbol DescriptionSpecification

UnitsMin Max

VIH(AC) High AC input voltage VREF + 0.20 V

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 53

Page 54: Speedster22i HD FPGA Family

I/O Electrical Specifications Speedster22i HD FPGA Family

VIL(AC) Low AC input voltage VREF -0.20 V

Table 34: POD15 AC Specifications

Symbol DescriptionSpecification

UnitsMin Max

PAGE 54 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 55: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family I/O Electrical Specifications

LVDS18

Table 35: LVDS18 Supply Voltages

Symbol Description Min Nom Max UnitsVDDO I/O supply voltage 1.7 1.8 1.9 V

Table 36: LVDS18 DC Specifications

Symbol Description Conditions Min Max Units

ReceiverVI Input voltage range, VIA/VIB 0 1.8 V

VIDTH Input differential threshold -100 +100 mV

VID Input differential voltage range 100 900 mV

VHYST Input differential hysteresis (VIDTHH–VIDTHL) TBD TBD mV

RIN Receiver diff input impedance Worst case: SS, 0°C 90 110

DriverVOH Output voltage High, VOA/VOB

RLOAD = 100 ± 1%

TBD TBD V

VOL Output voltage Low, VOA/VOB TBD TBD mV

|VOD| Output differential voltage TBD TBD mV

VOS Output offset voltage TBD TBD V

RO Output impedance, single endedVCM = 1.0V and 1.4V

TBD TBD

RO RO mismatch between A and B TBD TBD %

|VOD| Change in |VOD| between 0 and 1RLOAD = 100 ± 1%

TBD TBD mV

|VOS| Change in |VOS|| between 0 and 1 TBD TBD mV

ISA/ISB Output Current Driver shorted to ground TBD TBD mA

ISAB Output Current Drivers shorted together TBD TBD mA

IXA/IXB Power-off output leakage TBD TBD mA

VVREF Reference supply voltage TBD TBD V

IVREF Reference leakage current TBD TBD mA

Table 37: LVDS18 AC Specifications

Symbol Description Conditions Min Max Units

ReceiverTPD Propagation delay TBD TBD ns

TSKEW Skew tolerable at receiver input to meet TSU/THOLD TBD TBD ps

DriverClock Clock signal duty cycle TBD TBD %TFALL VOD fall time, 20–80%

RLOAD = 100 ± 1%TBD TBD ps

TRISE VOD rise time, 20–80% TBD TBD ps

TSKEW1 |TPHLA – TPLHB| or |TPHLB – TPLHA|, differential skew Any differential pair on package TBD TBD ps

TSKEW2 |TPDIFF[M] – TPDIFF[N]| channel-to-channel skew Any two signals on package TBD TBD ps

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 55

Page 56: Speedster22i HD FPGA Family

I/O Electrical Specifications Speedster22i HD FPGA Family

DHSTL18

Table 38: DHSTL18 Supply Voltages

Symbol Description Min Max UnitsVDDO I/O supply voltage TBD TBD VVDD Core supply voltage TBD TBD V

Table 39: DHSTL18 DC Specifications

Symbol Description Conditions Min Max Units

ReceiverVI Input voltage range, VIA/VIB TBD TBD V

VIDTH Input differential threshold TBD TBD mV

VID Input differential voltage range TBD TBD mV

VHYST Input differential hysteresis (VIDTHH–VIDTHL) TBD TBD mV

RIN Receiver diff input impedance Worst case: SS, 0°C TBD TBD

DriverVOH Output voltage High, VOA/VOB

RLOAD = 100 ± 1%

TBD TBD V

VOL Output voltage Low, VOA/VOB TBD TBD mV

|VOD| Output differential voltage TBD TBD mV

VOS Output offset voltage TBD TBD V

RO Output impedance, single endedVCM = 1.0V and 1.4V

TBD TBD

RO RO mismatch between A and B TBD TBD %

|VOD| Change in |VOD| between 0 and 1RLOAD = 100 ± 1%

TBD TBD mV

|VOS| Change in |VOS|| between 0 and 1 TBD TBD mV

ISA/ISB Output Current Driver shorted to ground TBD TBD mA

ISAB Output Current Drivers shorted together TBD TBD mA

IXA/IXB Power-off output leakage TBD TBD mA

VVREF Reference supply voltage TBD TBD V

IVREF Reference leakage current TBD TBD mA

Table 40: DHSTL18 AC Specifications

Symbol Description Conditions Min Max Units

ReceiverTPD Propagation delay TBD TBD ns

TSKEW Skew tolerable at receiver input to meet TSU/THOLD TBD TBD ps

DriverClock Clock signal duty cycle TBD TBD %TFALL VOD fall time, 20–80%

RLOAD = 100 ± 1%TBD TBD ps

TRISE VOD rise time, 20–80% TBD TBD ps

TSKEW1 |TPHLA – TPLHB| or |TPHLB – TPLHA|, differential skew Any differential pair on package TBD TBD ps

TSKEW2 |TPDIFF[M] – TPDIFF[N]| channel-to-channel skew Any two signals on package TBD TBD ps

PAGE 56 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 57: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family I/O Electrical Specifications

DHSTL15

Table 41: DHSTL15 Supply Voltages

Symbol Description Min Max UnitsVDDO I/O supply voltage TBD TBD VVDD Core supply voltage TBD TBD V

Table 42: DHSTL 15 DC Specifications

Symbol Description Conditions Min Max Units

ReceiverVI Input voltage range, VIA/VIB TBD TBD V

VIDTH Input differential threshold TBD TBD mV

VID Input differential voltage range TBD TBD mV

VHYST Input differential hysteresis (VIDTHH–VIDTHL) TBD TBD mV

RIN Receiver diff input impedance Worst case: SS, 0°C TBD TBD

DriverVOH Output voltage High, VOA/VOB

RLOAD = 100 ± 1%

TBD TBD V

VOL Output voltage Low, VOA/VOB TBD TBD mV

|VOD| Output differential voltage TBD TBD mV

VOS Output offset voltage TBD TBD V

RO Output impedance, single endedVCM = 1.0V and 1.4V

TBD TBD

RO RO mismatch between A and B TBD TBD %

|VOD| Change in |VOD| between 0 and 1RLOAD = 100 ± 1%

TBD TBD mV

|VOS| Change in |VOS|| between 0 and 1 TBD TBD mV

ISA/ISB Output Current Driver shorted to ground TBD TBD mA

ISAB Output Current Drivers shorted together TBD TBD mA

IXA/IXB Power-off output leakage TBD TBD mA

VVREF Reference supply voltage TBD TBD V

IVREF Reference leakage current TBD TBD mA

Table 43: DHSTL15 AC Specifications

Symbol Description Conditions Min Max Units

ReceiverTPD Propagation delay TBD TBD ns

TSKEW Skew tolerable at receiver input to meet TSU/THOLD TBD TBD ps

DriverClock Clock signal duty cycle TBD TBD %TFALL VOD fall time, 20–80%

RLOAD = 100 ± 1%TBD TBD ps

TRISE VOD rise time, 20–80% TBD TBD ps

TSKEW1 |TPHLA – TPLHB| or |TPHLB – TPLHA|, differential skew Any differential pair on package TBD TBD ps

TSKEW2 |TPDIFF[M] – TPDIFF[N]| channel-to-channel skew Any two signals on package TBD TBD ps

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 57

Page 58: Speedster22i HD FPGA Family

I/O Electrical Specifications Speedster22i HD FPGA Family

DHSTL12

Table 44: DHSTL12 Supply Voltages

Symbol Description Min Max UnitsVDDO I/O supply voltage TBD TBD VVDD Core supply voltage TBD TBD V

Table 45: DHSTL12 DC Specifications

Symbol Description Conditions Min Max Units

ReceiverVI Input voltage range, VIA/VIB TBD TBD V

VIDTH Input differential threshold TBD TBD mV

VID Input differential voltage range TBD TBD mV

VHYST Input differential hysteresis (VIDTHH–VIDTHL) TBD TBD mV

RIN Receiver diff input impedance Worst case: SS, 0°C TBD TBD

DriverVOH Output voltage High, VOA/VOB

RLOAD = 100 ± 1%

TBD TBD V

VOL Output voltage Low, VOA/VOB TBD TBD mV

|VOD| Output differential voltage TBD TBD mV

VOS Output offset voltage TBD TBD V

RO Output impedance, single endedVCM = 1.0V and 1.4V

TBD TBD

RO RO mismatch between A and B TBD TBD %

|VOD| Change in |VOD| between 0 and 1RLOAD = 100 ± 1%

TBD TBD mV

|VOS| Change in |VOS|| between 0 and 1 TBD TBD mV

ISA/ISB Output Current Driver shorted to ground TBD TBD mA

ISAB Output Current Drivers shorted together TBD TBD mA

IXA/IXB Power-off output leakage TBD TBD mA

VVREF Reference supply voltage TBD TBD

IVREF Reference leakage current TBD TBD mA

Table 46: DHSTL12 AC Specifications

Symbol Description Conditions Min Max Units

ReceiverTPD Propagation delay TBD TBD ns

TSKEW Skew tolerable at receiver input to meet TSU/THOLD TBD TBD ps

DriverClock Clock signal duty cycle TBD TBD %TFALL VOD fall time, 20–80%

RLOAD = 100 ± 1%TBD TBD ps

TRISE VOD rise time, 20–80% TBD TBD ps

TSKEW1 |TPHLA – TPLHB| or |TPHLB – TPLHA|, differential skew Any differential pair on package TBD TBD ps

TSKEW2 |TPDIFF[M] – TPDIFF[N]| channel-to-channel skew Any two signals on package TBD TBD ps

PAGE 58 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 59: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family I/O Electrical Specifications

DSSTL18

Table 47: DSSTL18 Supply Voltages

Symbol Description Min Max UnitsVDDO I/O supply voltage TBD TBD VVDD Core supply voltage TBD TBD V

Table 48: DSSTL18 DC Specifications

Symbol Description Conditions Min Max Units

ReceiverVI Input voltage range, VIA/VIB TBD TBD V

VIDTH Input differential threshold TBD TBD mV

VID Input differential voltage range TBD TBD mV

VHYST Input differential hysteresis (VIDTHH–VIDTHL) TBD TBD mV

RIN Receiver diff input impedance Worst case: SS, 0°C TBD TBD

DriverVOH Output voltage High, VOA/VOB

RLOAD = 100 ± 1%

TBD TBD V

VOL Output voltage Low, VOA/VOB TBD TBD mV

|VOD| Output differential voltage TBD TBD mV

VOS Output offset voltage TBD TBD V

RO Output impedance, single endedVCM = 1.0V and 1.4V

TBD TBD

RO RO mismatch between A and B TBD TBD %

|VOD| Change in |VOD| between 0 and 1RLOAD = 100 ± 1%

TBD TBD mV

|VOS| Change in |VOS|| between 0 and 1 TBD TBD mV

ISA/ISB Output Current Driver shorted to ground TBD TBD mA

ISAB Output Current Drivers shorted together TBD TBD mA

IXA/IXB Power-off output leakage TBD TBD mA

VVREF Reference supply voltage TBD TBD V

IVREF Reference leakage current TBD TBD mA

Table 49: DSSTL18 AC Specifications

Symbol Description Conditions Min Max Units

ReceiverTPD Propagation delay TBD TBD ns

TSKEW Skew tolerable at receiver input to meet TSU/THOLD TBD TBD ps

DriverClock Clock signal duty cycle TBD TBD %TFALL VOD fall time, 20–80%

RLOAD = 100 ± 1%TBD TBD ps

TRISE VOD rise time, 20–80% TBD TBD ps

TSKEW1 |TPHLA – TPLHB| or |TPHLB – TPLHA|, differential skew Any differential pair on package TBD TBD ps

TSKEW2 |TPDIFF[M] – TPDIFF[N]| channel-to-channel skew Any two signals on package TBD TBD ps

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 59

Page 60: Speedster22i HD FPGA Family

I/O Electrical Specifications Speedster22i HD FPGA Family

DSSTL15

Table 50: DSSTL15 Supply Voltages

Symbol Description Min Max UnitsVDDO I/O supply voltage TBD TBD VVDD Core supply voltage TBD TBD V

Table 51: DSSTL15 DC Specifications

Symbol Description Conditions Min Max Units

ReceiverVI Input voltage range, VIA/VIB TBD TBD V

VIDTH Input differential threshold TBD TBD mV

VID Input differential voltage range TBD TBD mV

VHYST Input differential hysteresis (VIDTHH–VIDTHL) TBD TBD mV

RIN Receiver diff input impedance Worst case: SS, 0°C TBD TBD

DriverVOH Output voltage High, VOA/VOB

RLOAD = 100 ± 1%

TBD TBD V

VOL Output voltage Low, VOA/VOB TBD TBD mV

|VOD| Output differential voltage TBD TBD mV

VOS Output offset voltage TBD TBD V

RO Output impedance, single endedVCM = 1.0V and 1.4V

TBD TBD

RO RO mismatch between A and B TBD TBD %

|VOD| Change in |VOD| between 0 and 1RLOAD = 100 ± 1%

TBD TBD mV

|VOS| Change in |VOS|| between 0 and 1 TBD TBD mV

ISA/ISB Output Current Driver shorted to ground TBD TBD mA

ISAB Output Current Drivers shorted together TBD TBD mA

IXA/IXB Power-off output leakage TBD TBD mA

VVREF Reference supply voltage TBD TBD V

IVREF Reference leakage current TBD TBD mA

Table 52: DSSTL15 AC Specifications

Symbol Description Conditions Min Max Units

ReceiverTPD Propagation delay TBD TBD ns

TSKEW Skew tolerable at receiver input to meet TSU/THOLD TBD TBD ps

DriverClock Clock signal duty cycle TBD TBD %TFALL VOD fall time, 20–80%

RLOAD = 100 ± 1%TBD TBD ps

TRISE VOD rise time, 20–80% TBD TBD ps

TSKEW1 |TPHLA – TPLHB| or |TPHLB – TPLHA|, differential skew Any differential pair on package TBD TBD ps

TSKEW2 |TPDIFF[M] – TPDIFF[N]| channel-to-channel skew Any two signals on package TBD TBD ps

PAGE 60 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 61: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family I/O Electrical Specifications

DSSTL12

Table 53: DSSTL12 Supply Voltages

Symbol Description Min Max UnitsVDDO I/O supply voltage TBD TBD VVDD Core supply voltage TBD TBD V

Table 54: DSSTL12 DC Specifications

Symbol Description Conditions Min Max Units

ReceiverVI Input voltage range, VIA/VIB TBD TBD V

VIDTH Input differential threshold TBD TBD mV

VID Input differential voltage range TBD TBD mV

VHYST Input differential hysteresis (VIDTHH–VIDTHL) TBD TBD mV

RIN Receiver diff input impedance Worst case: SS, 0°C TBD TBD

DriverVOH Output voltage High, VOA/VOB

RLOAD = 100 ± 1%

TBD TBD V

VOL Output voltage Low, VOA/VOB TBD TBD mV

|VOD| Output differential voltage TBD TBD mV

VOS Output offset voltage TBD TBD V

RO Output impedance, single endedVCM = 1.0V and 1.4V

TBD TBD

RO RO mismatch between A and B TBD TBD %

|VOD| Change in |VOD| between 0 and 1RLOAD = 100 ± 1%

TBD TBD mV

|VOS| Change in |VOS|| between 0 and 1 TBD TBD mV

ISA/ISB Output Current Driver shorted to ground TBD TBD mA

ISAB Output Current Drivers shorted together TBD TBD mA

IXA/IXB Power-off output leakage TBD TBD mA

VVREF Reference supply voltage TBD TBD V

IVREF Reference leakage current TBD TBD mA

Table 55: DSSTL12 AC Specifications

Symbol Description Conditions Min Max Units

ReceiverTPD Propagation delay TBD TBD ns

TSKEW Skew tolerable at receiver input to meet TSU/THOLD TBD TBD ps

DriverClock Clock signal duty cycle TBD TBD %TFALL VOD fall time, 20–80%

RLOAD = 100 ± 1%TBD TBD ps

TRISE VOD rise time, 20–80% TBD TBD ps

TSKEW1 |TPHLA – TPLHB| or |TPHLB – TPLHA|, differential skew Any differential pair on package TBD TBD ps

TSKEW2 |TPDIFF[M] – TPDIFF[N]| channel-to-channel skew Any two signals on package TBD TBD ps

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 61

Page 62: Speedster22i HD FPGA Family

I/O Electrical Specifications Speedster22i HD FPGA Family

HT 1.0

Table 56: HT 1.0 Specifications

Symbol Description Min Typical Max Units

VOD Differential output voltage 495 600 715 mV

ΔVOD Change in VOD amplitude -15 15 mV

VOCM Output common-mode voltage 495 600 715 mV

ΔVOCM Change in VOCM amplitude -15 15 mV

VID Input differential voltage 200 600 1000 mV

ΔVID Change in VID amplitude -15 15 mV

VICM Input common-mode voltage 440 600 780 mV

ΔVICM Change in VICM amplitude -15 15 mV

PAGE 62 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 63: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family I/O Electrical Specifications

I/O Leakage

Compensation and Termination

The EF banks in Speedster devices have compensation controller blocks to provide accurate process, voltage, andtemperature  compensated  driver  output  and  receiver  termination  impedances.  Some  I/O  standards  requiretermination or compensation resistors for proper operation. Table 58 lists the external resistor values needed forthe driver  compensation on DRVHI/DRVLO, and Table 59  lists  the external  resistor values  for RTT  termination

compensation on RTTHI/RTTLO.

Note: The resistor on DRVHI/RTTHI is connected to VSS, and the resistor on DRVLO/RTTLO is connected to VDDO.

Table 57: I/O Tri-state Leakage Currents

Symbol Description Condition Min Max Units

IOZ Off-state Leakage Current(1)

1.62 VDDO  1.986 TBD TBD μA

1.4  VDDO  1.6 TBD TBD μA

1.08  VDDO  1.32 TBD TBD μA

IOZKOff-state Leakage Current with Bus Keeper enabled(1)

1.62 VDDO  1.986 TBD TBD μA

1.4  VDDO  1.6 TBD TBD μA

1.08  VDDO  1.32 TBD TBD μA

Notes: 1. Includes input leakage current

Table 58: Compensation Resistor Values

Standard Resistor Value

HSTL18 Class I TBD

HSTL18 Class II TBD

DDR3 (SSTL15) TBD

DDR2 Class I (SSTL18) TBD

DDR2 Class II TBD

DDR1 Class I TBD

DDR1 Class II TBD

Table 59: Termination Resistor Values(1)

Resistor Value Resulting Termination

300 TBD

240 TBD

200 TBD

Notes: 1. The two different values of termination resistance for 

the same value of external compensation resistor con‐nected to RTTHI/RTTLO is set via a configuration bit.

Table 59: Termination Resistor Values(1)

Resistor Value Resulting Termination

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 63

Page 64: Speedster22i HD FPGA Family

Pin Descriptions Speedster22i HD FPGA Family

Pin DescriptionsTable 60: Speedster22i FPGA Pin Description

Pin Name Pin Group Type Description

12.75 Gbps SerDes (64 lanes)PA_VDD1 N12P75G Power Analog 0.95V Power Supply

PA_VDD2 N12P75G Power Analog 1.8V Power Supply

VREF_B[30,31,32,40,41,42,50,51,52]

N12P75G Power Analog input; Voltage Bias reference

PAD_TE_I_A_RXTERMV_LNUM[31:0]

N12P75G Power Receiver Termination Voltage Pad input

PAD_TE_I_BCK_REF_M/P_LNUM[15:0]

N12P75G Clock The 12.75 Gbps SerDes reference clock supplied from either a single-ended or differential external source. Each reference clock is buffered, distributed to two lanes, used by the clock multipli-cation unit (CMU) in each lane to generate the transmit bit clock and distributed to the respective data lanes. The requirements on the reference clock vary depending on the standard and data rate used. There is 1 differential pair for each of 2 , 12.75Gbps lane.

PAD_TE_I_BA_RX_P/M_LNUM[31:0]

N12P75G Input Receive differential inputs to the 12.75 Gbps SerDes. One pair for each lane.

PAD_TE_O_A_APROBE_LNUM[31:0]

N12P75G Output The 12.75 Gbps SerDes Analog DC test pad used for ATE and bench testing, one for each lane

PAD_TE_O_BA_TX_P/M_LNUM[31:0]

N12P75G Output Transmit differential outputs from the 12.75 Gbps SerDes. There is one differential pair per each 12.75Gbps lane.

PA_VDD1 S12P75G Power Analog 0.95V Power Supply

PA_VDD2 S12P75G Power Analog 1.8V Power Supply

VREF_B[10,11,12,20,21,22,30,31,32]

S12P75G Power Analog input; Voltage Bias reference

PAD_BE_I_A_RXTERMV_LNUM[31:0]

S12P75G Power Receiver Termination Voltage Pad input

PAD_BE_I_BCK_REF_M/P_LNUM[15:0]

S12P75G Clock The 12.75 Gbps SerDes reference clock supplied from either a single-ended or differential external source. Each reference clock is buffered, distributed to two lanes, used by the clock multipli-cation unit (CMU) in each lane to generate the transmit bit clock and distributed to the respective data lanes. The requirements on the reference clock vary depending on the standard and data rate used. There is 1 differential pair for each of 2 , 12.75Gbps lane

PAD_BE_I_BA_RX_P/M_LNUM[31:0]

S12P75G Input Receive differential inputs to the 12.75 Gbps SerDes. One pair for each lane

PAD_BE_O_A_APROBE_LNUM[31:0]

S12P75G Output The 12.75 Gbps SerDes Analog DC test pad used for ATE and

bench testing, one for each lane."

PAD_BE_O_BA_TX_P/M_LNUM[31:0]

S12P75G Output "Transmit differential outputs from the 12.75 Gbps SerDes. There is one differential pair per each 12.75Gbps lane.

IEEE1149.1 Interface

PAGE 64 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 65: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pin Descriptions

VDDO_JCFG CFG Power Supply voltage powering the I/O buffers for the IEEE 1149.1 JTAG interface. The value selected determine the output VOH level on TDO and set the input threshold VIL and VIH values appropriately. (TAP) controller state machine transitions. This input is captured on the rising edge of the test logic clock (TCK). This dedicated pin is equipped with a pull-up resistor to place the test logic in the Test-Logic-Reset state

TMS JTAG Input The Test Mode Select (TMS) input controlling the test access port (TAP) controller state machine transitions. This input is captured on the rising edge of the test logic clock (TCK). This dedicated pin is equipped with a pull-up resistor to place the test logic in the Test-Logic-Reset state

TCK JTAG Input IEEE 1149.1 JTAG interface dedicated test clock used to advance the TAP controller and clock in data on the TDI input and out on the TDO output. The maximum frequency for TCK is 100 MHz

TDI JTAG Input IEEE1149.1 JTAG interface serial input for instruction and test data. Data is captured on the rising edge of the test logic clock. This dedicated pin is equipped with a pull-up resistor

TRSTN JTAG Input IEEE 1149.1 JTAG interface asynchronous active-Low reset input used to initialize the TAP controller. This dedicated pin is equipped with a pull-up resistor

TDO JTAG Output IEEE 1149.1 JTAG serial output for data from the test logic. TDO is set to an inactive drive state (high impedance) when data scanning is not in progress. This pin is equipped with a pull-up resistor. TDO drives out valid data on the falling edge of the TCK input

Configuration Interface VDD_CFG CFG Power The supply voltage for the I/Os in the configuration bank.

VDD_CFGWL CFG Power Power Supply for Configuration Memory Cells.

CONFIG_STATUS CFG Open drain output

Pin asserted active-Low by the FCU should an error be detected during configuration

CONFIG_RSTN CFG Input Asynchronous active-Low reset input clearing the configuration memory in the device and the logic in the FPGA configuration unit (FCU). In JTAG mode, pulled up (to VDDO_JCFG)

CONFIG_MODESEL[2:0] CFG Open drain output

Configuration mode selection inputs to define the FPGA configu-ration unit (FCU) mode of operation: • 001: SPI x1 configuration mode• 010: SPI x4 configuration mode• 100: CPU configuration mode

PROGRAM_ENABLE[1:0] CFG input Pin enabling the programming of the eFuse for the AES encryption keys. This input pin active-High (to the VDDO_JCFG voltage level)

Table 60: Speedster22i FPGA Pin Description (Continued)

Pin Name Pin Group Type Description

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 65

Page 66: Speedster22i HD FPGA Family

Pin Descriptions Speedster22i HD FPGA Family

CONFIG_DONE CFG Input with open-drain or active output

Pin asserted active-Low prior to the completion of device config-uration. After the device successfully completes configuration, this pin is either tri-stated or can optionally be driven High. The default behavior is open-drain, tri-stating the pin when the device is properly configured. If a device configuration error occurs, the CONFIG_DONE output for the device remains in active-Low. In the default mode of operation, an external pull-up resistor is needed to take the pin High. The device does not enter the functional mode until this pin is active-High. Holding this pin Low on the board can be used as a method to synchronize the start-up of multiple devices

CONFIG_CLKSEL CFG Input Pin controlling whether the FCU clock is sourced from the TCK input or the CPU_CLK input when CONFIG_SYSCLK_BYPASS is asserted active-High thus enabling the bypass of the internal SYS_CLK: • When this input is biased to '1', TCK is selected• When this input is biased to '0', CPU_CLK is selected

HOLDN CFG Output In the SPI mode of operation, the hold signal output for SPI flash devices. In CPU mode, this bit is the bidirectional data bit 5, DQ[5]."

CPU_CLK Maximum 25Mhz . Used as FCU clock under CONFIG_CLKSEL control

BYPASS_CLR_MEM CFG NOT Available for HD1000

SCK CFG Output Serial flash clock output. Default rate is set to 25 MHz. This output clock rate can be lowered by the bitstream during configuration

SDI CFG Output In the SPI modes of operation, the serial data output pins for command and programming data to the flash memory. These command and programming commands are sent via control registers writes done via the IEEE 1149.1 JTAG interface. In the CPU mode, this pin is the bidirectional data bit 0, DQ[0]

CSN[3:0] CFG Input/ Output

"In SPI Mode: The CSN[3:0] pins are active-Low chip select outputs. In the programming mode, individual serial flash devices are mapped to a linear addressing space. In the SPI x1 configu-ration mode only the CSN[0] output is used.In CPU Mode: CSN[3] is the bidirectional data bit 6, DQ[6]. CSN[2] is the bidirectional data bit 7. DQ[7]. CSN[1] is not used. CSN[0] is an active-Low chip select input

SDO[3:0] CFG Input "Input pins providing data input from the flash device(s). In SPI x4 configuration mode, all 4 SDO inputs are utilized. When in SPI x1 mode, only the SDO[0] input is used to input the configuration data In the CPU mode, these bits serve as the bidirectional data bits 1 through 4 (SDO3=DQ1, SDO2=DQ2, SDO1=DQ3, SDO0=DQ4)"

CONFIG_SYSCLK_BYPASS CFG "Pin statically enabling the bypass of the internal SYS_CLK.Thedefault clock for the FPGA configuration unit (FCU) is named SYS_CLK. An on-chip ring oscillator is the source for SYS_CLK. For debug purposes this clock can be bypassed and an external clock supplied. In the bypass mode, this pin can be connected to either the IEEE 1149.1 JTAG input pin for TCK or the CPU_CLK input pin

START_CONFIG_STARTUP CFG

Table 60: Speedster22i FPGA Pin Description (Continued)

Pin Name Pin Group Type Description

PAGE 66 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 67: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pin Descriptions

STAP_SEL CFG When asserted high, this allows the JTAG interface pins to be directly connected to the JTAG controller in Serdes PMA blocks allowing SerDes configuration, debug and performance monitoring directly from the JTAG interface. For bitstream download and chip debug using the JTAG interface, this pin must be held low

READ_STATE_ERR CFG (Not available for HD1000)

CONFIG_SCRUB_MULTIPLE_ERR

CFG (Not available for HD1000)

CONFIG_SCRUBBING_ENABLE

CFG (Not available for HD1000)

CONFIG_SCRUB_SINGLE_ERR

CFG (Not available for HD1000)

Power VDDL CVDD Power Power Supply for FPGA fabric core logic

VCC SVDD Power Power Supply for FPGA - hard IP blocks.

VCCRAM_EFUSE[2:1] EFUSE Power Efuse Power Supply normal / read operations. 1.0V

VCCFHV_EFUSE[2:1] FFUSE Power Efuse Power Supply for Fuse Program/ Erase operations 2.2V for program and 1.0V during Reads

VDDA_NOM_E EVDDA Power

VREG_CMN VREG_CMN Power Serdes - Analog Regulated Power Supply - Common Lanes

VREG_RX VREG_RX Power Serdes - Analog Regulated Power Supply - Receive Lanes

VREG_SYNTHX VREG_SYNTHX

Power Serdes - Analog Regulated Power Supply - Synthesizer and Trans-mitter lanes

VDDA_NOM_W WVDDA Power

VDD_BRAM VDD_BRAM Power Power Supply for Block RAMS in Fabric.

VSS VSS Power Ground

User Programmable I/O Interface VDDO_B[32] BES Power Bank I/O supply voltage. (1.2V, 1.5V, 1.8V)

RCOMP_TERM_B[30,31,32] BES Input Termination resistor input for Dynamic drive compensation for PVT and aging

RCOMP_DRV_B[30,31,32] BES

PAD_ES_BYTEIO[12:1]DQ[9:0]

BES Input/ output

A group of 12 byte lanes. Each byte lane has 12 bits ; 10 of these 12 bits for each of the byte lanes. Could be set for Single Ended , differential, LVCOMS/*STL/LVDS modes. Functionality/ connection details for each of the memory standards / SPI4.2 detailed in respective user guides

PAD_ES_BYTEIO[12:1]DQS BES Input/ output

A group of 12 byte lanes. Each byte lane has 12 bits ; 11ith bit of 12 bits for each of the byte lanes. Could be set for Single Ended , differential, LVCOMS/*STL/LVDS modes. Functionality/ connection details for each of the memory standards / SPI4.2 detailed in respective user guides. In DDR3 mode carries a Synchronous strobe signal ( positive polarity differential clock) for referencing DQ[9:0]

Table 60: Speedster22i FPGA Pin Description (Continued)

Pin Name Pin Group Type Description

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 67

Page 68: Speedster22i HD FPGA Family

Pin Descriptions Speedster22i HD FPGA Family

PAD_ES_BYTEIO[12:1]DQSN

BES Input/ output

A group of 12 byte lanes. Each byte lane has 12 bits ; 11ith bit of 12 bits for each of the byte lanes. Could be set for Single Ended , differential, LVCOMS/*STL/LVDS modes. Functionality/ connection details for each of the memory standards / SPI4.2 detailed in respective user guides. In DDR3 mode carries a Synchronous strobe signal ( negative polarity differential clock) for referencing DQ[9:0]

VDDO_B[42] BEC Power Bank I/O supply voltage. (1.2V, 1.5V, 1.8V)

RCOMP_TERM_B[40,41,42] BEC Input Termination resistor input for Dynamic drive compensation for PVT and aging

RCOMP_DRV_B[40,41,42] BEC

PAD_EC_BYTEIO[12:1]DQ[9:0]

BEC Input/ output

A group of 12 byte lanes. Each byte lane has 12 bits ; 10 of these 12 bits for each of the byte lanes. Could be set for Single Ended , differential, LVCOMS/*STL/LVDS modes. Functionality/ connection details for each of the memory standards / SPI4.2 detailed in respective user guides

PAD_EC_BYTEIO[12:1]DQS BEC Input/ output

A group of 12 byte lanes. Each byte lane has 12 bits ; 11ith bit of 12 bits for each of the byte lanes. Could be set for Single Ended , differential, LVCOMS/*STL/LVDS modes. Functionality/ connection details for each of the memory standards / SPI4.2 detailed in respective user guides. In DDR3 mode carries a Synchronous strobe signal ( positive polarity differential clock) for referencing DQ[9:0]

PAD_EC_BYTEIO[12:1]DQSN

BEC Input/ output

A group of 12 byte lanes. Each byte lane has 12 bits ; 11ith bit of 12 bits for each of the byte lanes. Could be set for Single Ended , differential, LVCOMS/*STL/LVDS modes. Functionality/ connection details for each of the memory standards / SPI4.2 detailed in respective user guides. In DDR3 mode carries a Synchronous strobe signal ( negative polarity differential clock) for referencing DQ[9:0]

VDDO_B[52] BEN Power Bank I/O supply voltage. (1.2V, 1.5V, 1.8V)

RCOMP_TERM_B[50,51,52] BEN Termination resistor input for Dynamic drive compensation for PVT and aging

RCOMP_DRV_B[50,51,52] BEN

PAD_EN_BYTEIO[12:1]DQ[9:0]

BEN Input/ output

A group of 12 byte lanes. Each byte lane has 12 bits ; 10 of these 12 bits for each of the byte lanes. Could be set for Single Ended , differential, LVCOMS/*STL/LVDS modes. Functionality/ connection details for each of the memory standards / SPI4.2 detailed in respective user guides

PAD_EN_BYTEIO[12:1]DQS BEN Input/ output

A group of 12 byte lanes. Each byte lane has 12 bits ; 11ith bit of 12 bits for each of the byte lanes. Could be set for Single Ended , differential, LVCOMS/*STL/LVDS modes. Functionality/ connection details for each of the memory standards / SPI4.2 detailed in respective user guides. In DDR3 mode carries a Synchronous strobe signal ( positive polarity differential clock) for referencing DQ[9:0]

Table 60: Speedster22i FPGA Pin Description (Continued)

Pin Name Pin Group Type Description

PAGE 68 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 69: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pin Descriptions

PAD_EN_BYTEIO[12:1]DQSN

BEN Input/ output

A group of 12 byte lanes. Each byte lane has 12 bits ; 11ith bit of 12 bits for each of the byte lanes. Could be set for Single Ended , differential, LVCOMS/*STL/LVDS modes. Functionality/ connection details for each of the memory standards / SPI4.2 detailed in respective user guides. In DDR3 mode carries a Synchronous strobe signal ( negative polarity differential clock) for referencing DQ[9:0]

VDDO_B[02] BWS Power Bank I/O supply voltage. (1.2V, 1.5V, 1.8V)

RCOMP_TERM_B[00,01,02] BWS Termination resistor input for Dynamic drive compensation for PVT and aging

RCOMP_DRV_B[00,01,02] BWS

PAD_WS_BYTEIO[12:1]DQ[9:0]

BWS Input/ output

A group of 12 byte lanes. Each byte lane has 12 bits ; 10 of these 12 bits for each of the byte lanes. Could be set for Single Ended , differential, LVCOMS/*STL/LVDS modes. Functionality/ connection details for each of the memory standards / SPI4.2 detailed in respective user guides

PAD_WS_BYTEIO[12:1]DQS

BWS Input/ output

A group of 12 byte lanes. Each byte lane has 12 bits ; 11ith bit of 12 bits for each of the byte lanes. Could be set for Single Ended , differential, LVCOMS/*STL/LVDS modes. Functionality/ connection details for each of the memory standards / SPI4.2 detailed in respective user guides. In DDR3 mode carries a Synchronous strobe signal ( positive polarity differential clock) for referencing DQ[9:0]

PAD_WS_BYTEIO[12:1]DQSN

BWS Input/ output

A group of 12 byte lanes. Each byte lane has 12 bits ; 11ith bit of 12 bits for each of the byte lanes. Could be set for Single Ended , differential, LVCOMS/*STL/LVDS modes. Functionality/ connection details for each of the memory standards / SPI4.2 detailed in respective user guides. In DDR3 mode carries a Synchronous strobe signal ( negative polarity differential clock) for referencing DQ[9:0]

VDDO_B[12] BWC Power Bank I/O supply voltage. (1.2V, 1.5V, 1.8V)

RCOMP_TERM_B[10,11,12] BWC Termination resistor input for Dynamic drive compensation for PVT and aging

RCOMP_DRV_B[10,11,12] BWC

PAD_WC_BYTEIO[12:1]DQ[9:0]

BWC Input/ output

A group of 12 byte lanes. Each byte lane has 12 bits ; 10 of these 12 bits for each of the byte lanes. Could be set for Single Ended , differential, LVCOMS/*STL/LVDS modes. Functionality/ connection details for each of the memory standards / SPI4.2 detailed in respective user guides

PAD_WC_BYTEIO[12:1]DQS

BWC Input/ output

A group of 12 byte lanes. Each byte lane has 12 bits ; 11ith bit of 12 bits for each of the byte lanes. Could be set for Single Ended , differential, LVCOMS/*STL/LVDS modes. Functionality/ connection details for each of the memory standards / SPI4.2 detailed in respective user guides. In DDR3 mode carries a Synchronous strobe signal ( positive polarity differential clock) for referencing DQ[9:0]

Table 60: Speedster22i FPGA Pin Description (Continued)

Pin Name Pin Group Type Description

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 69

Page 70: Speedster22i HD FPGA Family

Pin Descriptions Speedster22i HD FPGA Family

PAD_EC_BYTEIO[12:1]DQSN

BWC Input/ output

A group of 12 byte lanes. Each byte lane has 12 bits ; 11ith bit of 12 bits for each of the byte lanes. Could be set for Single Ended , differential, LVCOMS/*STL/LVDS modes. Functionality/ connection details for each of the memory standards / SPI4.2 detailed in respective user guides. In DDR3 mode carries a Synchronous strobe signal ( negative polarity differential clock) for referencing DQ[9:0]

VDDO_B[22] BWN Power Bank I/O supply voltage. (1.2V, 1.5V, 1.8V)

RCOMP_TERM_B[20,21,22] BWN Input Termination resistor input for Dynamic drive compensation for PVT and aging

RCOMP_DRV_B[20,21,22] BWN

PAD_WN_BYTEIO[12:1]DQ[9:0]

BWN Input/ output

A group of 12 byte lanes. Each byte lane has 12 bits ; 10 of these 12 bits for each of the byte lanes. Could be set for Single Ended , differential, LVCOMS/*STL/LVDS modes. Functionality/ connection details for each of the memory standards / SPI4.2 detailed in respective user guides

PAD_WN_BYTEIO[12:1]DQS

BWN Input/ output

A group of 12 byte lanes. Each byte lane has 12 bits ; 11ith bit of 12 bits for each of the byte lanes. Could be set for Single Ended , differential, LVCOMS/*STL/LVDS modes. Functionality/ connection details for each of the memory standards / SPI4.2 detailed in respective user guides. In DDR3 mode carries a Synchronous strobe signal ( positive polarity differential clock) for referencing DQ[9:0]

PAD_WN_BYTEIO[12:1]DQSN

BWN Input/ output

A group of 12 byte lanes. Each byte lane has 12 bits ; 11ith bit of 12 bits for each of the byte lanes. Could be set for Single Ended , differential, LVCOMS/*STL/LVDS modes. Functionality/ connection details for each of the memory standards / SPI4.2 detailed in respective user guides. In DDR3 mode carries a Synchronous strobe signal ( negative polarity differential clock) for referencing DQ[9:0]

Miscellaneous NB NB There is no solder ball at this grid location on the package

CORE_TESIN1 DBG Debug Interface used for testing the fabric

EDM No Connect For Factory Use/ Test purposes

TEMP_DIODE_P/N Die temperature monitoring diode connections (P and N).

EFUSE_PROG EFUSE Output HD1000's Efuse Erase/Program sequencer controls this signal. When high, Efuse (user bank) can be erased/ programmed and requires a higher voltage level - 2.2V on VDDO_FHV. When low this level is 1.0V

Notes: N12P75G : North SerDes LanesS12P75G  : South SerDes LanesB(E/W)(N/C/S) : Enhanced I/O banks   (East/West) (North/Center/South) SVDD : Synchronous VDD CVDD : Core VDD 

Table 60: Speedster22i FPGA Pin Description (Continued)

Pin Name Pin Group Type Description

PAGE 70 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 71: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

Pinouts2597-Pin Fine Ball Grid Array (FG2597)

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

A1 NB NB

A10 VSS VSS

A11 PA_VDD1 S12P75G

A12 PAD_BE_O_BA_TX_P_LNUM1 S12P75G

A13 PA_VDD1 S12P75G

A14 PAD_BE_O_BA_TX_P_LNUM3 S12P75G

A15 PA_VDD1 S12P75G

A16 PAD_BE_O_BA_TX_P_LNUM5 S12P75G

A17 PA_VDD1 S12P75G

A18 PAD_BE_O_BA_TX_P_LNUM7 S12P75G

A19 PA_VDD1 S12P75G

A2 VSS VSS

A20 PAD_BE_O_BA_TX_P_LNUM9 S12P75G

A21 PA_VDD1 S12P75G

A22 PAD_BE_O_BA_TX_P_LNUM11 S12P75G

A23 PA_VDD1 S12P75G

A24 PAD_BE_O_BA_TX_P_LNUM13 S12P75G

A25 PA_VDD1 S12P75G

A26 PAD_BE_O_BA_TX_P_LNUM15 S12P75G

A27 PA_VDD1 S12P75G

A28 PAD_BE_O_BA_TX_P_LNUM17 S12P75G

A29 PA_VDD1 S12P75G

A3 VSS VSS

A30 PAD_BE_O_BA_TX_P_LNUM19 S12P75G

A31 PA_VDD1 S12P75G

A32 PAD_BE_O_BA_TX_P_LNUM21 S12P75G

A33 PA_VDD1 S12P75G

A34 PAD_BE_O_BA_TX_P_LNUM23 S12P75G

A35 PA_VDD1 S12P75G

A36 PAD_BE_O_BA_TX_P_LNUM25 S12P75G

A37 PA_VDD1 S12P75G

A38 PAD_BE_O_BA_TX_P_LNUM27 S12P75G

A39 PA_VDD1 S12P75G

A4 PAD_WS_BYTEIO9_DQ7 BWS

A40 PAD_BE_O_BA_TX_P_LNUM29 S12P75G

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 71

Page 72: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

A41 PA_VDD1 S12P75G

A42 PAD_BE_O_BA_TX_P_LNUM31 S12P75G

A43 VSS VSS

A44 VSS VSS

A45 VSS VSS

A46 VSS VSS

A47 VSS VSS

A48 PAD_ES_BYTEIO9_DQ7 BES

A49 VSS VSS

A5 VSS VSS

A50 VSS VSS

A51 NB NB

A6 VSS VSS

A7 VSS VSS

A8 VSS VSS

A9 VSS VSS

AA1 PAD_WC_BYTEIO11_DQ4 BWC

AA10 PAD_WS_BYTEIO2_DQ2 BWS

AA11 PAD_WS_BYTEIO0_DQ2 BWS

AA12 PAD_WS_BYTEIO0_DQ4 BWS

AA13 RCOMP_DRV_B21 BES

AA14 RCOMP_TERM_B21 BES

AA15 VREF_B21 S12P75G

AA16 VDDO_B21 BWS

AA17 VDDO_B21 BWS

AA18 VCC SVDD

AA19 VDDL CVDD

AA2 PAD_WC_BYTEIO11_DQ6 BWC

AA20 VDDL CVDD

AA21 VDDL CVDD

AA22 VDDL CVDD

AA23 VDDL CVDD

AA24 VDDL CVDD

AA25 VDDL CVDD

AA26 VCFG CFG

AA27 VCFGWL CFG

AA28 VDDL CVDD

AA29 VDDL CVDD

AA3 PAD_WS_BYTEIO1_DQS BWS

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 72 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 73: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

AA30 VDDL CVDD

AA31 VDDL CVDD

AA32 VDDL CVDD

AA33 VDDL CVDD

AA34 VCC SVDD

AA35 VDDO_B31 BES

AA36 VDDO_B31 BES

AA37 VREF_B31 S12P75G

AA38 RCOMP_DRV_B31 BWN

AA39 RCOMP_TERM_B31 BWN

AA4 PAD_WS_BYTEIO1_DQSN BWS

AA40 PAD_ES_BYTEIO0_DQ4 BES

AA41 PAD_ES_BYTEIO0_DQ2 BES

AA42 PAD_ES_BYTEIO2_DQ2 BES

AA43 PAD_ES_BYTEIO2_DQ0 BES

AA44 PAD_EC_BYTEIO12_DQSN BEC

AA45 PAD_EC_BYTEIO12_DQS BEC

AA46 PAD_EC_BYTEIO10_DQSN BEC

AA47 PAD_EC_BYTEIO10_DQS BEC

AA48 PAD_ES_BYTEIO1_DQSN BES

AA49 PAD_ES_BYTEIO1_DQS BES

AA5 PAD_WC_BYTEIO10_DQS BWC

AA50 PAD_EC_BYTEIO11_DQ6 BEC

AA51 PAD_EC_BYTEIO11_DQ4 BEC

AA6 PAD_WC_BYTEIO10_DQSN BWC

AA7 PAD_WC_BYTEIO12_DQS BWC

AA8 PAD_WC_BYTEIO12_DQSN BWC

AA9 PAD_WS_BYTEIO2_DQ0 BWS

AB1 PAD_WC_BYTEIO11_DQ0 BWC

AB10 PAD_WS_BYTEIO2_DQ6 BWS

AB11 PAD_WS_BYTEIO0_DQ0 BWS

AB12 PAD_WS_BYTEIO0_DQ1 BWS

AB13 RCOMP_DRV_B20 BES

AB14 RCOMP_TERM_B20 BES

AB15 VDDA_NOM_W WVDDA

AB16 VDDO_B20 BWS

AB17 VDDO_B20 BWS

AB18 VCC SVDD

AB19 VSS VSS

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 73

Page 74: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

AB2 PAD_WC_BYTEIO11_DQ2 BWC

AB20 VSS VSS

AB21 VSS VSS

AB22 VSS VSS

AB23 VSS VSS

AB24 VSS VSS

AB25 VSS VSS

AB26 VCFG CFG

AB27 VSS VSS

AB28 VSS VSS

AB29 VSS VSS

AB3 PAD_WS_BYTEIO1_DQ1 BWS

AB30 VSS VSS

AB31 VSS VSS

AB32 VSS VSS

AB33 VSS VSS

AB34 VCC SVDD

AB35 VDDO_B30 BES

AB36 VDDO_B30 BES

AB37 VDDA_NOM_E EVDDA

AB38 RCOMP_TERM_B30 BWN

AB39 RCOMP_DRV_B30 BWN

AB4 PAD_WS_BYTEIO1_DQ5 BWS

AB40 PAD_ES_BYTEIO0_DQ1 BES

AB41 PAD_ES_BYTEIO0_DQ0 BES

AB42 PAD_ES_BYTEIO2_DQ6 BES

AB43 PAD_ES_BYTEIO2_DQ1 BES

AB44 PAD_EC_BYTEIO12_DQ2 BEC

AB45 PAD_EC_BYTEIO12_DQ1 BEC

AB46 PAD_EC_BYTEIO10_DQ0 BEC

AB47 PAD_EC_BYTEIO10_DQ2 BEC

AB48 PAD_ES_BYTEIO1_DQ5 BES

AB49 PAD_ES_BYTEIO1_DQ1 BES

AB5 PAD_WC_BYTEIO10_DQ2 BWC

AB50 PAD_EC_BYTEIO11_DQ2 BEC

AB51 PAD_EC_BYTEIO11_DQ0 BEC

AB6 PAD_WC_BYTEIO10_DQ0 BWC

AB7 PAD_WC_BYTEIO12_DQ1 BWC

AB8 PAD_WC_BYTEIO12_DQ2 BWC

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 74 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 75: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

AB9 PAD_WS_BYTEIO2_DQ1 BWS

AC1 PAD_WC_BYTEIO7_DQ1 BWC

AC10 PAD_WC_BYTEIO4_DQ2 BWC

AC11 PAD_WC_BYTEIO2_DQ7 BWC

AC12 PAD_WC_BYTEIO2_DQ8 BWC

AC13 PAD_WC_BYTEIO1_DQ3 BWC

AC14 PAD_WC_BYTEIO1_DQ8 BWC

AC15 VREF_B20 S12P75G

AC16 VSS VSS

AC17 VDDO_B20 BWS

AC18 VSS VSS

AC19 VDDL CVDD

AC2 PAD_WC_BYTEIO7_DQ4 BWC

AC20 VDD_BRAM VDD_BRAM

AC21 VDDL CVDD

AC22 VDDL CVDD

AC23 VDDL CVDD

AC24 VDD_BRAM VDD_BRAM

AC25 VDDL CVDD

AC26 VDDL CVDD

AC27 VDDL CVDD

AC28 VDD_BRAM VDD_BRAM

AC29 VDDL CVDD

AC3 PAD_WC_BYTEIO8_DQ9 BWC

AC30 VDDL CVDD

AC31 VDDL CVDD

AC32 VDD_BRAM VDD_BRAM

AC33 VDDL CVDD

AC34 VSS VSS

AC35 VDDO_B30 BES

AC36 VSS VSS

AC37 VREF_B30 S12P75G

AC38 PAD_EC_BYTEIO1_DQ8 BEC

AC39 PAD_EC_BYTEIO1_DQ3 BEC

AC4 PAD_WC_BYTEIO8_DQ6 BWC

AC40 PAD_EC_BYTEIO2_DQ8 BEC

AC41 PAD_EC_BYTEIO2_DQ7 BEC

AC42 PAD_EC_BYTEIO4_DQ2 BEC

AC43 PAD_EC_BYTEIO4_DQ3 BEC

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 75

Page 76: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

AC44 PAD_EC_BYTEIO3_DQ0 BEC

AC45 PAD_EC_BYTEIO3_DQ8 BEC

AC46 PAD_EC_BYTEIO9_DQ5 BEC

AC47 PAD_EC_BYTEIO9_DQ9 BEC

AC48 PAD_EC_BYTEIO8_DQ6 BEC

AC49 PAD_EC_BYTEIO8_DQ9 BEC

AC5 PAD_WC_BYTEIO9_DQ9 BWC

AC50 PAD_EC_BYTEIO7_DQ4 BEC

AC51 PAD_EC_BYTEIO7_DQ1 BEC

AC6 PAD_WC_BYTEIO9_DQ5 BWC

AC7 PAD_WC_BYTEIO3_DQ8 BWC

AC8 PAD_WC_BYTEIO3_DQ0 BWC

AC9 PAD_WC_BYTEIO4_DQ3 BWC

AD1 PAD_WC_BYTEIO7_DQ5 BWC

AD10 VSS VSS

AD11 PAD_WC_BYTEIO2_DQ9 BWC

AD12 VSS VSS

AD13 PAD_WC_BYTEIO1_DQ9 BWC

AD14 VSS VSS

AD15 VDDA_NOM_W WVDDA

AD16 VDDO_B20 BWS

AD17 VDDO_B20 BWS

AD18 VSS VSS

AD19 VSS VSS

AD2 VSS VSS

AD20 VSS VSS

AD21 VSS VSS

AD22 VSS VSS

AD23 VSS VSS

AD24 VSS VSS

AD25 VSS VSS

AD26 VSS VSS

AD27 VSS VSS

AD28 VSS VSS

AD29 VSS VSS

AD3 PAD_WC_BYTEIO8_DQ8 BWC

AD30 VSS VSS

AD31 VSS VSS

AD32 VSS VSS

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 76 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 77: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

AD33 VSS VSS

AD34 VSS VSS

AD35 VDDO_B30 BES

AD36 VDDO_B30 BES

AD37 VDDA_NOM_E EVDDA

AD38 VSS VSS

AD39 PAD_EC_BYTEIO1_DQ9 BEC

AD4 VSS VSS

AD40 VSS VSS

AD41 PAD_EC_BYTEIO2_DQ9 BEC

AD42 VSS VSS

AD43 PAD_EC_BYTEIO4_DQ0 BEC

AD44 VSS VSS

AD45 PAD_EC_BYTEIO3_DQ9 BEC

AD46 VSS VSS

AD47 PAD_EC_BYTEIO9_DQ8 BEC

AD48 VSS VSS

AD49 PAD_EC_BYTEIO8_DQ8 BEC

AD5 PAD_WC_BYTEIO9_DQ8 BWC

AD50 VSS VSS

AD51 PAD_EC_BYTEIO7_DQ5 BEC

AD6 VSS VSS

AD7 PAD_WC_BYTEIO3_DQ9 BWC

AD8 VSS VSS

AD9 PAD_WC_BYTEIO4_DQ0 BWC

AE1 PAD_WC_BYTEIO7_DQ3 BWC

AE10 PAD_WC_BYTEIO4_DQ9 BWC

AE11 PAD_WC_BYTEIO2_DQSN BWC

AE12 PAD_WC_BYTEIO2_DQS BWC

AE13 PAD_WC_BYTEIO1_DQ7 BWC

AE14 PAD_WC_BYTEIO1_DQ2 BWC

AE15 VREF_B12 S12P75G

AE16 VDDO_B12 BWC

AE17 VDDO_B12 BWC

AE18 VCC SVDD

AE19 VDDL CVDD

AE2 PAD_WC_BYTEIO7_DQ9 BWC

AE20 VDDL CVDD

AE21 VDDL CVDD

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 77

Page 78: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

AE22 VDDL CVDD

AE23 VDDL CVDD

AE24 VDDL CVDD

AE25 VDDL CVDD

AE26 VCFG CFG

AE27 VCFGWL CFG

AE28 VDDL CVDD

AE29 VDDL CVDD

AE3 PAD_WC_BYTEIO8_DQ5 BWC

AE30 VDDL CVDD

AE31 VDDL CVDD

AE32 VDDL CVDD

AE33 VDDL CVDD

AE34 VCC SVDD

AE35 VDDO_B42 BEC

AE36 VDDO_B42 BEC

AE37 VREF_B42 S12P75G

AE38 PAD_EC_BYTEIO1_DQ2 BEC

AE39 PAD_EC_BYTEIO1_DQ7 BEC

AE4 PAD_WC_BYTEIO8_DQ4 BWC

AE40 PAD_EC_BYTEIO2_DQS BEC

AE41 PAD_EC_BYTEIO2_DQSN BEC

AE42 PAD_EC_BYTEIO4_DQ9 BEC

AE43 PAD_EC_BYTEIO4_DQ8 BEC

AE44 PAD_EC_BYTEIO3_DQS BEC

AE45 PAD_EC_BYTEIO3_DQSN BEC

AE46 PAD_EC_BYTEIO9_DQ0 BEC

AE47 PAD_EC_BYTEIO9_DQ7 BEC

AE48 PAD_EC_BYTEIO8_DQ4 BEC

AE49 PAD_EC_BYTEIO8_DQ5 BEC

AE5 PAD_WC_BYTEIO9_DQ7 BWC

AE50 PAD_EC_BYTEIO7_DQ9 BEC

AE51 PAD_EC_BYTEIO7_DQ3 BEC

AE6 PAD_WC_BYTEIO9_DQ0 BWC

AE7 PAD_WC_BYTEIO3_DQSN BWC

AE8 PAD_WC_BYTEIO3_DQS BWC

AE9 PAD_WC_BYTEIO4_DQ8 BWC

AF1 PAD_WC_BYTEIO7_DQ7 BWC

AF10 PAD_WC_BYTEIO4_DQS BWC

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 78 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 79: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

AF11 PAD_WC_BYTEIO2_DQ3 BWC

AF12 PAD_WC_BYTEIO2_DQ2 BWC

AF13 PAD_WC_BYTEIO1_DQS BWC

AF14 PAD_WC_BYTEIO1_DQSN BWC

AF15 VDDA_NOM_W WVDDA

AF16 VSS VSS

AF17 VDDO_B12 BWC

AF18 VCC SVDD

AF19 VSS VSS

AF2 PAD_WC_BYTEIO7_DQ0 BWC

AF20 VSS VSS

AF21 VSS VSS

AF22 VSS VSS

AF23 VSS VSS

AF24 VSS VSS

AF25 VSS VSS

AF26 VCFG CFG

AF27 VSS VSS

AF28 VSS VSS

AF29 VSS VSS

AF3 PAD_WC_BYTEIO8_DQ7 BWC

AF30 VSS VSS

AF31 VSS VSS

AF32 VSS VSS

AF33 VSS VSS

AF34 VCC SVDD

AF35 VDDO_B42 BEC

AF36 VSS VSS

AF37 VDDA_NOM_E EVDDA

AF38 PAD_EC_BYTEIO1_DQSN BEC

AF39 PAD_EC_BYTEIO1_DQS BEC

AF4 PAD_WC_BYTEIO8_DQ3 BWC

AF40 PAD_EC_BYTEIO2_DQ2 BEC

AF41 PAD_EC_BYTEIO2_DQ3 BEC

AF42 PAD_EC_BYTEIO4_DQS BEC

AF43 PAD_EC_BYTEIO4_DQSN BEC

AF44 PAD_EC_BYTEIO3_DQ1 BEC

AF45 PAD_EC_BYTEIO3_DQ7 BEC

AF46 PAD_EC_BYTEIO9_DQ3 BEC

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 79

Page 80: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

AF47 PAD_EC_BYTEIO9_DQ4 BEC

AF48 PAD_EC_BYTEIO8_DQ3 BEC

AF49 PAD_EC_BYTEIO8_DQ7 BEC

AF5 PAD_WC_BYTEIO9_DQ4 BWC

AF50 PAD_EC_BYTEIO7_DQ0 BEC

AF51 PAD_EC_BYTEIO7_DQ7 BEC

AF6 PAD_WC_BYTEIO9_DQ3 BWC

AF7 PAD_WC_BYTEIO3_DQ7 BWC

AF8 PAD_WC_BYTEIO3_DQ1 BWC

AF9 PAD_WC_BYTEIO4_DQSN BWC

AG1 VSS VSS

AG10 PAD_WC_BYTEIO4_DQ1 BWC

AG11 VSS VSS

AG12 PAD_WC_BYTEIO2_DQ5 BWC

AG13 VSS VSS

AG14 PAD_WC_BYTEIO1_DQ0 BWC

AG15 VREF_B11 S12P75G

AG16 VDDO_B12 BWC

AG17 VDDO_B12 BWC

AG18 VSS VSS

AG19 VDDL CVDD

AG2 PAD_WC_BYTEIO7_DQ2 BWC

AG20 VDD_BRAM VDD_BRAM

AG21 VDDL CVDD

AG22 VDDL CVDD

AG23 VDDL CVDD

AG24 VDD_BRAM VDD_BRAM

AG25 VDDL CVDD

AG26 VDDL CVDD

AG27 VDDL CVDD

AG28 VDD_BRAM VDD_BRAM

AG29 VDDL CVDD

AG3 VSS VSS

AG30 VDDL CVDD

AG31 VDDL CVDD

AG32 VDD_BRAM VDD_BRAM

AG33 VDDL CVDD

AG34 VSS VSS

AG35 VDDO_B42 BEC

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 80 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 81: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

AG36 VDDO_B42 BEC

AG37 VREF_B41 S12P75G

AG38 PAD_EC_BYTEIO1_DQ0 BEC

AG39 VSS VSS

AG4 PAD_WC_BYTEIO8_DQ1 BWC

AG40 PAD_EC_BYTEIO2_DQ5 BEC

AG41 VSS VSS

AG42 PAD_EC_BYTEIO4_DQ1 BEC

AG43 VSS VSS

AG44 PAD_EC_BYTEIO3_DQ5 BEC

AG45 VSS VSS

AG46 PAD_EC_BYTEIO9_DQ1 BEC

AG47 VSS VSS

AG48 PAD_EC_BYTEIO8_DQ1 BEC

AG49 VSS VSS

AG5 VSS VSS

AG50 PAD_EC_BYTEIO7_DQ2 BEC

AG51 VSS VSS

AG6 PAD_WC_BYTEIO9_DQ1 BWC

AG7 VSS VSS

AG8 PAD_WC_BYTEIO3_DQ5 BWC

AG9 VSS VSS

AH1 PAD_WC_BYTEIO7_DQS BWC

AH10 PAD_WC_BYTEIO4_DQ6 BWC

AH11 PAD_WC_BYTEIO2_DQ4 BWC

AH12 PAD_WC_BYTEIO2_DQ0 BWC

AH13 PAD_WC_BYTEIO1_DQ5 BWC

AH14 PAD_WC_BYTEIO1_DQ4 BWC

AH15 VDDA_NOM_W WVDDA

AH16 VDDO_B11 BWC

AH17 VDDO_B11 BWC

AH18 VSS VSS

AH19 VSS VSS

AH2 PAD_WC_BYTEIO7_DQSN BWC

AH20 VSS VSS

AH21 VSS VSS

AH22 VSS VSS

AH23 VSS VSS

AH24 VSS VSS

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 81

Page 82: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

AH25 VSS VSS

AH26 VSS VSS

AH27 VSS VSS

AH28 VSS VSS

AH29 VSS VSS

AH3 PAD_WC_BYTEIO8_DQSN BWC

AH30 VSS VSS

AH31 VSS VSS

AH32 VSS VSS

AH33 VSS VSS

AH34 VSS VSS

AH35 VDDO_B41 BEC

AH36 VDDO_B41 BEC

AH37 VDDA_NOM_E EVDDA

AH38 PAD_EC_BYTEIO1_DQ4 BEC

AH39 PAD_EC_BYTEIO1_DQ5 BEC

AH4 PAD_WC_BYTEIO8_DQS BWC

AH40 PAD_EC_BYTEIO2_DQ0 BEC

AH41 PAD_EC_BYTEIO2_DQ4 BEC

AH42 PAD_EC_BYTEIO4_DQ6 BEC

AH43 PAD_EC_BYTEIO4_DQ7 BEC

AH44 PAD_EC_BYTEIO3_DQ2 BEC

AH45 PAD_EC_BYTEIO3_DQ3 BEC

AH46 PAD_EC_BYTEIO9_DQS BEC

AH47 PAD_EC_BYTEIO9_DQSN BEC

AH48 PAD_EC_BYTEIO8_DQS BEC

AH49 PAD_EC_BYTEIO8_DQSN BEC

AH5 PAD_WC_BYTEIO9_DQSN BWC

AH50 PAD_EC_BYTEIO7_DQSN BEC

AH51 PAD_EC_BYTEIO7_DQS BEC

AH6 PAD_WC_BYTEIO9_DQS BWC

AH7 PAD_WC_BYTEIO3_DQ3 BWC

AH8 PAD_WC_BYTEIO3_DQ2 BWC

AH9 PAD_WC_BYTEIO4_DQ7 BWC

AJ1 PAD_WC_BYTEIO7_DQ6 BWC

AJ10 PAD_WC_BYTEIO4_DQ4 BWC

AJ11 PAD_WC_BYTEIO2_DQ6 BWC

AJ12 PAD_WC_BYTEIO2_DQ1 BWC

AJ13 PAD_WC_BYTEIO1_DQ6 BWC

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 82 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 83: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

AJ14 PAD_WC_BYTEIO1_DQ1 BWC

AJ15 VREF_B10 S12P75G

AJ16 VSS VSS

AJ17 VDDO_B11 BWC

AJ18 VCC SVDD

AJ19 VDDL CVDD

AJ2 PAD_WC_BYTEIO7_DQ8 BWC

AJ20 VDDL CVDD

AJ21 VDDL CVDD

AJ22 VDDL CVDD

AJ23 VDDL CVDD

AJ24 VDDL CVDD

AJ25 VDDL CVDD

AJ26 VCFG CFG

AJ27 VCFGWL CFG

AJ28 VDDL CVDD

AJ29 VDDL CVDD

AJ3 PAD_WC_BYTEIO8_DQ2 BWC

AJ30 VDDL CVDD

AJ31 VDDL CVDD

AJ32 VDDL CVDD

AJ33 VDDL CVDD

AJ34 VCC SVDD

AJ35 VDDO_B41 BEC

AJ36 VSS VSS

AJ37 VREF_B40 S12P75G

AJ38 PAD_EC_BYTEIO1_DQ1 BEC

AJ39 PAD_EC_BYTEIO1_DQ6 BEC

AJ4 PAD_WC_BYTEIO8_DQ0 BWC

AJ40 PAD_EC_BYTEIO2_DQ1 BEC

AJ41 PAD_EC_BYTEIO2_DQ6 BEC

AJ42 PAD_EC_BYTEIO4_DQ4 BEC

AJ43 PAD_EC_BYTEIO4_DQ5 BEC

AJ44 PAD_EC_BYTEIO3_DQ6 BEC

AJ45 PAD_EC_BYTEIO3_DQ4 BEC

AJ46 PAD_EC_BYTEIO9_DQ6 BEC

AJ47 PAD_EC_BYTEIO9_DQ2 BEC

AJ48 PAD_EC_BYTEIO8_DQ0 BEC

AJ49 PAD_EC_BYTEIO8_DQ2 BEC

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 83

Page 84: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

AJ5 PAD_WC_BYTEIO9_DQ2 BWC

AJ50 PAD_EC_BYTEIO7_DQ8 BEC

AJ51 PAD_EC_BYTEIO7_DQ6 BEC

AJ6 PAD_WC_BYTEIO9_DQ6 BWC

AJ7 PAD_WC_BYTEIO3_DQ4 BWC

AJ8 PAD_WC_BYTEIO3_DQ6 BWC

AJ9 PAD_WC_BYTEIO4_DQ5 BWC

AK1 PAD_WC_BYTEIO6_DQ9 BWC

AK10 PAD_WN_BYTEIO10_DQ7 BWN

AK11 PAD_WN_BYTEIO1_DQ1 BWN

AK12 PAD_WN_BYTEIO1_DQ2 BWN

AK13 VSS VSS

AK14 VDDA_NOM_W WVDDA

AK15 VDDA_NOM_W WVDDA

AK16 VDDO_B11 BWC

AK17 VDDO_B11 BWC

AK18 VCC SVDD

AK19 VSS VSS

AK2 PAD_WC_BYTEIO6_DQ0 BWC

AK20 VSS VSS

AK21 VSS VSS

AK22 VSS VSS

AK23 VSS VSS

AK24 VSS VSS

AK25 VSS VSS

AK26 VCFG CFG

AK27 VSS VSS

AK28 VSS VSS

AK29 VSS VSS

AK3 PAD_WC_BYTEIO5_DQ8 BWC

AK30 VSS VSS

AK31 VSS VSS

AK32 VSS VSS

AK33 VSS VSS

AK34 VCC SVDD

AK35 VDDO_B41 BEC

AK36 VDDO_B41 BEC

AK37 VDDA_NOM_E EVDDA

AK38 VDDA_NOM_E EVDDA

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 84 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 85: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

AK39 VSS VSS

AK4 PAD_WC_BYTEIO5_DQ3 BWC

AK40 PAD_EN_BYTEIO1_DQ2 BEN

AK41 PAD_EN_BYTEIO1_DQ1 BEN

AK42 PAD_EN_BYTEIO10_DQ7 BEN

AK43 PAD_EN_BYTEIO10_DQ4 BEN

AK44 PAD_EN_BYTEIO11_DQ2 BEN

AK45 PAD_EN_BYTEIO11_DQ3 BEN

AK46 PAD_EN_BYTEIO12_DQ1 BEN

AK47 PAD_EN_BYTEIO12_DQ9 BEN

AK48 PAD_EC_BYTEIO5_DQ3 BEC

AK49 PAD_EC_BYTEIO5_DQ8 BEC

AK5 PAD_WN_BYTEIO12_DQ9 BWN

AK50 PAD_EC_BYTEIO6_DQ0 BEC

AK51 PAD_EC_BYTEIO6_DQ9 BEC

AK6 PAD_WN_BYTEIO12_DQ1 BWN

AK7 PAD_WN_BYTEIO11_DQ3 BWN

AK8 PAD_WN_BYTEIO11_DQ2 BWN

AK9 PAD_WN_BYTEIO10_DQ4 BWN

AL1 PAD_WC_BYTEIO6_DQ8 BWC

AL10 VSS VSS

AL11 PAD_WN_BYTEIO1_DQ3 BWN

AL12 VSS VSS

AL13 RCOMP_TERM_B12 BEC

AL14 RCOMP_DRV_B12 BEC

AL15 VREF_B02 S12P75G

AL16 VDDO_B10 BWC

AL17 VDDO_B10 BWC

AL18 VSS VSS

AL19 VDDL CVDD

AL2 VSS VSS

AL20 VDD_BRAM VDD_BRAM

AL21 VDDL CVDD

AL22 VDDL CVDD

AL23 VDDL CVDD

AL24 VDD_BRAM VDD_BRAM

AL25 VDDL CVDD

AL26 VDDL CVDD

AL27 VDDL CVDD

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 85

Page 86: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

AL28 VDD_BRAM VDD_BRAM

AL29 VDDL CVDD

AL3 PAD_WC_BYTEIO5_DQ9 BWC

AL30 VDDL CVDD

AL31 VDDL CVDD

AL32 VDD_BRAM VDD_BRAM

AL33 VDDL CVDD

AL34 VSS VSS

AL35 VDDO_B40 BEC

AL36 VDDO_B40 BEC

AL37 VREF_B52 S12P75G

AL38 RCOMP_TERM_B42 BWC

AL39 RCOMP_DRV_B42 BWC

AL4 VSS VSS

AL40 VSS VSS

AL41 PAD_EN_BYTEIO1_DQ3 BEN

AL42 VSS VSS

AL43 PAD_EN_BYTEIO10_DQ9 BEN

AL44 VSS VSS

AL45 PAD_EN_BYTEIO11_DQ6 BEN

AL46 VSS VSS

AL47 PAD_EN_BYTEIO12_DQ5 BEN

AL48 VSS VSS

AL49 PAD_EC_BYTEIO5_DQ9 BEC

AL5 PAD_WN_BYTEIO12_DQ5 BWN

AL50 VSS VSS

AL51 PAD_EC_BYTEIO6_DQ8 BEC

AL6 VSS VSS

AL7 PAD_WN_BYTEIO11_DQ6 BWN

AL8 VSS VSS

AL9 PAD_WN_BYTEIO10_DQ9 BWN

AM1 PAD_WC_BYTEIO6_DQ7 BWC

AM10 PAD_WN_BYTEIO10_DQ5 BWN

AM11 PAD_WN_BYTEIO1_DQ8 BWN

AM12 PAD_WN_BYTEIO1_DQ0 BWN

AM13 RCOMP_TERM_B11 BEC

AM14 RCOMP_DRV_B11 BEC

AM15 VDDA_NOM_W WVDDA

AM16 VSS VSS

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 86 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 87: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

AM17 VDDO_B10 BWC

AM18 VSS VSS

AM19 VSS VSS

AM2 PAD_WC_BYTEIO6_DQ4 BWC

AM20 VSS VSS

AM21 VSS VSS

AM22 VSS VSS

AM23 VSS VSS

AM24 VSS VSS

AM25 VSS VSS

AM26 VSS VSS

AM27 VSS VSS

AM28 VSS VSS

AM29 VSS VSS

AM3 PAD_WC_BYTEIO5_DQ4 BWC

AM30 VSS VSS

AM31 VSS VSS

AM32 VSS VSS

AM33 VSS VSS

AM34 VSS VSS

AM35 VDDO_B40 BEC

AM36 VSS VSS

AM37 VDDA_NOM_E EVDDA

AM38 RCOMP_TERM_B41 BWC

AM39 RCOMP_DRV_B41 BWC

AM4 PAD_WC_BYTEIO5_DQ5 BWC

AM40 PAD_EN_BYTEIO1_DQ0 BEN

AM41 PAD_EN_BYTEIO1_DQ8 BEN

AM42 PAD_EN_BYTEIO10_DQ5 BEN

AM43 PAD_EN_BYTEIO10_DQ3 BEN

AM44 PAD_EN_BYTEIO11_DQS BEN

AM45 PAD_EN_BYTEIO11_DQSN BEN

AM46 PAD_EN_BYTEIO12_DQ7 BEN

AM47 PAD_EN_BYTEIO12_DQ8 BEN

AM48 PAD_EC_BYTEIO5_DQ5 BEC

AM49 PAD_EC_BYTEIO5_DQ4 BEC

AM5 PAD_WN_BYTEIO12_DQ8 BWN

AM50 PAD_EC_BYTEIO6_DQ4 BEC

AM51 PAD_EC_BYTEIO6_DQ7 BEC

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 87

Page 88: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

AM6 PAD_WN_BYTEIO12_DQ7 BWN

AM7 PAD_WN_BYTEIO11_DQSN BWN

AM8 PAD_WN_BYTEIO11_DQS BWN

AM9 PAD_WN_BYTEIO10_DQ3 BWN

AN1 PAD_WC_BYTEIO6_DQ5 BWC

AN10 PAD_WN_BYTEIO10_DQS BWN

AN11 PAD_WN_BYTEIO1_DQSN BWN

AN12 PAD_WN_BYTEIO1_DQS BWN

AN13 RCOMP_TERM_B10 BEC

AN14 RCOMP_DRV_B10 BEC

AN15 VREF_B01 S12P75G

AN16 VDDO_B10 BWC

AN17 VDDO_B10 BWC

AN18 VSS VSS

AN19 VDDL CVDD

AN2 PAD_WC_BYTEIO6_DQ1 BWC

AN20 VDDL CVDD

AN21 VDDL CVDD

AN22 VDDL CVDD

AN23 VDDL CVDD

AN24 VDDL CVDD

AN25 VDDL CVDD

AN26 VCFG CFG

AN27 VCFGWL CFG

AN28 VDDL CVDD

AN29 VDDL CVDD

AN3 PAD_WC_BYTEIO5_DQ7 BWC

AN30 VDDL CVDD

AN31 VDDL CVDD

AN32 VDDL CVDD

AN33 VDDL CVDD

AN34 VSS VSS

AN35 VDDO_B40 BEC

AN36 VDDO_B40 BEC

AN37 VREF_B51 S12P75G

AN38 RCOMP_TERM_B40 BWC

AN39 RCOMP_DRV_B40 BWC

AN4 PAD_WC_BYTEIO5_DQ2 BWC

AN40 PAD_EN_BYTEIO1_DQS BEN

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 88 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 89: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

AN41 PAD_EN_BYTEIO1_DQSN BEN

AN42 PAD_EN_BYTEIO10_DQS BEN

AN43 PAD_EN_BYTEIO10_DQSN BEN

AN44 PAD_EN_BYTEIO11_DQ8 BEN

AN45 PAD_EN_BYTEIO11_DQ9 BEN

AN46 PAD_EN_BYTEIO12_DQS BEN

AN47 PAD_EN_BYTEIO12_DQSN BEN

AN48 PAD_EC_BYTEIO5_DQ2 BEC

AN49 PAD_EC_BYTEIO5_DQ7 BEC

AN5 PAD_WN_BYTEIO12_DQSN BWN

AN50 PAD_EC_BYTEIO6_DQ1 BEC

AN51 PAD_EC_BYTEIO6_DQ5 BEC

AN6 PAD_WN_BYTEIO12_DQS BWN

AN7 PAD_WN_BYTEIO11_DQ9 BWN

AN8 PAD_WN_BYTEIO11_DQ8 BWN

AN9 PAD_WN_BYTEIO10_DQSN BWN

AP1 VSS VSS

AP10 PAD_WN_BYTEIO10_DQ6 BWN

AP11 VSS VSS

AP12 PAD_WN_BYTEIO1_DQ6 BWN

AP13 RCOMP_TERM_B02 BEN

AP14 RCOMP_DRV_B02 BEN

AP15 VDDA_NOM_W WVDDA

AP16 VDDO_B02 BWN

AP17 VDDO_B02 BWN

AP18 VCC SVDD

AP19 VSS VSS

AP2 PAD_WC_BYTEIO6_DQ3 BWC

AP20 VSS VSS

AP21 VSS VSS

AP22 VSS VSS

AP23 VSS VSS

AP24 VSS VSS

AP25 VSS VSS

AP26 VCFG CFG

AP27 VSS VSS

AP28 VSS VSS

AP29 VSS VSS

AP3 VSS VSS

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 89

Page 90: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

AP30 VSS VSS

AP31 VSS VSS

AP32 VSS VSS

AP33 VSS VSS

AP34 VCC SVDD

AP35 VDDO_B52 BEN

AP36 VDDO_B52 BEN

AP37 VDDA_NOM_E EVDDA

AP38 RCOMP_TERM_B52 BWS

AP39 RCOMP_DRV_B52 BWS

AP4 PAD_WC_BYTEIO5_DQ6 BWC

AP40 PAD_EN_BYTEIO1_DQ6 BEN

AP41 VSS VSS

AP42 PAD_EN_BYTEIO10_DQ6 BEN

AP43 VSS VSS

AP44 PAD_EN_BYTEIO11_DQ0 BEN

AP45 VSS VSS

AP46 PAD_EN_BYTEIO12_DQ0 BEN

AP47 VSS VSS

AP48 PAD_EC_BYTEIO5_DQ6 BEC

AP49 VSS VSS

AP5 VSS VSS

AP50 PAD_EC_BYTEIO6_DQ3 BEC

AP51 VSS VSS

AP6 PAD_WN_BYTEIO12_DQ0 BWN

AP7 VSS VSS

AP8 PAD_WN_BYTEIO11_DQ0 BWN

AP9 VSS VSS

AR1 PAD_WC_BYTEIO6_DQSN BWC

AR10 PAD_WN_BYTEIO10_DQ0 BWN

AR11 PAD_WN_BYTEIO1_DQ7 BWN

AR12 PAD_WN_BYTEIO1_DQ9 BWN

AR13 RCOMP_TERM_B01 BEN

AR14 RCOMP_DRV_B01 BEN

AR15 VREF_B00 S12P75G

AR16 VSS VSS

AR17 VDDO_B02 BWN

AR18 VCC SVDD

AR19 VCC SVDD

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 90 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 91: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

AR2 PAD_WC_BYTEIO6_DQS BWC

AR20 VDD_BRAM VDD_BRAM

AR21 VSS VSS

AR22 VSS VSS

AR23 VSS VSS

AR24 VDD_BRAM VDD_BRAM

AR25 VSS VSS

AR26 VSS VSS

AR27 VSS VSS

AR28 VDD_BRAM VDD_BRAM

AR29 VSS VSS

AR3 PAD_WC_BYTEIO5_DQSN BWC

AR30 VSS VSS

AR31 VSS VSS

AR32 VDD_BRAM VDD_BRAM

AR33 VCC SVDD

AR34 VCC SVDD

AR35 VDDO_B52 BEN

AR36 VSS VSS

AR37 VREF_B50 S12P75G

AR38 RCOMP_TERM_B51 BWS

AR39 RCOMP_DRV_B51 BWS

AR4 PAD_WC_BYTEIO5_DQS BWC

AR40 PAD_EN_BYTEIO1_DQ9 BEN

AR41 PAD_EN_BYTEIO1_DQ7 BEN

AR42 PAD_EN_BYTEIO10_DQ0 BEN

AR43 PAD_EN_BYTEIO10_DQ8 BEN

AR44 PAD_EN_BYTEIO11_DQ1 BEN

AR45 PAD_EN_BYTEIO11_DQ4 BEN

AR46 PAD_EN_BYTEIO12_DQ6 BEN

AR47 PAD_EN_BYTEIO12_DQ4 BEN

AR48 PAD_EC_BYTEIO5_DQS BEC

AR49 PAD_EC_BYTEIO5_DQSN BEC

AR5 PAD_WN_BYTEIO12_DQ4 BWN

AR50 PAD_EC_BYTEIO6_DQS BEC

AR51 PAD_EC_BYTEIO6_DQSN BEC

AR6 PAD_WN_BYTEIO12_DQ6 BWN

AR7 PAD_WN_BYTEIO11_DQ4 BWN

AR8 PAD_WN_BYTEIO11_DQ1 BWN

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 91

Page 92: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

AR9 PAD_WN_BYTEIO10_DQ8 BWN

AT1 PAD_WC_BYTEIO6_DQ2 BWC

AT10 PAD_WN_BYTEIO10_DQ2 BWN

AT11 PAD_WN_BYTEIO1_DQ4 BWN

AT12 PAD_WN_BYTEIO1_DQ5 BWN

AT13 RCOMP_TERM_B00 BEN

AT14 RCOMP_DRV_B00 BEN

AT15 VDDO_CBNW PLL_NW

AT16 VDDO_B02 BWN

AT17 VDDO_B02 BWN

AT18 VREF_CLK_BANK_NW PLL_NW

AT19 VCC SVDD

AT2 PAD_WC_BYTEIO6_DQ6 BWC

AT20 VCC SVDD

AT21 VCC SVDD

AT22 VCC SVDD

AT23 VCC SVDD

AT24 VCC SVDD

AT25 VCC SVDD

AT26 VCC SVDD

AT27 VCC SVDD

AT28 VCC SVDD

AT29 VCC SVDD

AT3 PAD_WC_BYTEIO5_DQ1 BWC

AT30 VCC SVDD

AT31 VCC SVDD

AT32 VCC SVDD

AT33 VCC SVDD

AT34 VREF_CLK_BANK_NE PLL_NE

AT35 VDDO_B52 BEN

AT36 VDDO_B52 BEN

AT37 VSS VSS

AT38 RCOMP_TERM_B50 BWS

AT39 RCOMP_DRV_B50 BWS

AT4 PAD_WC_BYTEIO5_DQ0 BWC

AT40 PAD_EN_BYTEIO1_DQ5 BEN

AT41 PAD_EN_BYTEIO1_DQ4 BEN

AT42 PAD_EN_BYTEIO10_DQ2 BEN

AT43 PAD_EN_BYTEIO10_DQ1 BEN

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 92 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 93: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

AT44 PAD_EN_BYTEIO11_DQ7 BEN

AT45 PAD_EN_BYTEIO11_DQ5 BEN

AT46 PAD_EN_BYTEIO12_DQ2 BEN

AT47 PAD_EN_BYTEIO12_DQ3 BEN

AT48 PAD_EC_BYTEIO5_DQ0 BEC

AT49 PAD_EC_BYTEIO5_DQ1 BEC

AT5 PAD_WN_BYTEIO12_DQ3 BWN

AT50 PAD_EC_BYTEIO6_DQ6 BEC

AT51 PAD_EC_BYTEIO6_DQ2 BEC

AT6 PAD_WN_BYTEIO12_DQ2 BWN

AT7 PAD_WN_BYTEIO11_DQ5 BWN

AT8 PAD_WN_BYTEIO11_DQ7 BWN

AT9 PAD_WN_BYTEIO10_DQ1 BWN

AU1 PAD_WC_BYTEIO0_DQ1 BWC

AU10 PAD_WN_BYTEIO2_DQ7 BWN

AU11 PAD_WN_BYTEIO0_DQ9 BWN

AU12 PAD_WN_BYTEIO0_DQ8 BWN

AU13 VSS VSS

AU14 VSS VSS

AU15 VDDO_CBNW PLL_NW

AU16 VDDO_B01 BWN

AU17 VDDO_B01 BWN

AU18 VSS VSS

AU19 RCOMP_TERM_CLK_BANK_NW PLL_NW

AU2 PAD_WC_BYTEIO0_DQ8 BWC

AU20 VSS VSS

AU21 VSS VSS

AU22 VSS VSS

AU23 PA_VREG_RX VREG_RX

AU24 PA_VREG_SYNTHX VREG_SYNTHX

AU25 VSS VSS

AU26 PA_VREG_RX VREG_RX

AU27 PA_VREG_SYNTHX VREG_SYNTHX

AU28 VSS VSS

AU29 PA_VREG_RX VREG_RX

AU3 PAD_WN_BYTEIO9_DQ7 BWN

AU30 PA_VREG_SYNTHX VREG_SYNTHX

AU31 VSS VSS

AU32 VSS VSS

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 93

Page 94: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

AU33 RCOMP_TERM_CLK_BANK_NE PLL_NE

AU34 VSS VSS

AU35 VDDO_B51 BEN

AU36 VDDO_B51 BEN

AU37 VDDO_CBNE PLL_NE

AU38 VDDO_CBNE PLL_NE

AU39 VSS VSS

AU4 PAD_WN_BYTEIO9_DQ8 BWN

AU40 PAD_EN_BYTEIO0_DQ8 BEN

AU41 PAD_EN_BYTEIO0_DQ9 BEN

AU42 PAD_EN_BYTEIO2_DQ7 BEN

AU43 PAD_EN_BYTEIO2_DQ9 BEN

AU44 PAD_EN_BYTEIO4_DQ8 BEN

AU45 PAD_EN_BYTEIO4_DQ9 BEN

AU46 PAD_EN_BYTEIO5_DQ2 BEN

AU47 PAD_EN_BYTEIO5_DQ1 BEN

AU48 PAD_EN_BYTEIO9_DQ8 BEN

AU49 PAD_EN_BYTEIO9_DQ7 BEN

AU5 PAD_WN_BYTEIO5_DQ1 BWN

AU50 PAD_EC_BYTEIO0_DQ8 BEC

AU51 PAD_EC_BYTEIO0_DQ1 BEC

AU6 PAD_WN_BYTEIO5_DQ2 BWN

AU7 PAD_WN_BYTEIO4_DQ9 BWN

AU8 PAD_WN_BYTEIO4_DQ8 BWN

AU9 PAD_WN_BYTEIO2_DQ9 BWN

AV1 PAD_WC_BYTEIO0_DQ7 BWC

AV10 VSS VSS

AV11 PAD_WN_BYTEIO0_DQ7 BWN

AV12 VSS VSS

AV13 VSS VSS

AV14 PAD5_CLK_BANK_NW PLL_NW

AV15 VSS VSS

AV16 VSS VSS

AV17 VDDO_B01 BWN

AV18 VSS VSS

AV19 RCOMP_DRV_CLK_BANK_NW PLL_NW

AV2 VSS VSS

AV20 VSS VSS

AV21 VSS VSS

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 94 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 95: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

AV22 VSS VSS

AV23 VSS VSS

AV24 PA_VREG_CMN VREG_CMN

AV25 VSS VSS

AV26 VSS VSS

AV27 PA_VREG_CMN VREG_CMN

AV28 VSS VSS

AV29 VSS VSS

AV3 PAD_WN_BYTEIO9_DQ4 BWN

AV30 PA_VREG_CMN VREG_CMN

AV31 VSS VSS

AV32 VSS VSS

AV33 RCOMP_DRV_CLK_BANK_NE PLL_NE

AV34 VSS VSS

AV35 VDDO_B51 BEN

AV36 VSS VSS

AV37 PAD4_CLK_BANK_NE PLL_NE

AV38 PAD5_CLK_BANK_NE PLL_NE

AV39 VSS VSS

AV4 VSS VSS

AV40 VSS VSS

AV41 PAD_EN_BYTEIO0_DQ7 BEN

AV42 VSS VSS

AV43 PAD_EN_BYTEIO2_DQ8 BEN

AV44 VSS VSS

AV45 PAD_EN_BYTEIO4_DQ7 BEN

AV46 VSS VSS

AV47 PAD_EN_BYTEIO5_DQ5 BEN

AV48 VSS VSS

AV49 PAD_EN_BYTEIO9_DQ4 BEN

AV5 PAD_WN_BYTEIO5_DQ5 BWN

AV50 VSS VSS

AV51 PAD_EC_BYTEIO0_DQ7 BEC

AV6 VSS VSS

AV7 PAD_WN_BYTEIO4_DQ7 BWN

AV8 VSS VSS

AV9 PAD_WN_BYTEIO2_DQ8 BWN

AW1 PAD_WC_BYTEIO0_DQ5 BWC

AW10 PAD_WN_BYTEIO2_DQ2 BWN

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 95

Page 96: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

AW11 PAD_WN_BYTEIO0_DQSN BWN

AW12 PAD_WN_BYTEIO0_DQS BWN

AW13 VSS VSS

AW14 PAD4_CLK_BANK_NW PLL_NW

AW15 VSS VSS

AW16 VDDO_B01 BWN

AW17 VDDO_B01 BWN

AW18 VSS VSS

AW19 VSS VSS

AW2 PAD_WC_BYTEIO0_DQ9 BWC

AW20 VSS VSS

AW21 VSS VSS

AW22 PAD_TE_I_BCK_REF_M_LNUM[0-1] N12P75G

AW23 PAD_TE_I_BCK_REF_M_LNUM[2-3] N12P75G

AW24 VSS VSS

AW25 PAD_TE_I_BCK_REF_M_LNUM[8-9] N12P75G

AW26 PAD_TE_I_BCK_REF_M_LNUM[10-11] N12P75G

AW27 VSS VSS

AW28 PAD_TE_I_BCK_REF_M_LNUM[16-17] N12P75G

AW29 PAD_TE_I_BCK_REF_M_LNUM[18-19] N12P75G

AW3 PAD_WN_BYTEIO9_DQ9 BWN

AW30 VSS VSS

AW31 PAD_TE_I_BCK_REF_M_LNUM[24-25] N12P75G

AW32 PAD_TE_I_BCK_REF_M_LNUM[26-27] N12P75G

AW33 VSS VSS

AW34 VSS VSS

AW35 VDDO_B51 BEN

AW36 VDDO_B51 BEN

AW37 PAD2_CLK_BANK_NE PLL_NE

AW38 PAD3_CLK_BANK_NE PLL_NE

AW39 VSS VSS

AW4 PAD_WN_BYTEIO9_DQ6 BWN

AW40 PAD_EN_BYTEIO0_DQS BEN

AW41 PAD_EN_BYTEIO0_DQSN BEN

AW42 PAD_EN_BYTEIO2_DQ2 BEN

AW43 PAD_EN_BYTEIO2_DQ5 BEN

AW44 PAD_EN_BYTEIO4_DQ3 BEN

AW45 PAD_EN_BYTEIO4_DQ5 BEN

AW46 PAD_EN_BYTEIO5_DQ0 BEN

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 96 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 97: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

AW47 PAD_EN_BYTEIO5_DQ4 BEN

AW48 PAD_EN_BYTEIO9_DQ6 BEN

AW49 PAD_EN_BYTEIO9_DQ9 BEN

AW5 PAD_WN_BYTEIO5_DQ4 BWN

AW50 PAD_EC_BYTEIO0_DQ9 BEC

AW51 PAD_EC_BYTEIO0_DQ5 BEC

AW6 PAD_WN_BYTEIO5_DQ0 BWN

AW7 PAD_WN_BYTEIO4_DQ5 BWN

AW8 PAD_WN_BYTEIO4_DQ3 BWN

AW9 PAD_WN_BYTEIO2_DQ5 BWN

AY1 PAD_WC_BYTEIO0_DQSN BWC

AY10 PAD_WN_BYTEIO2_DQS BWN

AY11 PAD_WN_BYTEIO0_DQ3 BWN

AY12 PAD_WN_BYTEIO0_DQ2 BWN

AY13 VSS VSS

AY14 PAD3_CLK_BANK_NW PLL_NW

AY15 VSS VSS

AY16 VDDO_B00 BWN

AY17 VDDO_B00 BWN

AY18 VSS VSS

AY19 VSS VSS

AY2 PAD_WC_BYTEIO0_DQS BWC

AY20 VSS VSS

AY21 VSS VSS

AY22 PAD_TE_I_BCK_REF_P_LNUM[0-1] N12P75G

AY23 PAD_TE_I_BCK_REF_P_LNUM[2-3] N12P75G

AY24 VSS VSS

AY25 PAD_TE_I_BCK_REF_P_LNUM[8-9] N12P75G

AY26 PAD_TE_I_BCK_REF_P_LNUM[10-11] N12P75G

AY27 VSS VSS

AY28 PAD_TE_I_BCK_REF_P_LNUM[16-17] N12P75G

AY29 PAD_TE_I_BCK_REF_P_LNUM[18-19] N12P75G

AY3 PAD_WN_BYTEIO9_DQSN BWN

AY30 VSS VSS

AY31 PAD_TE_I_BCK_REF_P_LNUM[24-25] N12P75G

AY32 PAD_TE_I_BCK_REF_P_LNUM[26-27] N12P75G

AY33 VSS VSS

AY34 VSS VSS

AY35 VDDO_B50 BEN

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 97

Page 98: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

AY36 VDDO_B50 BEN

AY37 PAD0_CLK_BANK_NE PLL_NE

AY38 PAD1_CLK_BANK_NE PLL_NE

AY39 VSS VSS

AY4 PAD_WN_BYTEIO9_DQS BWN

AY40 PAD_EN_BYTEIO0_DQ2 BEN

AY41 PAD_EN_BYTEIO0_DQ3 BEN

AY42 PAD_EN_BYTEIO2_DQS BEN

AY43 PAD_EN_BYTEIO2_DQSN BEN

AY44 PAD_EN_BYTEIO4_DQS BEN

AY45 PAD_EN_BYTEIO4_DQSN BEN

AY46 PAD_EN_BYTEIO5_DQS BEN

AY47 PAD_EN_BYTEIO5_DQSN BEN

AY48 PAD_EN_BYTEIO9_DQS BEN

AY49 PAD_EN_BYTEIO9_DQSN BEN

AY5 PAD_WN_BYTEIO5_DQSN BWN

AY50 PAD_EC_BYTEIO0_DQS BEC

AY51 PAD_EC_BYTEIO0_DQSN BEC

AY6 PAD_WN_BYTEIO5_DQS BWN

AY7 PAD_WN_BYTEIO4_DQSN BWN

AY8 PAD_WN_BYTEIO4_DQS BWN

AY9 PAD_WN_BYTEIO2_DQSN BWN

B1 VSS VSS

B10 VSS VSS

B11 PAD_BE_O_BA_TX_P_LNUM0 S12P75G

B12 PAD_BE_O_BA_TX_M_LNUM1 S12P75G

B13 PAD_BE_O_BA_TX_P_LNUM2 S12P75G

B14 PAD_BE_O_BA_TX_M_LNUM3 S12P75G

B15 PAD_BE_O_BA_TX_P_LNUM4 S12P75G

B16 PAD_BE_O_BA_TX_M_LNUM5 S12P75G

B17 PAD_BE_O_BA_TX_P_LNUM6 S12P75G

B18 PAD_BE_O_BA_TX_M_LNUM7 S12P75G

B19 PAD_BE_O_BA_TX_P_LNUM8 S12P75G

B2 PAD_WS_BYTEIO10_DQ1 BWS

B20 PAD_BE_O_BA_TX_M_LNUM9 S12P75G

B21 PAD_BE_O_BA_TX_P_LNUM10 S12P75G

B22 PAD_BE_O_BA_TX_M_LNUM11 S12P75G

B23 PAD_BE_O_BA_TX_P_LNUM12 S12P75G

B24 PAD_BE_O_BA_TX_M_LNUM13 S12P75G

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 98 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 99: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

B25 PAD_BE_O_BA_TX_P_LNUM14 S12P75G

B26 PAD_BE_O_BA_TX_M_LNUM15 S12P75G

B27 PAD_BE_O_BA_TX_P_LNUM16 S12P75G

B28 PAD_BE_O_BA_TX_M_LNUM17 S12P75G

B29 PAD_BE_O_BA_TX_P_LNUM18 S12P75G

B3 PAD_WS_BYTEIO10_DQ4 BWS

B30 PAD_BE_O_BA_TX_M_LNUM19 S12P75G

B31 PAD_BE_O_BA_TX_P_LNUM20 S12P75G

B32 PAD_BE_O_BA_TX_M_LNUM21 S12P75G

B33 PAD_BE_O_BA_TX_P_LNUM22 S12P75G

B34 PAD_BE_O_BA_TX_M_LNUM23 S12P75G

B35 PAD_BE_O_BA_TX_P_LNUM24 S12P75G

B36 PAD_BE_O_BA_TX_M_LNUM25 S12P75G

B37 PAD_BE_O_BA_TX_P_LNUM26 S12P75G

B38 PAD_BE_O_BA_TX_M_LNUM27 S12P75G

B39 PAD_BE_O_BA_TX_P_LNUM28 S12P75G

B4 PAD_WS_BYTEIO9_DQ8 BWS

B40 PAD_BE_O_BA_TX_M_LNUM29 S12P75G

B41 PAD_BE_O_BA_TX_P_LNUM30 S12P75G

B42 PAD_BE_O_BA_TX_M_LNUM31 S12P75G

B43 VSS VSS

B44 PAD_ES_BYTEIO12_DQ9 BES

B45 PAD_ES_BYTEIO12_DQ4 BES

B46 PAD_ES_BYTEIO11_DQ5 BES

B47 PAD_ES_BYTEIO11_DQ0 BES

B48 PAD_ES_BYTEIO9_DQ8 BES

B49 PAD_ES_BYTEIO10_DQ4 BES

B5 PAD_WS_BYTEIO11_DQ0 BWS

B50 PAD_ES_BYTEIO10_DQ6 BES

B51 VSS VSS

B6 PAD_WS_BYTEIO11_DQ5 BWS

B7 PAD_WS_BYTEIO12_DQ4 BWS

B8 PAD_WS_BYTEIO12_DQ9 BWS

B9 EDM

BA1 VSS VSS

BA10 PAD_WN_BYTEIO2_DQ0 BWN

BA11 VSS VSS

BA12 PAD_WN_BYTEIO0_DQ0 BWN

BA13 VSS VSS

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 99

Page 100: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

BA14 PAD2_CLK_BANK_NW PLL_NW

BA15 VSS VSS

BA16 VSS VSS

BA17 VDDO_B00 BWN

BA18 VSS VSS

BA19 VSS VSS

BA2 PAD_WC_BYTEIO0_DQ6 BWC

BA20 VSS VSS

BA21 VSS VSS

BA22 VSS VSS

BA23 VSS VSS

BA24 VSS VSS

BA25 VSS VSS

BA26 VSS VSS

BA27 VSS VSS

BA28 VSS VSS

BA29 VSS VSS

BA3 VSS VSS

BA30 VSS VSS

BA31 VSS VSS

BA32 VSS VSS

BA33 VSS VSS

BA34 VSS VSS

BA35 VDDO_B50 BEN

BA36 VSS VSS

BA37 VSS VSS

BA38 VSS VSS

BA39 VSS VSS

BA4 PAD_WN_BYTEIO9_DQ3 BWN

BA40 PAD_EN_BYTEIO0_DQ0 BEN

BA41 VSS VSS

BA42 PAD_EN_BYTEIO2_DQ0 BEN

BA43 VSS VSS

BA44 PAD_EN_BYTEIO4_DQ0 BEN

BA45 VSS VSS

BA46 PAD_EN_BYTEIO5_DQ3 BEN

BA47 VSS VSS

BA48 PAD_EN_BYTEIO9_DQ3 BEN

BA49 VSS VSS

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 100 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 101: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

BA5 VSS VSS

BA50 PAD_EC_BYTEIO0_DQ6 BEC

BA51 VSS VSS

BA6 PAD_WN_BYTEIO5_DQ3 BWN

BA7 VSS VSS

BA8 PAD_WN_BYTEIO4_DQ0 BWN

BA9 VSS VSS

BB1 PAD_WC_BYTEIO0_DQ3 BWC

BB10 PAD_WN_BYTEIO2_DQ6 BWN

BB11 PAD_WN_BYTEIO0_DQ6 BWN

BB12 PAD_WN_BYTEIO0_DQ1 BWN

BB13 VSS VSS

BB14 PAD1_CLK_BANK_NW PLL_NW

BB15 VSS VSS

BB16 VDDO_B00 BWN

BB17 VDDO_B00 BWN

BB18 VSS VSS

BB19 AVDD_PLL_NW3 PLL_NW

BB2 PAD_WC_BYTEIO0_DQ2 BWC

BB20 AVDD_PLL_NW2 PLL_NW

BB21 VSS VSS

BB22 PAD_TE_I_BCK_REF_M_LNUM[4-5] N12P75G

BB23 PAD_TE_I_BCK_REF_M_LNUM[6-7] N12P75G

BB24 VSS VSS

BB25 PAD_TE_I_BCK_REF_M_LNUM[12-13] N12P75G

BB26 PAD_TE_I_BCK_REF_M_LNUM[14-15] N12P75G

BB27 VSS VSS

BB28 PAD_TE_I_BCK_REF_M_LNUM[20-21] N12P75G

BB29 PAD_TE_I_BCK_REF_M_LNUM[22-23] N12P75G

BB3 PAD_WN_BYTEIO9_DQ5 BWN

BB30 VSS VSS

BB31 PAD_TE_I_BCK_REF_M_LNUM[28-29] N12P75G

BB32 PAD_TE_I_BCK_REF_M_LNUM[30-31] N12P75G

BB33 VSS VSS

BB34 VSS VSS

BB35 VDDO_B50 BEN

BB36 VDDO_B50 BEN

BB37 AVDD_PLL_NE3 PLL_NE

BB38 AVDD_PLL_NE2 PLL_NE

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 101

Page 102: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

BB39 VSS VSS

BB4 PAD_WN_BYTEIO9_DQ0 BWN

BB40 PAD_EN_BYTEIO0_DQ1 BEN

BB41 PAD_EN_BYTEIO0_DQ6 BEN

BB42 PAD_EN_BYTEIO2_DQ6 BEN

BB43 PAD_EN_BYTEIO2_DQ4 BEN

BB44 PAD_EN_BYTEIO4_DQ6 BEN

BB45 PAD_EN_BYTEIO4_DQ2 BEN

BB46 PAD_EN_BYTEIO5_DQ8 BEN

BB47 PAD_EN_BYTEIO5_DQ7 BEN

BB48 PAD_EN_BYTEIO9_DQ0 BEN

BB49 PAD_EN_BYTEIO9_DQ5 BEN

BB5 PAD_WN_BYTEIO5_DQ7 BWN

BB50 PAD_EC_BYTEIO0_DQ2 BEC

BB51 PAD_EC_BYTEIO0_DQ3 BEC

BB6 PAD_WN_BYTEIO5_DQ8 BWN

BB7 PAD_WN_BYTEIO4_DQ2 BWN

BB8 PAD_WN_BYTEIO4_DQ6 BWN

BB9 PAD_WN_BYTEIO2_DQ4 BWN

BC1 PAD_WC_BYTEIO0_DQ4 BWC

BC10 PAD_WN_BYTEIO2_DQ3 BWN

BC11 PAD_WN_BYTEIO0_DQ4 BWN

BC12 PAD_WN_BYTEIO0_DQ5 BWN

BC13 VSS VSS

BC14 PAD0_CLK_BANK_NW PLL_NW

BC15 VSS VSS

BC16 VSS VSS

BC17 VSS VSS

BC18 VSS VSS

BC19 AVDD_PLL_NW1 PLL_NW

BC2 PAD_WC_BYTEIO0_DQ0 BWC

BC20 AVDD_PLL_NW0 PLL_NW

BC21 VSS VSS

BC22 PAD_TE_I_BCK_REF_P_LNUM[4-5] N12P75G

BC23 PAD_TE_I_BCK_REF_P_LNUM[6-7] N12P75G

BC24 PAD_TE_I_A_RXTERMV_LNUM[12-15] N12P75G

BC25 PAD_TE_I_BCK_REF_P_LNUM[12-13] N12P75G

BC26 PAD_TE_I_BCK_REF_P_LNUM[14-15] N12P75G

BC27 PAD_TE_I_A_RXTERMV_LNUM[16-19] N12P75G

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 102 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 103: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

BC28 PAD_TE_I_BCK_REF_P_LNUM[20-21] N12P75G

BC29 PAD_TE_I_BCK_REF_P_LNUM[22-23] N12P75G

BC3 PAD_WN_BYTEIO9_DQ1 BWN

BC30 VSS VSS

BC31 PAD_TE_I_BCK_REF_P_LNUM[28-29] N12P75G

BC32 PAD_TE_I_BCK_REF_P_LNUM[30-31] N12P75G

BC33 VSS VSS

BC34 VSS VSS

BC35 PAD_TE_I_A_RXTERMV_LNUM[24-27] N12P75G

BC36 VSS VSS

BC37 AVDD_PLL_NE1 PLL_NE

BC38 AVDD_PLL_NE0 PLL_NE

BC39 PAD_TE_I_A_RXTERMV_LNUM[28-31] N12P75G

BC4 PAD_WN_BYTEIO9_DQ2 BWN

BC40 PAD_EN_BYTEIO0_DQ5 BEN

BC41 PAD_EN_BYTEIO0_DQ4 BEN

BC42 PAD_EN_BYTEIO2_DQ3 BEN

BC43 PAD_EN_BYTEIO2_DQ1 BEN

BC44 PAD_EN_BYTEIO4_DQ1 BEN

BC45 PAD_EN_BYTEIO4_DQ4 BEN

BC46 PAD_EN_BYTEIO5_DQ6 BEN

BC47 PAD_EN_BYTEIO5_DQ9 BEN

BC48 PAD_EN_BYTEIO9_DQ2 BEN

BC49 PAD_EN_BYTEIO9_DQ1 BEN

BC5 PAD_WN_BYTEIO5_DQ9 BWN

BC50 PAD_EC_BYTEIO0_DQ0 BEC

BC51 PAD_EC_BYTEIO0_DQ4 BEC

BC6 PAD_WN_BYTEIO5_DQ6 BWN

BC7 PAD_WN_BYTEIO4_DQ4 BWN

BC8 PAD_WN_BYTEIO4_DQ1 BWN

BC9 PAD_WN_BYTEIO2_DQ1 BWN

BD1 PAD_WN_BYTEIO8_DQ5 BWN

BD10 VSS VSS

BD11 PAD_TE_O_BA_APROBE_LNUM[0-3] N12P75G

BD12 VSS VSS

BD13 PAD_TE_I_A_RXTERMV_LNUM[0-3] N12P75G

BD14 VSS VSS

BD15 PAD_TE_O_BA_APROBE_LNUM[4-7] N12P75G

BD16 VSS VSS

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 103

Page 104: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

BD17 PAD_TE_I_A_RXTERMV_LNUM[4-7] N12P75G

BD18 VSS VSS

BD19 PAD_TE_O_BA_APROBE_LNUM[8-11] N12P75G

BD2 PAD_WN_BYTEIO8_DQ4 BWN

BD20 VSS VSS

BD21 PAD_TE_I_A_RXTERMV_LNUM[8-11] N12P75G

BD22 VSS VSS

BD23 PAD_TE_O_BA_APROBE_LNUM[12-15] N12P75G

BD24 VSS VSS

BD25 VSS VSS

BD26 VSS VSS

BD27 PAD_TE_O_BA_APROBE_LNUM[16-19] N12P75G

BD28 VSS VSS

BD29 VSS VSS

BD3 PAD_WN_BYTEIO7_DQ8 BWN

BD30 VSS VSS

BD31 PAD_TE_O_BA_APROBE_LNUM[20-23] N12P75G

BD32 VSS VSS

BD33 PAD_TE_I_A_RXTERMV_LNUM[20-23] N12P75G

BD34 VSS VSS

BD35 PAD_TE_O_BA_APROBE_LNUM[24-27] N12P75G

BD36 VSS VSS

BD37 VSS VSS

BD38 VSS VSS

BD39 PAD_TE_O_BA_APROBE_LNUM[28-31] N12P75G

BD4 PAD_WN_BYTEIO7_DQ5 BWN

BD40 VSS VSS

BD41 VSS VSS

BD42 VSS VSS

BD43 VSS VSS

BD44 PAD_EN_BYTEIO3_DQ3 BEN

BD45 PAD_EN_BYTEIO3_DQ5 BEN

BD46 PAD_EN_BYTEIO6_DQ1 BEN

BD47 PAD_EN_BYTEIO6_DQ9 BEN

BD48 PAD_EN_BYTEIO7_DQ5 BEN

BD49 PAD_EN_BYTEIO7_DQ8 BEN

BD5 PAD_WN_BYTEIO6_DQ9 BWN

BD50 PAD_EN_BYTEIO8_DQ4 BEN

BD51 PAD_EN_BYTEIO8_DQ5 BEN

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 104 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 105: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

BD6 PAD_WN_BYTEIO6_DQ1 BWN

BD7 PAD_WN_BYTEIO3_DQ5 BWN

BD8 PAD_WN_BYTEIO3_DQ3 BWN

BD9 VSS VSS

BE1 PAD_WN_BYTEIO8_DQ9 BWN

BE10 VSS VSS

BE11 PA_VDD2 N12P75G

BE12 PAD_TE_I_BA_RX_P_LNUM1 N12P75G

BE13 PA_VDD2 N12P75G

BE14 PAD_TE_I_BA_RX_P_LNUM3 N12P75G

BE15 PA_VDD2 N12P75G

BE16 PAD_TE_I_BA_RX_P_LNUM5 N12P75G

BE17 PA_VDD2 N12P75G

BE18 PAD_TE_I_BA_RX_P_LNUM7 N12P75G

BE19 PA_VDD2 N12P75G

BE2 PAD_WN_BYTEIO8_DQ7 BWN

BE20 PAD_TE_I_BA_RX_P_LNUM9 N12P75G

BE21 PA_VDD2 N12P75G

BE22 PAD_TE_I_BA_RX_P_LNUM11 N12P75G

BE23 PA_VDD2 N12P75G

BE24 PAD_TE_I_BA_RX_P_LNUM13 N12P75G

BE25 PA_VDD2 N12P75G

BE26 PAD_TE_I_BA_RX_P_LNUM15 N12P75G

BE27 PA_VDD2 N12P75G

BE28 PAD_TE_I_BA_RX_P_LNUM17 N12P75G

BE29 PA_VDD2 N12P75G

BE3 PAD_WN_BYTEIO7_DQ9 BWN

BE30 PAD_TE_I_BA_RX_P_LNUM19 N12P75G

BE31 PA_VDD2 N12P75G

BE32 PAD_TE_I_BA_RX_P_LNUM21 N12P75G

BE33 PA_VDD2 N12P75G

BE34 PAD_TE_I_BA_RX_P_LNUM23 N12P75G

BE35 PA_VDD2 N12P75G

BE36 PAD_TE_I_BA_RX_P_LNUM25 N12P75G

BE37 PA_VDD2 N12P75G

BE38 PAD_TE_I_BA_RX_P_LNUM27 N12P75G

BE39 PA_VDD2 N12P75G

BE4 VSS VSS

BE40 PAD_TE_I_BA_RX_P_LNUM29 N12P75G

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 105

Page 106: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

BE41 PA_VDD2 N12P75G

BE42 PAD_TE_I_BA_RX_P_LNUM31 N12P75G

BE43 VSS VSS

BE44 VSS VSS

BE45 PAD_EN_BYTEIO3_DQ7 BEN

BE46 VSS VSS

BE47 PAD_EN_BYTEIO6_DQ8 BEN

BE48 VSS VSS

BE49 PAD_EN_BYTEIO7_DQ9 BEN

BE5 PAD_WN_BYTEIO6_DQ8 BWN

BE50 PAD_EN_BYTEIO8_DQ7 BEN

BE51 PAD_EN_BYTEIO8_DQ9 BEN

BE6 VSS VSS

BE7 PAD_WN_BYTEIO3_DQ7 BWN

BE8 VSS VSS

BE9 VSS VSS

BF1 VSS VSS

BF10 VSS VSS

BF11 PAD_TE_I_BA_RX_P_LNUM0 N12P75G

BF12 PAD_TE_I_BA_RX_M_LNUM1 N12P75G

BF13 PAD_TE_I_BA_RX_P_LNUM2 N12P75G

BF14 PAD_TE_I_BA_RX_M_LNUM3 N12P75G

BF15 PAD_TE_I_BA_RX_P_LNUM4 N12P75G

BF16 PAD_TE_I_BA_RX_M_LNUM5 N12P75G

BF17 PAD_TE_I_BA_RX_P_LNUM6 N12P75G

BF18 PAD_TE_I_BA_RX_M_LNUM7 N12P75G

BF19 PAD_TE_I_BA_RX_P_LNUM8 N12P75G

BF2 PAD_WN_BYTEIO8_DQ3 BWN

BF20 PAD_TE_I_BA_RX_M_LNUM9 N12P75G

BF21 PAD_TE_I_BA_RX_P_LNUM10 N12P75G

BF22 PAD_TE_I_BA_RX_M_LNUM11 N12P75G

BF23 PAD_TE_I_BA_RX_P_LNUM12 N12P75G

BF24 PAD_TE_I_BA_RX_M_LNUM13 N12P75G

BF25 PAD_TE_I_BA_RX_P_LNUM14 N12P75G

BF26 PAD_TE_I_BA_RX_M_LNUM15 N12P75G

BF27 PAD_TE_I_BA_RX_P_LNUM16 N12P75G

BF28 PAD_TE_I_BA_RX_M_LNUM17 N12P75G

BF29 PAD_TE_I_BA_RX_P_LNUM18 N12P75G

BF3 PAD_WN_BYTEIO7_DQSN BWN

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 106 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 107: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

BF30 PAD_TE_I_BA_RX_M_LNUM19 N12P75G

BF31 PAD_TE_I_BA_RX_P_LNUM20 N12P75G

BF32 PAD_TE_I_BA_RX_M_LNUM21 N12P75G

BF33 PAD_TE_I_BA_RX_P_LNUM22 N12P75G

BF34 PAD_TE_I_BA_RX_M_LNUM23 N12P75G

BF35 PAD_TE_I_BA_RX_P_LNUM24 N12P75G

BF36 PAD_TE_I_BA_RX_M_LNUM25 N12P75G

BF37 PAD_TE_I_BA_RX_P_LNUM26 N12P75G

BF38 PAD_TE_I_BA_RX_M_LNUM27 N12P75G

BF39 PAD_TE_I_BA_RX_P_LNUM28 N12P75G

BF4 PAD_WN_BYTEIO7_DQS BWN

BF40 PAD_TE_I_BA_RX_M_LNUM29 N12P75G

BF41 PAD_TE_I_BA_RX_P_LNUM30 N12P75G

BF42 PAD_TE_I_BA_RX_M_LNUM31 N12P75G

BF43 VSS VSS

BF44 PAD_EN_BYTEIO3_DQ2 BEN

BF45 PAD_EN_BYTEIO3_DQ8 BEN

BF46 PAD_EN_BYTEIO6_DQ6 BEN

BF47 PAD_EN_BYTEIO6_DQ5 BEN

BF48 PAD_EN_BYTEIO7_DQS BEN

BF49 PAD_EN_BYTEIO7_DQSN BEN

BF5 PAD_WN_BYTEIO6_DQ5 BWN

BF50 PAD_EN_BYTEIO8_DQ3 BEN

BF51 VSS VSS

BF6 PAD_WN_BYTEIO6_DQ6 BWN

BF7 PAD_WN_BYTEIO3_DQ8 BWN

BF8 PAD_WN_BYTEIO3_DQ2 BWN

BF9 VSS VSS

BG1 PAD_WN_BYTEIO8_DQSN BWN

BG10 VSS VSS

BG11 PAD_TE_I_BA_RX_M_LNUM0 N12P75G

BG12 PA_VDD2 N12P75G

BG13 PAD_TE_I_BA_RX_M_LNUM2 N12P75G

BG14 PA_VDD2 N12P75G

BG15 PAD_TE_I_BA_RX_M_LNUM4 N12P75G

BG16 PA_VDD2 N12P75G

BG17 PAD_TE_I_BA_RX_M_LNUM6 N12P75G

BG18 PA_VDD2 N12P75G

BG19 PAD_TE_I_BA_RX_M_LNUM8 N12P75G

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 107

Page 108: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

BG2 PAD_WN_BYTEIO8_DQS BWN

BG20 PA_VDD2 N12P75G

BG21 PAD_TE_I_BA_RX_M_LNUM10 N12P75G

BG22 PA_VDD2 N12P75G

BG23 PAD_TE_I_BA_RX_M_LNUM12 N12P75G

BG24 PA_VDD2 N12P75G

BG25 PAD_TE_I_BA_RX_M_LNUM14 N12P75G

BG26 PA_VDD2 N12P75G

BG27 PAD_TE_I_BA_RX_M_LNUM16 N12P75G

BG28 PA_VDD2 N12P75G

BG29 PAD_TE_I_BA_RX_M_LNUM18 N12P75G

BG3 PAD_WN_BYTEIO7_DQ4 BWN

BG30 PA_VDD2 N12P75G

BG31 PAD_TE_I_BA_RX_M_LNUM20 N12P75G

BG32 PA_VDD2 N12P75G

BG33 PAD_TE_I_BA_RX_M_LNUM22 N12P75G

BG34 PA_VDD2 N12P75G

BG35 PAD_TE_I_BA_RX_M_LNUM24 N12P75G

BG36 PA_VDD2 N12P75G

BG37 PAD_TE_I_BA_RX_M_LNUM26 N12P75G

BG38 PA_VDD2 N12P75G

BG39 PAD_TE_I_BA_RX_M_LNUM28 N12P75G

BG4 PAD_WN_BYTEIO7_DQ3 BWN

BG40 PA_VDD2 N12P75G

BG41 PAD_TE_I_BA_RX_M_LNUM30 N12P75G

BG42 PA_VDD2 N12P75G

BG43 VSS VSS

BG44 PAD_EN_BYTEIO3_DQS BEN

BG45 PAD_EN_BYTEIO3_DQSN BEN

BG46 PAD_EN_BYTEIO6_DQ2 BEN

BG47 PAD_EN_BYTEIO6_DQ3 BEN

BG48 PAD_EN_BYTEIO7_DQ3 BEN

BG49 PAD_EN_BYTEIO7_DQ4 BEN

BG5 PAD_WN_BYTEIO6_DQ3 BWN

BG50 PAD_EN_BYTEIO8_DQS BEN

BG51 PAD_EN_BYTEIO8_DQSN BEN

BG6 PAD_WN_BYTEIO6_DQ2 BWN

BG7 PAD_WN_BYTEIO3_DQSN BWN

BG8 PAD_WN_BYTEIO3_DQS BWN

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 108 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 109: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

BG9 VSS VSS

BH1 PAD_WN_BYTEIO8_DQ2 BWN

BH10 VSS VSS

BH11 VSS VSS

BH12 VSS VSS

BH13 VSS VSS

BH14 VSS VSS

BH15 VSS VSS

BH16 VSS VSS

BH17 VSS VSS

BH18 VSS VSS

BH19 VSS VSS

BH2 PAD_WN_BYTEIO8_DQ0 BWN

BH20 VSS VSS

BH21 VSS VSS

BH22 VSS VSS

BH23 VSS VSS

BH24 VSS VSS

BH25 VSS VSS

BH26 VSS VSS

BH27 VSS VSS

BH28 VSS VSS

BH29 VSS VSS

BH3 VSS VSS

BH30 VSS VSS

BH31 VSS VSS

BH32 VSS VSS

BH33 VSS VSS

BH34 VSS VSS

BH35 VSS VSS

BH36 VSS VSS

BH37 VSS VSS

BH38 VSS VSS

BH39 VSS VSS

BH4 PAD_WN_BYTEIO7_DQ2 BWN

BH40 VSS VSS

BH41 VSS VSS

BH42 VSS VSS

BH43 VSS VSS

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 109

Page 110: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

BH44 PAD_EN_BYTEIO3_DQ0 BEN

BH45 VSS VSS

BH46 PAD_EN_BYTEIO6_DQ0 BEN

BH47 VSS VSS

BH48 PAD_EN_BYTEIO7_DQ2 BEN

BH49 VSS VSS

BH5 VSS VSS

BH50 PAD_EN_BYTEIO8_DQ0 BEN

BH51 PAD_EN_BYTEIO8_DQ2 BEN

BH6 PAD_WN_BYTEIO6_DQ0 BWN

BH7 VSS VSS

BH8 PAD_WN_BYTEIO3_DQ0 BWN

BH9 VSS VSS

BJ1 VSS VSS

BJ10 VSS VSS

BJ11 PAD_TE_O_BA_TX_M_LNUM0 N12P75G

BJ12 PA_VDD1 N12P75G

BJ13 PAD_TE_O_BA_TX_M_LNUM2 N12P75G

BJ14 PA_VDD1 N12P75G

BJ15 PAD_TE_O_BA_TX_M_LNUM4 N12P75G

BJ16 PA_VDD1 N12P75G

BJ17 PAD_TE_O_BA_TX_M_LNUM6 N12P75G

BJ18 PA_VDD1 N12P75G

BJ19 PAD_TE_O_BA_TX_M_LNUM8 N12P75G

BJ2 PAD_WN_BYTEIO8_DQ1 BWN

BJ20 PA_VDD1 N12P75G

BJ21 PAD_TE_O_BA_TX_M_LNUM10 N12P75G

BJ22 PA_VDD1 N12P75G

BJ23 PAD_TE_O_BA_TX_M_LNUM12 N12P75G

BJ24 PA_VDD1 N12P75G

BJ25 PAD_TE_O_BA_TX_M_LNUM14 N12P75G

BJ26 PA_VDD1 N12P75G

BJ27 PAD_TE_O_BA_TX_M_LNUM16 N12P75G

BJ28 PA_VDD1 N12P75G

BJ29 PAD_TE_O_BA_TX_M_LNUM18 N12P75G

BJ3 PAD_WN_BYTEIO7_DQ6 BWN

BJ30 PA_VDD1 N12P75G

BJ31 PAD_TE_O_BA_TX_M_LNUM20 N12P75G

BJ32 PA_VDD1 N12P75G

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 110 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 111: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

BJ33 PAD_TE_O_BA_TX_M_LNUM22 N12P75G

BJ34 PA_VDD1 N12P75G

BJ35 PAD_TE_O_BA_TX_M_LNUM24 N12P75G

BJ36 PA_VDD1 N12P75G

BJ37 PAD_TE_O_BA_TX_M_LNUM26 N12P75G

BJ38 PA_VDD1 N12P75G

BJ39 PAD_TE_O_BA_TX_M_LNUM28 N12P75G

BJ4 PAD_WN_BYTEIO7_DQ0 BWN

BJ40 PA_VDD1 N12P75G

BJ41 PAD_TE_O_BA_TX_M_LNUM30 N12P75G

BJ42 PA_VDD1 N12P75G

BJ43 VSS VSS

BJ44 PAD_EN_BYTEIO3_DQ1 BEN

BJ45 PAD_EN_BYTEIO3_DQ6 BEN

BJ46 PAD_EN_BYTEIO6_DQS BEN

BJ47 PAD_EN_BYTEIO6_DQSN BEN

BJ48 PAD_EN_BYTEIO7_DQ0 BEN

BJ49 PAD_EN_BYTEIO7_DQ6 BEN

BJ5 PAD_WN_BYTEIO6_DQSN BWN

BJ50 PAD_EN_BYTEIO8_DQ1 BEN

BJ51 VSS VSS

BJ6 PAD_WN_BYTEIO6_DQS BWN

BJ7 PAD_WN_BYTEIO3_DQ6 BWN

BJ8 PAD_WN_BYTEIO3_DQ1 BWN

BJ9 VSS VSS

BK1 VSS VSS

BK10 VSS VSS

BK11 PAD_TE_O_BA_TX_P_LNUM0 N12P75G

BK12 PAD_TE_O_BA_TX_M_LNUM1 N12P75G

BK13 PAD_TE_O_BA_TX_P_LNUM2 N12P75G

BK14 PAD_TE_O_BA_TX_M_LNUM3 N12P75G

BK15 PAD_TE_O_BA_TX_P_LNUM4 N12P75G

BK16 PAD_TE_O_BA_TX_M_LNUM5 N12P75G

BK17 PAD_TE_O_BA_TX_P_LNUM6 N12P75G

BK18 PAD_TE_O_BA_TX_M_LNUM7 N12P75G

BK19 PAD_TE_O_BA_TX_P_LNUM8 N12P75G

BK2 PAD_WN_BYTEIO8_DQ6 BWN

BK20 PAD_TE_O_BA_TX_M_LNUM9 N12P75G

BK21 PAD_TE_O_BA_TX_P_LNUM10 N12P75G

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 111

Page 112: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

BK22 PAD_TE_O_BA_TX_M_LNUM11 N12P75G

BK23 PAD_TE_O_BA_TX_P_LNUM12 N12P75G

BK24 PAD_TE_O_BA_TX_M_LNUM13 N12P75G

BK25 PAD_TE_O_BA_TX_P_LNUM14 N12P75G

BK26 PAD_TE_O_BA_TX_M_LNUM15 N12P75G

BK27 PAD_TE_O_BA_TX_P_LNUM16 N12P75G

BK28 PAD_TE_O_BA_TX_M_LNUM17 N12P75G

BK29 PAD_TE_O_BA_TX_P_LNUM18 N12P75G

BK3 PAD_WN_BYTEIO8_DQ8 BWN

BK30 PAD_TE_O_BA_TX_M_LNUM19 N12P75G

BK31 PAD_TE_O_BA_TX_P_LNUM20 N12P75G

BK32 PAD_TE_O_BA_TX_M_LNUM21 N12P75G

BK33 PAD_TE_O_BA_TX_P_LNUM22 N12P75G

BK34 PAD_TE_O_BA_TX_M_LNUM23 N12P75G

BK35 PAD_TE_O_BA_TX_P_LNUM24 N12P75G

BK36 PAD_TE_O_BA_TX_M_LNUM25 N12P75G

BK37 PAD_TE_O_BA_TX_P_LNUM26 N12P75G

BK38 PAD_TE_O_BA_TX_M_LNUM27 N12P75G

BK39 PAD_TE_O_BA_TX_P_LNUM28 N12P75G

BK4 PAD_WN_BYTEIO7_DQ1 BWN

BK40 PAD_TE_O_BA_TX_M_LNUM29 N12P75G

BK41 PAD_TE_O_BA_TX_P_LNUM30 N12P75G

BK42 PAD_TE_O_BA_TX_M_LNUM31 N12P75G

BK43 VSS VSS

BK44 PAD_EN_BYTEIO3_DQ4 BEN

BK45 PAD_EN_BYTEIO3_DQ9 BEN

BK46 PAD_EN_BYTEIO6_DQ7 BEN

BK47 PAD_EN_BYTEIO6_DQ4 BEN

BK48 PAD_EN_BYTEIO7_DQ7 BEN

BK49 PAD_EN_BYTEIO8_DQ8 BEN

BK5 PAD_WN_BYTEIO6_DQ4 BWN

BK50 PAD_EN_BYTEIO8_DQ6 BEN

BK51 VSS VSS

BK6 PAD_WN_BYTEIO6_DQ7 BWN

BK7 PAD_WN_BYTEIO3_DQ9 BWN

BK8 PAD_WN_BYTEIO3_DQ4 BWN

BK9 VSS VSS

BL1 NB NB

BL10 VSS VSS

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 112 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 113: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

BL11 PA_VDD1 N12P75G

BL12 PAD_TE_O_BA_TX_P_LNUM1 N12P75G

BL13 PA_VDD1 N12P75G

BL14 PAD_TE_O_BA_TX_P_LNUM3 N12P75G

BL15 PA_VDD1 N12P75G

BL16 PAD_TE_O_BA_TX_P_LNUM5 N12P75G

BL17 PA_VDD1 N12P75G

BL18 PAD_TE_O_BA_TX_P_LNUM7 N12P75G

BL19 PA_VDD1 N12P75G

BL2 VSS VSS

BL20 PAD_TE_O_BA_TX_P_LNUM9 N12P75G

BL21 PA_VDD1 N12P75G

BL22 PAD_TE_O_BA_TX_P_LNUM11 N12P75G

BL23 PA_VDD1 N12P75G

BL24 PAD_TE_O_BA_TX_P_LNUM13 N12P75G

BL25 PA_VDD1 N12P75G

BL26 PAD_TE_O_BA_TX_P_LNUM15 N12P75G

BL27 PA_VDD1 N12P75G

BL28 PAD_TE_O_BA_TX_P_LNUM17 N12P75G

BL29 PA_VDD1 N12P75G

BL3 VSS VSS

BL30 PAD_TE_O_BA_TX_P_LNUM19 N12P75G

BL31 PA_VDD1 N12P75G

BL32 PAD_TE_O_BA_TX_P_LNUM21 N12P75G

BL33 PA_VDD1 N12P75G

BL34 PAD_TE_O_BA_TX_P_LNUM23 N12P75G

BL35 PA_VDD1 N12P75G

BL36 PAD_TE_O_BA_TX_P_LNUM25 N12P75G

BL37 PA_VDD1 N12P75G

BL38 PAD_TE_O_BA_TX_P_LNUM27 N12P75G

BL39 PA_VDD1 N12P75G

BL4 PAD_WN_BYTEIO7_DQ7 BWN

BL40 PAD_TE_O_BA_TX_P_LNUM29 N12P75G

BL41 PA_VDD1 S12P75G

BL42 PAD_TE_O_BA_TX_P_LNUM31 N12P75G

BL43 VSS VSS

BL44 VSS VSS

BL45 VSS VSS

BL46 VSS VSS

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 113

Page 114: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

BL47 VSS VSS

BL48 PAD_EN_BYTEIO7_DQ1 BEN

BL49 VSS VSS

BL5 VSS VSS

BL50 VSS VSS

BL51 NB NB

BL6 VSS VSS

BL7 VSS VSS

BL8 VSS VSS

BL9 VSS VSS

C1 VSS VSS

C10 VSS VSS

C11 PAD_BE_O_BA_TX_M_LNUM0 S12P75G

C12 PA_VDD1 S12P75G

C13 PAD_BE_O_BA_TX_M_LNUM2 S12P75G

C14 PA_VDD1 S12P75G

C15 PAD_BE_O_BA_TX_M_LNUM4 S12P75G

C16 PA_VDD1 S12P75G

C17 PAD_BE_O_BA_TX_M_LNUM6 S12P75G

C18 PA_VDD1 S12P75G

C19 PAD_BE_O_BA_TX_M_LNUM8 S12P75G

C2 PAD_WS_BYTEIO10_DQ6 BWS

C20 PA_VDD1 S12P75G

C21 PAD_BE_O_BA_TX_M_LNUM10 S12P75G

C22 PA_VDD1 S12P75G

C23 PAD_BE_O_BA_TX_M_LNUM12 S12P75G

C24 PA_VDD1 S12P75G

C25 PAD_BE_O_BA_TX_M_LNUM14 S12P75G

C26 PA_VDD1 S12P75G

C27 PAD_BE_O_BA_TX_M_LNUM16 S12P75G

C28 PA_VDD1 S12P75G

C29 PAD_BE_O_BA_TX_M_LNUM18 S12P75G

C3 PAD_WS_BYTEIO9_DQ0 BWS

C30 PA_VDD1 S12P75G

C31 PAD_BE_O_BA_TX_M_LNUM20 S12P75G

C32 PA_VDD1 S12P75G

C33 PAD_BE_O_BA_TX_M_LNUM22 S12P75G

C34 PA_VDD1 S12P75G

C35 PAD_BE_O_BA_TX_M_LNUM24 S12P75G

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 114 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 115: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

C36 PA_VDD1 S12P75G

C37 PAD_BE_O_BA_TX_M_LNUM26 S12P75G

C38 PA_VDD1 S12P75G

C39 PAD_BE_O_BA_TX_M_LNUM28 S12P75G

C4 VSS VSS

C40 PA_VDD1 S12P75G

C41 PAD_BE_O_BA_TX_M_LNUM30 S12P75G

C42 PA_VDD1 N12P75G

C43 VSS VSS

C44 VSS VSS

C45 PAD_ES_BYTEIO12_DQ1 BES

C46 VSS VSS

C47 PAD_ES_BYTEIO11_DQ6 BES

C48 VSS VSS

C49 PAD_ES_BYTEIO9_DQ0 BES

C5 PAD_WS_BYTEIO11_DQ6 BWS

C50 PAD_ES_BYTEIO10_DQ1 BES

C51 VSS VSS

C6 VSS VSS

C7 PAD_WS_BYTEIO12_DQ1 BWS

C8 VSS VSS

C9 VCCRAM_EFUSE3 EFUSE

D1 PAD_WS_BYTEIO10_DQS BWS

D10 VSS VSS

D11 VSS VSS

D12 VSS VSS

D13 VSS VSS

D14 VSS VSS

D15 VSS VSS

D16 VSS VSS

D17 VSS VSS

D18 VSS VSS

D19 VSS VSS

D2 PAD_WS_BYTEIO10_DQSN BWS

D20 VSS VSS

D21 VSS VSS

D22 VSS VSS

D23 VSS VSS

D24 VSS VSS

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 115

Page 116: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

D25 VSS VSS

D26 VSS VSS

D27 VSS VSS

D28 VSS VSS

D29 VSS VSS

D3 PAD_WS_BYTEIO9_DQ5 BWS

D30 VSS VSS

D31 VSS VSS

D32 VSS VSS

D33 VSS VSS

D34 VSS VSS

D35 VSS VSS

D36 VSS VSS

D37 VSS VSS

D38 VSS VSS

D39 VSS VSS

D4 PAD_WS_BYTEIO9_DQ4 BWS

D40 VSS VSS

D41 VSS VSS

D42 VSS VSS

D43 VSS VSS

D44 PAD_ES_BYTEIO12_DQSN BES

D45 PAD_ES_BYTEIO12_DQS BES

D46 PAD_ES_BYTEIO11_DQSN BES

D47 PAD_ES_BYTEIO11_DQS BES

D48 PAD_ES_BYTEIO9_DQ4 BES

D49 PAD_ES_BYTEIO9_DQ5 BES

D5 PAD_WS_BYTEIO11_DQS BWS

D50 PAD_ES_BYTEIO10_DQSN BES

D51 PAD_ES_BYTEIO10_DQS BES

D6 PAD_WS_BYTEIO11_DQSN BWS

D7 PAD_WS_BYTEIO12_DQS BWS

D8 PAD_WS_BYTEIO12_DQSN BWS

D9 VCCFHV_EFUSE3 EFUSE

E1 PAD_WS_BYTEIO10_DQ2 BWS

E10 VSS VSS

E11 PAD_BE_I_BA_RX_M_LNUM0 S12P75G

E12 PA_VDD2 S12P75G

E13 PAD_BE_I_BA_RX_M_LNUM2 S12P75G

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 116 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 117: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

E14 PA_VDD2 S12P75G

E15 PAD_BE_I_BA_RX_M_LNUM4 S12P75G

E16 PA_VDD2 S12P75G

E17 PAD_BE_I_BA_RX_M_LNUM6 S12P75G

E18 PA_VDD2 S12P75G

E19 PAD_BE_I_BA_RX_M_LNUM8 S12P75G

E2 PAD_WS_BYTEIO10_DQ5 BWS

E20 PA_VDD2 S12P75G

E21 PAD_BE_I_BA_RX_M_LNUM10 S12P75G

E22 PA_VDD2 S12P75G

E23 PAD_BE_I_BA_RX_M_LNUM12 S12P75G

E24 PA_VDD2 S12P75G

E25 PAD_BE_I_BA_RX_M_LNUM14 S12P75G

E26 PA_VDD2 S12P75G

E27 PAD_BE_I_BA_RX_M_LNUM16 S12P75G

E28 PA_VDD2 S12P75G

E29 PAD_BE_I_BA_RX_M_LNUM18 S12P75G

E3 PAD_WS_BYTEIO9_DQ1 BWS

E30 PA_VDD2 S12P75G

E31 PAD_BE_I_BA_RX_M_LNUM20 S12P75G

E32 PA_VDD2 S12P75G

E33 PAD_BE_I_BA_RX_M_LNUM22 S12P75G

E34 PA_VDD2 S12P75G

E35 PAD_BE_I_BA_RX_M_LNUM24 S12P75G

E36 PA_VDD2 S12P75G

E37 PAD_BE_I_BA_RX_M_LNUM26 S12P75G

E38 PA_VDD2 S12P75G

E39 PAD_BE_I_BA_RX_M_LNUM28 S12P75G

E4 PAD_WS_BYTEIO9_DQ6 BWS

E40 PA_VDD2 S12P75G

E41 PAD_BE_I_BA_RX_M_LNUM30 S12P75G

E42 PA_VDD2 S12P75G

E43 VSS VSS

E44 PAD_ES_BYTEIO12_DQ3 BES

E45 PAD_ES_BYTEIO12_DQ2 BES

E46 PAD_ES_BYTEIO11_DQ3 BES

E47 PAD_ES_BYTEIO11_DQ4 BES

E48 PAD_ES_BYTEIO9_DQ6 BES

E49 PAD_ES_BYTEIO9_DQ1 BES

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 117

Page 118: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

E5 PAD_WS_BYTEIO11_DQ4 BWS

E50 PAD_ES_BYTEIO10_DQ5 BES

E51 PAD_ES_BYTEIO10_DQ2 BES

E6 PAD_WS_BYTEIO11_DQ3 BWS

E7 PAD_WS_BYTEIO12_DQ2 BWS

E8 PAD_WS_BYTEIO12_DQ3 BWS

E9 VCCRAM_EFUSE2 EFUSE

F1 VSS VSS

F10 VSS VSS

F11 PAD_BE_I_BA_RX_P_LNUM0 S12P75G

F12 PAD_BE_I_BA_RX_M_LNUM1 S12P75G

F13 PAD_BE_I_BA_RX_P_LNUM2 S12P75G

F14 PAD_BE_I_BA_RX_M_LNUM3 S12P75G

F15 PAD_BE_I_BA_RX_P_LNUM4 S12P75G

F16 PAD_BE_I_BA_RX_M_LNUM5 S12P75G

F17 PAD_BE_I_BA_RX_P_LNUM6 S12P75G

F18 PAD_BE_I_BA_RX_M_LNUM7 S12P75G

F19 PAD_BE_I_BA_RX_P_LNUM8 S12P75G

F2 PAD_WS_BYTEIO10_DQ8 BWS

F20 PAD_BE_I_BA_RX_M_LNUM9 S12P75G

F21 PAD_BE_I_BA_RX_P_LNUM10 S12P75G

F22 PAD_BE_I_BA_RX_M_LNUM11 S12P75G

F23 PAD_BE_I_BA_RX_P_LNUM12 S12P75G

F24 PAD_BE_I_BA_RX_M_LNUM13 S12P75G

F25 PAD_BE_I_BA_RX_P_LNUM14 S12P75G

F26 PAD_BE_I_BA_RX_M_LNUM15 S12P75G

F27 PAD_BE_I_BA_RX_P_LNUM16 S12P75G

F28 PAD_BE_I_BA_RX_M_LNUM17 S12P75G

F29 PAD_BE_I_BA_RX_P_LNUM18 S12P75G

F3 VSS VSS

F30 PAD_BE_I_BA_RX_M_LNUM19 S12P75G

F31 PAD_BE_I_BA_RX_P_LNUM20 S12P75G

F32 PAD_BE_I_BA_RX_M_LNUM21 S12P75G

F33 PAD_BE_I_BA_RX_P_LNUM22 S12P75G

F34 PAD_BE_I_BA_RX_M_LNUM23 S12P75G

F35 PAD_BE_I_BA_RX_P_LNUM24 S12P75G

F36 PAD_BE_I_BA_RX_M_LNUM25 S12P75G

F37 PAD_BE_I_BA_RX_P_LNUM26 S12P75G

F38 PAD_BE_I_BA_RX_M_LNUM27 S12P75G

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 118 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 119: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

F39 PAD_BE_I_BA_RX_P_LNUM28 S12P75G

F4 PAD_WS_BYTEIO9_DQ9 BWS

F40 PAD_BE_I_BA_RX_M_LNUM29 S12P75G

F41 PAD_BE_I_BA_RX_P_LNUM30 S12P75G

F42 PAD_BE_I_BA_RX_M_LNUM31 S12P75G

F43 VSS VSS

F44 PAD_ES_BYTEIO12_DQ8 BES

F45 VSS VSS

F46 PAD_ES_BYTEIO11_DQ9 BES

F47 VSS VSS

F48 PAD_ES_BYTEIO9_DQ9 BES

F49 VSS VSS

F5 VSS VSS

F50 PAD_ES_BYTEIO10_DQ8 BES

F51 VSS VSS

F6 PAD_WS_BYTEIO11_DQ9 BWS

F7 VSS VSS

F8 PAD_WS_BYTEIO12_DQ8 BWS

F9 VCCFHV_EFUSE2 EFUSE

G1 PAD_WS_BYTEIO10_DQ7 BWS

G10 VSS VSS

G11 PA_VDD2 S12P75G

G12 PAD_BE_I_BA_RX_P_LNUM1 S12P75G

G13 PA_VDD2 S12P75G

G14 PAD_BE_I_BA_RX_P_LNUM3 S12P75G

G15 PA_VDD2 S12P75G

G16 PAD_BE_I_BA_RX_P_LNUM5 S12P75G

G17 PA_VDD2 S12P75G

G18 PAD_BE_I_BA_RX_P_LNUM7 S12P75G

G19 PA_VDD2 S12P75G

G2 PAD_WS_BYTEIO10_DQ3 BWS

G20 PAD_BE_I_BA_RX_P_LNUM9 S12P75G

G21 PA_VDD2 S12P75G

G22 PAD_BE_I_BA_RX_P_LNUM11 S12P75G

G23 PA_VDD2 S12P75G

G24 PAD_BE_I_BA_RX_P_LNUM13 S12P75G

G25 PA_VDD2 S12P75G

G26 PAD_BE_I_BA_RX_P_LNUM15 S12P75G

G27 PA_VDD2 S12P75G

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 119

Page 120: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

G28 PAD_BE_I_BA_RX_P_LNUM17 S12P75G

G29 PA_VDD2 S12P75G

G3 PAD_WS_BYTEIO9_DQS BWS

G30 PAD_BE_I_BA_RX_P_LNUM19 S12P75G

G31 PA_VDD2 S12P75G

G32 PAD_BE_I_BA_RX_P_LNUM21 S12P75G

G33 PA_VDD2 S12P75G

G34 PAD_BE_I_BA_RX_P_LNUM23 S12P75G

G35 PA_VDD2 S12P75G

G36 PAD_BE_I_BA_RX_P_LNUM25 S12P75G

G37 PA_VDD2 S12P75G

G38 PAD_BE_I_BA_RX_P_LNUM27 S12P75G

G39 PA_VDD2 S12P75G

G4 PAD_WS_BYTEIO9_DQSN BWS

G40 PAD_BE_I_BA_RX_P_LNUM29 S12P75G

G41 PA_VDD2 S12P75G

G42 PAD_BE_I_BA_RX_P_LNUM31 S12P75G

G43 VSS VSS

G44 PAD_ES_BYTEIO12_DQ7 BES

G45 PAD_ES_BYTEIO12_DQ0 BES

G46 PAD_ES_BYTEIO11_DQ8 BES

G47 PAD_ES_BYTEIO11_DQ1 BES

G48 PAD_ES_BYTEIO9_DQSN BES

G49 PAD_ES_BYTEIO9_DQS BES

G5 PAD_WS_BYTEIO11_DQ1 BWS

G50 PAD_ES_BYTEIO10_DQ3 BES

G51 PAD_ES_BYTEIO10_DQ7 BES

G6 PAD_WS_BYTEIO11_DQ8 BWS

G7 PAD_WS_BYTEIO12_DQ0 BWS

G8 PAD_WS_BYTEIO12_DQ7 BWS

G9 VCCRAM_EFUSE1 EFUSE

H1 PAD_WS_BYTEIO10_DQ0 BWS

H10 VSS VSS

H11 PAD_BE_O_BA_APROBE_LNUM[0-3] S12P75G

H12 VSS VSS

H13 PAD_BE_I_A_RXTERMV_LNUM[0-3] S12P75G

H14 VSS VSS

H15 PAD_BE_O_BA_APROBE_LNUM[4-7] S12P75G

H16 VSS VSS

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 120 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 121: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

H17 PAD_BE_I_A_RXTERMV_LNUM[4-7] S12P75G

H18 VSS VSS

H19 PAD_BE_O_BA_APROBE_LNUM[8-11] S12P75G

H2 PAD_WS_BYTEIO10_DQ9 BWS

H20 VSS VSS

H21 PAD_BE_I_A_RXTERMV_LNUM[8-11] S12P75G

H22 VSS VSS

H23 PAD_BE_O_BA_APROBE_LNUM[12-15] S12P75G

H24 VSS VSS

H25 PAD_BE_I_A_RXTERMV_LNUM[12-15] S12P75G

H26 VSS VSS

H27 PAD_BE_O_BA_APROBE_LNUM[16-19] S12P75G

H28 VSS VSS

H29 PAD_BE_I_A_RXTERMV_LNUM[16-19] S12P75G

H3 PAD_WS_BYTEIO9_DQ2 BWS

H30 VSS VSS

H31 PAD_BE_O_BA_APROBE_LNUM[20-23] S12P75G

H32 VSS VSS

H33 PAD_BE_I_A_RXTERMV_LNUM[20-23] S12P75G

H34 VSS VSS

H35 PAD_BE_O_BA_APROBE_LNUM[24-27] S12P75G

H36 VSS VSS

H37 PAD_BE_I_A_RXTERMV_LNUM[24-27] S12P75G

H38 VSS VSS

H39 PAD_BE_O_BA_APROBE_LNUM[28-31] S12P75G

H4 PAD_WS_BYTEIO9_DQ3 BWS

H40 VSS VSS

H41 VSS VSS

H42 VSS VSS

H43 VSS VSS

H44 PAD_ES_BYTEIO12_DQ5 BES

H45 PAD_ES_BYTEIO12_DQ6 BES

H46 PAD_ES_BYTEIO11_DQ7 BES

H47 PAD_ES_BYTEIO11_DQ2 BES

H48 PAD_ES_BYTEIO9_DQ3 BES

H49 PAD_ES_BYTEIO9_DQ2 BES

H5 PAD_WS_BYTEIO11_DQ2 BWS

H50 PAD_ES_BYTEIO10_DQ9 BES

H51 PAD_ES_BYTEIO10_DQ0 BES

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 121

Page 122: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

H6 PAD_WS_BYTEIO11_DQ7 BWS

H7 PAD_WS_BYTEIO12_DQ6 BWS

H8 PAD_WS_BYTEIO12_DQ5 BWS

H9 VCCFHV_EFUSE1 EFUSE

J1 PAD_WS_BYTEIO4_DQ9 BWS

J10 PAD_WS_BYTEIO7_DQ8 BWS

J11 PAD_WS_BYTEIO8_DQ7 BWS

J12 PAD_WS_BYTEIO8_DQ4 BWS

J13 TCK JTAG

J14 CONFIG_RSTN CFG

J15 CSN1 CFG

J16 CONFIG_DONE CFG

J17 CONFIG_MODESEL2 CFG

J18 BYPASS_CLR_MEM CFG

J19 TMS JTAG

J2 PAD_WS_BYTEIO4_DQ8 BWS

J20 CONFIG_SCRUB_SINGLE_ERR CFG

J21 VSS VSS

J22 AVDD_PLL_SW3 PLL_SW

J23 AVDD_PLL_SW2 PLL_SW

J24 VSS VSS

J25 PAD_BE_I_BCK_REF_P_LNUM[4-5] S12P75G

J26 PAD_BE_I_BCK_REF_P_LNUM[6-7] S12P75G

J27 VSS VSS

J28 PAD_BE_I_BCK_REF_P_LNUM[12-13] S12P75G

J29 PAD_BE_I_BCK_REF_P_LNUM[14-15] S12P75G

J3 PAD_WS_BYTEIO3_DQ5 BWS

J30 VSS VSS

J31 PAD_BE_I_BCK_REF_P_LNUM[20-21] S12P75G

J32 PAD_BE_I_BCK_REF_P_LNUM[22-23] S12P75G

J33 VSS VSS

J34 PAD_BE_I_BCK_REF_P_LNUM[28-29] S12P75G

J35 PAD_BE_I_BCK_REF_P_LNUM[30-31] S12P75G

J36 VSS VSS

J37 AVDD_PLL_SE3 PLL_SE

J38 AVDD_PLL_SE2 PLL_SE

J39 PAD_BE_I_A_RXTERMV_LNUM[28-31] S12P75G

J4 PAD_WS_BYTEIO3_DQ7 BWS

J40 PAD_ES_BYTEIO8_DQ4 BES

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 122 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 123: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

J41 PAD_ES_BYTEIO8_DQ7 BES

J42 PAD_ES_BYTEIO7_DQ8 BES

J43 PAD_ES_BYTEIO7_DQ7 BES

J44 PAD_ES_BYTEIO6_DQ5 BES

J45 PAD_ES_BYTEIO6_DQ6 BES

J46 PAD_ES_BYTEIO5_DQ6 BES

J47 PAD_ES_BYTEIO5_DQ0 BES

J48 PAD_ES_BYTEIO3_DQ7 BES

J49 PAD_ES_BYTEIO3_DQ5 BES

J5 PAD_WS_BYTEIO5_DQ0 BWS

J50 PAD_ES_BYTEIO4_DQ8 BES

J51 PAD_ES_BYTEIO4_DQ9 BES

J6 PAD_WS_BYTEIO5_DQ6 BWS

J7 PAD_WS_BYTEIO6_DQ6 BWS

J8 PAD_WS_BYTEIO6_DQ5 BWS

J9 PAD_WS_BYTEIO7_DQ7 BWS

K1 PAD_WS_BYTEIO4_DQ7 BWS

K10 VSS VSS

K11 PAD_WS_BYTEIO8_DQ2 BWS

K12 VSS VSS

K13 HOLDN CFG

K14 START_CFG_STARTUP CFG

K15 PROGRAM_ENABLE0 CFG

K16 TDO JTAG

K17 TDI JTAG

K18 CPU_CLK CFG

K19 CONFIG_SCRUBBING_ENABLE CFG

K2 VSS VSS

K20 CORE_TESTIN1 DBG

K21 VSS VSS

K22 AVDD_PLL_SW1 PLL_SW

K23 AVDD_PLL_SW0 PLL_SW

K24 VSS VSS

K25 PAD_BE_I_BCK_REF_M_LNUM[4-5] S12P75G

K26 PAD_BE_I_BCK_REF_M_LNUM[6-7] S12P75G

K27 VSS VSS

K28 PAD_BE_I_BCK_REF_M_LNUM[12-13] S12P75G

K29 PAD_BE_I_BCK_REF_M_LNUM[14-15] S12P75G

K3 PAD_WS_BYTEIO3_DQ9 BWS

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 123

Page 124: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

K30 VSS VSS

K31 PAD_BE_I_BCK_REF_M_LNUM[20-21] S12P75G

K32 PAD_BE_I_BCK_REF_M_LNUM[22-23] S12P75G

K33 VSS VSS

K34 PAD_BE_I_BCK_REF_M_LNUM[28-29] S12P75G

K35 PAD_BE_I_BCK_REF_M_LNUM[30-31] S12P75G

K36 VSS VSS

K37 AVDD_PLL_SE1 PLL_SE

K38 AVDD_PLL_SE0 PLL_SE

K39 VSS VSS

K4 VSS VSS

K40 VSS VSS

K41 PAD_ES_BYTEIO8_DQ2 BES

K42 VSS VSS

K43 PAD_ES_BYTEIO7_DQ2 BES

K44 VSS VSS

K45 PAD_ES_BYTEIO6_DQ7 BES

K46 VSS VSS

K47 PAD_ES_BYTEIO5_DQ1 BES

K48 VSS VSS

K49 PAD_ES_BYTEIO3_DQ9 BES

K5 PAD_WS_BYTEIO5_DQ1 BWS

K50 VSS VSS

K51 PAD_ES_BYTEIO4_DQ7 BES

K6 VSS VSS

K7 PAD_WS_BYTEIO6_DQ7 BWS

K8 VSS VSS

K9 PAD_WS_BYTEIO7_DQ2 BWS

L1 PAD_WS_BYTEIO4_DQ5 BWS

L10 PAD_WS_BYTEIO7_DQ6 BWS

L11 PAD_WS_BYTEIO8_DQ9 BWS

L12 PAD_WS_BYTEIO8_DQ5 BWS

L13 SDI CFG

L14 SD3 CFG

L15 VDDO_JCFG CFG

L16 TRSTN JTAG

L17 CONFIG_MODESEL0 CFG

L18 CONFIG_MODESEL1 CFG

L19 STAP_SEL CFG

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 124 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 125: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

L2 PAD_WS_BYTEIO4_DQ3 BWS

L20 VSS VSS

L21 VSS VSS

L22 VSS VSS

L23 VSS VSS

L24 VSS VSS

L25 VSS VSS

L26 VSS VSS

L27 VSS VSS

L28 VSS VSS

L29 VSS VSS

L3 PAD_WS_BYTEIO3_DQ8 BWS

L30 VSS VSS

L31 VSS VSS

L32 VSS VSS

L33 VSS VSS

L34 VSS VSS

L35 VSS VSS

L36 VSS VSS

L37 VSS VSS

L38 VSS VSS

L39 VSS VSS

L4 PAD_WS_BYTEIO3_DQ3 BWS

L40 PAD_ES_BYTEIO8_DQ5 BES

L41 PAD_ES_BYTEIO8_DQ9 BES

L42 PAD_ES_BYTEIO7_DQ6 BES

L43 PAD_ES_BYTEIO7_DQ3 BES

L44 PAD_ES_BYTEIO6_DQ1 BES

L45 PAD_ES_BYTEIO6_DQ4 BES

L46 PAD_ES_BYTEIO5_DQSN BES

L47 PAD_ES_BYTEIO5_DQS BES

L48 PAD_ES_BYTEIO3_DQ3 BES

L49 PAD_ES_BYTEIO3_DQ8 BES

L5 PAD_WS_BYTEIO5_DQS BWS

L50 PAD_ES_BYTEIO4_DQ3 BES

L51 PAD_ES_BYTEIO4_DQ5 BES

L6 PAD_WS_BYTEIO5_DQSN BWS

L7 PAD_WS_BYTEIO6_DQ4 BWS

L8 PAD_WS_BYTEIO6_DQ1 BWS

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 125

Page 126: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

L9 PAD_WS_BYTEIO7_DQ3 BWS

M1 PAD_WS_BYTEIO4_DQS BWS

M10 PAD_WS_BYTEIO7_DQ1 BWS

M11 PAD_WS_BYTEIO8_DQ0 BWS

M12 PAD_WS_BYTEIO8_DQ1 BWS

M13 SD2 CFG

M14 SD1 CFG

M15 VDDO_JCFG CFG

M16 CONFIG_STATUS CFG

M17 CONFIG_CLKSEL CFG

M18 VSS VSS

M19 PROGRAM_ENABLE1 CFG

M2 PAD_WS_BYTEIO4_DQSN BWS

M20 CONFIG_SCRUB_MULTIPLE_ERR CFG

M21 VSS VSS

M22 VSS VSS

M23 VSS VSS

M24 VSS VSS

M25 PAD_BE_I_BCK_REF_P_LNUM[0-1] S12P75G

M26 PAD_BE_I_BCK_REF_P_LNUM[2-3] S12P75G

M27 VSS VSS

M28 PAD_BE_I_BCK_REF_P_LNUM[8-9] S12P75G

M29 PAD_BE_I_BCK_REF_P_LNUM[10-11] S12P75G

M3 PAD_WS_BYTEIO3_DQ0 BWS

M30 VSS VSS

M31 PAD_BE_I_BCK_REF_P_LNUM[16-17] S12P75G

M32 PAD_BE_I_BCK_REF_P_LNUM[18-19] S12P75G

M33 VSS VSS

M34 PAD_BE_I_BCK_REF_P_LNUM[24-25] S12P75G

M35 PAD_BE_I_BCK_REF_P_LNUM[26-27] S12P75G

M36 VSS VSS

M37 PAD0_CLK_BANK_SE PLL_SE

M38 PAD1_CLK_BANK_SE PLL_SE

M39 VSS VSS

M4 PAD_WS_BYTEIO3_DQ1 BWS

M40 PAD_ES_BYTEIO8_DQ1 BES

M41 PAD_ES_BYTEIO8_DQ0 BES

M42 PAD_ES_BYTEIO7_DQ1 BES

M43 PAD_ES_BYTEIO7_DQ0 BES

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 126 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 127: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

M44 PAD_ES_BYTEIO6_DQSN BES

M45 PAD_ES_BYTEIO6_DQS BES

M46 PAD_ES_BYTEIO5_DQ8 BES

M47 PAD_ES_BYTEIO5_DQ2 BES

M48 PAD_ES_BYTEIO3_DQ1 BES

M49 PAD_ES_BYTEIO3_DQ0 BES

M5 PAD_WS_BYTEIO5_DQ2 BWS

M50 PAD_ES_BYTEIO4_DQSN BES

M51 PAD_ES_BYTEIO4_DQS BES

M6 PAD_WS_BYTEIO5_DQ8 BWS

M7 PAD_WS_BYTEIO6_DQS BWS

M8 PAD_WS_BYTEIO6_DQSN BWS

M9 PAD_WS_BYTEIO7_DQ0 BWS

N1 VSS VSS

N10 PAD_WS_BYTEIO7_DQ4 BWS

N11 VSS VSS

N12 PAD_WS_BYTEIO8_DQ6 BWS

N13 SCK CFG

N14 SD0 CFG

N15 VSS VSS

N16 READ_STATE_ERR CFG

N17 CSN2 CFG

N18 CONFIG_SYS_CLK_BYPASS CFG

N19 CSN3 CFG

N2 PAD_WS_BYTEIO4_DQ1 BWS

N20 CSN0 CFG

N21 VSS VSS

N22 VSS VSS

N23 VSS VSS

N24 VSS VSS

N25 PAD_BE_I_BCK_REF_M_LNUM[0-1] S12P75G

N26 PAD_BE_I_BCK_REF_M_LNUM[2-3] S12P75G

N27 VSS VSS

N28 PAD_BE_I_BCK_REF_M_LNUM[8-9] S12P75G

N29 PAD_BE_I_BCK_REF_M_LNUM[10-11] S12P75G

N3 VSS VSS

N30 VSS VSS

N31 PAD_BE_I_BCK_REF_M_LNUM[16-17] S12P75G

N32 PAD_BE_I_BCK_REF_M_LNUM[18-19] S12P75G

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 127

Page 128: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

N33 VSS VSS

N34 PAD_BE_I_BCK_REF_M_LNUM[24-25] S12P75G

N35 PAD_BE_I_BCK_REF_M_LNUM[26-27] S12P75G

N36 VSS VSS

N37 PAD2_CLK_BANK_SE PLL_SE

N38 PAD3_CLK_BANK_SE PLL_SE

N39 VSS VSS

N4 PAD_WS_BYTEIO3_DQ2 BWS

N40 PAD_ES_BYTEIO8_DQ6 BES

N41 VSS VSS

N42 PAD_ES_BYTEIO7_DQ4 BES

N43 VSS VSS

N44 PAD_ES_BYTEIO6_DQ0 BES

N45 VSS VSS

N46 PAD_ES_BYTEIO5_DQ5 BES

N47 VSS VSS

N48 PAD_ES_BYTEIO3_DQ2 BES

N49 VSS VSS

N5 VSS VSS

N50 PAD_ES_BYTEIO4_DQ1 BES

N51 VSS VSS

N6 PAD_WS_BYTEIO5_DQ5 BWS

N7 VSS VSS

N8 PAD_WS_BYTEIO6_DQ0 BWS

N9 VSS VSS

P1 PAD_WS_BYTEIO4_DQ4 BWS

P10 PAD_WS_BYTEIO7_DQSN BWS

P11 PAD_WS_BYTEIO8_DQS BWS

P12 PAD_WS_BYTEIO8_DQSN BWS

P13 VSS VSS

P14 PAD5_CLK_BANK_SW PLL_SW

P15 PAD4_CLK_BANK_SW PLL_SW

P16 PAD3_CLK_BANK_SW PLL_SW

P17 PAD2_CLK_BANK_SW PLL_SW

P18 PAD1_CLK_BANK_SW PLL_SW

P19 PAD0_CLK_BANK_SW PLL_SW

P2 PAD_WS_BYTEIO4_DQ0 BWS

P20 VSS VSS

P21 RCOMP_DRV_CLK_BANK_SW PLL_SW

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 128 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 129: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

P22 VSS VSS

P23 VSS VSS

P24 PA_VREG_CMN VREG_CMN

P25 VSS VSS

P26 VSS VSS

P27 PA_VREG_CMN VREG_CMN

P28 VSS VSS

P29 VSS VSS

P3 PAD_WS_BYTEIO3_DQS BWS

P30 PA_VREG_CMN VREG_CMN

P31 VSS VSS

P32 VSS VSS

P33 RCOMP_DRV_CLK_BANK_SE PLL_SE

P34 VSS VSS

P35 VSS VSS

P36 VDDO_CBSE PLL_SE

P37 PAD4_CLK_BANK_SE PLL_SE

P38 PAD5_CLK_BANK_SE PLL_SE

P39 VSS VSS

P4 PAD_WS_BYTEIO3_DQSN BWS

P40 PAD_ES_BYTEIO8_DQSN BES

P41 PAD_ES_BYTEIO8_DQS BES

P42 PAD_ES_BYTEIO7_DQSN BES

P43 PAD_ES_BYTEIO7_DQS BES

P44 PAD_ES_BYTEIO6_DQ3 BES

P45 PAD_ES_BYTEIO6_DQ8 BES

P46 PAD_ES_BYTEIO5_DQ4 BES

P47 PAD_ES_BYTEIO5_DQ3 BES

P48 PAD_ES_BYTEIO3_DQSN BES

P49 PAD_ES_BYTEIO3_DQS BES

P5 PAD_WS_BYTEIO5_DQ3 BWS

P50 PAD_ES_BYTEIO4_DQ0 BES

P51 PAD_ES_BYTEIO4_DQ4 BES

P6 PAD_WS_BYTEIO5_DQ4 BWS

P7 PAD_WS_BYTEIO6_DQ8 BWS

P8 PAD_WS_BYTEIO6_DQ3 BWS

P9 PAD_WS_BYTEIO7_DQS BWS

R1 PAD_WS_BYTEIO4_DQ2 BWS

R10 PAD_WS_BYTEIO7_DQ5 BWS

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 129

Page 130: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

R11 PAD_WS_BYTEIO8_DQ3 BWS

R12 PAD_WS_BYTEIO8_DQ8 BWS

R13 VSS VSS

R14 VSS VSS

R15 VSS VSS

R16 VSS VSS

R17 VSS VSS

R18 VDDO_CBSW PLL_SW

R19 VDDO_CBSW PLL_SW

R2 PAD_WS_BYTEIO4_DQ6 BWS

R20 VSS VSS

R21 RCOMP_TERM_CLK_BANK_SW PLL_SW

R22 VSS VSS

R23 PA_VREG_RX VREG_RX

R24 PA_VREG_SYNTHX VREG_SYNTHX

R25 VSS VSS

R26 PA_VREG_RX VREG_RX

R27 PA_VREG_SYNTHX VREG_SYNTHX

R28 VSS VSS

R29 PA_VREG_RX VREG_RX

R3 PAD_WS_BYTEIO3_DQ4 BWS

R30 PA_VREG_SYNTHX VREG_SYNTHX

R31 VSS VSS

R32 VSS VSS

R33 RCOMP_TERM_CLK_BANK_SE PLL_SE

R34 VSS VSS

R35 VSS VSS

R36 VSS VSS

R37 VDDO_CBSE PLL_SE

R38 TEMP_DIODE_N TEMP

R39 TEMP_DIODE_P TEMP

R4 PAD_WS_BYTEIO3_DQ6 BWS

R40 PAD_ES_BYTEIO8_DQ8 BES

R41 PAD_ES_BYTEIO8_DQ3 BES

R42 PAD_ES_BYTEIO7_DQ5 BES

R43 PAD_ES_BYTEIO7_DQ9 BES

R44 PAD_ES_BYTEIO6_DQ2 BES

R45 PAD_ES_BYTEIO6_DQ9 BES

R46 PAD_ES_BYTEIO5_DQ9 BES

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 130 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 131: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

R47 PAD_ES_BYTEIO5_DQ7 BES

R48 PAD_ES_BYTEIO3_DQ6 BES

R49 PAD_ES_BYTEIO3_DQ4 BES

R5 PAD_WS_BYTEIO5_DQ7 BWS

R50 PAD_ES_BYTEIO4_DQ6 BES

R51 PAD_ES_BYTEIO4_DQ2 BES

R6 PAD_WS_BYTEIO5_DQ9 BWS

R7 PAD_WS_BYTEIO6_DQ9 BWS

R8 PAD_WS_BYTEIO6_DQ2 BWS

R9 PAD_WS_BYTEIO7_DQ9 BWS

T1 PAD_WC_BYTEIO11_DQ8 BWC

T10 PAD_WS_BYTEIO2_DQ7 BWS

T11 PAD_WS_BYTEIO0_DQ3 BWS

T12 PAD_WS_BYTEIO0_DQ8 BWS

T13 VSS VSS

T14 EFUSE_PROG EFUSE

T15 VSS VSS

T16 VDDO_B22 BWS

T17 VDDO_B22 BWS

T18 VREF_CLK_BANK_SW PLL_SW

T19 VCC SVDD

T2 PAD_WC_BYTEIO11_DQ3 BWC

T20 VCC SVDD

T21 VCC SVDD

T22 VCC SVDD

T23 VCC SVDD

T24 VCC SVDD

T25 VCC SVDD

T26 VCC SVDD

T27 VCC SVDD

T28 VCC SVDD

T29 VCC SVDD

T3 PAD_WS_BYTEIO1_DQ3 BWS

T30 VCC SVDD

T31 VCC SVDD

T32 VCC SVDD

T33 VCC SVDD

T34 VREF_CLK_BANK_SE PLL_SE

T35 VDDO_B32 BES

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 131

Page 132: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

T36 VDDO_B32 BES

T37 VSS VSS

T38 VSS VSS

T39 VSS VSS

T4 PAD_WS_BYTEIO1_DQ8 BWS

T40 PAD_ES_BYTEIO0_DQ8 BES

T41 PAD_ES_BYTEIO0_DQ3 BES

T42 PAD_ES_BYTEIO2_DQ7 BES

T43 PAD_ES_BYTEIO2_DQ3 BES

T44 PAD_EC_BYTEIO12_DQ5 BEC

T45 PAD_EC_BYTEIO12_DQ0 BEC

T46 PAD_EC_BYTEIO10_DQ6 BEC

T47 PAD_EC_BYTEIO10_DQ9 BEC

T48 PAD_ES_BYTEIO1_DQ8 BES

T49 PAD_ES_BYTEIO1_DQ3 BES

T5 PAD_WC_BYTEIO10_DQ9 BWC

T50 PAD_EC_BYTEIO11_DQ3 BEC

T51 PAD_EC_BYTEIO11_DQ8 BEC

T6 PAD_WC_BYTEIO10_DQ6 BWC

T7 PAD_WC_BYTEIO12_DQ0 BWC

T8 PAD_WC_BYTEIO12_DQ5 BWC

T9 PAD_WS_BYTEIO2_DQ3 BWS

U1 PAD_WC_BYTEIO11_DQ7 BWC

U10 VSS VSS

U11 PAD_WS_BYTEIO0_DQ5 BWS

U12 VSS VSS

U13 VSS VSS

U14 VSS VSS

U15 VSS VSS

U16 VSS VSS

U17 VDDO_B22 BWS

U18 VCC SVDD

U19 VCC SVDD

U2 VSS VSS

U20 VDDL CVDD

U21 VDDL CVDD

U22 VDDL CVDD

U23 VDDL CVDD

U24 VSS VSS

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 132 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 133: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

U25 VSS VSS

U26 VCFG CFG

U27 VCFGWL CFG

U28 VSS VSS

U29 VSS VSS

U3 PAD_WS_BYTEIO1_DQ0 BWS

U30 VDDL CVDD

U31 VDDL CVDD

U32 VDDL CVDD

U33 VCC SVDD

U34 VCC SVDD

U35 VDDO_B32 BES

U36 VSS VSS

U37 VSS VSS

U38 VSS VSS

U39 VSS VSS

U4 VSS VSS

U40 VSS VSS

U41 PAD_ES_BYTEIO0_DQ5 BES

U42 VSS VSS

U43 PAD_ES_BYTEIO2_DQ8 BES

U44 VSS VSS

U45 PAD_EC_BYTEIO12_DQ9 BEC

U46 VSS VSS

U47 PAD_EC_BYTEIO10_DQ4 BEC

U48 VSS VSS

U49 PAD_ES_BYTEIO1_DQ0 BES

U5 PAD_WC_BYTEIO10_DQ4 BWC

U50 VSS VSS

U51 PAD_EC_BYTEIO11_DQ7 BEC

U6 VSS VSS

U7 PAD_WC_BYTEIO12_DQ9 BWC

U8 VSS VSS

U9 PAD_WS_BYTEIO2_DQ8 BWS

V1 PAD_WC_BYTEIO11_DQ5 BWC

V10 PAD_WS_BYTEIO2_DQSN BWS

V11 PAD_WS_BYTEIO0_DQ6 BWS

V12 PAD_WS_BYTEIO0_DQ9 BWS

V13 VSS VSS

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 133

Page 134: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

V14 VSS VSS

V15 VDDA_NOM_W WVDDA

V16 VDDO_B22 BWS

V17 VDDO_B22 BWS

V18 VCC SVDD

V19 VSS VSS

V2 PAD_WC_BYTEIO11_DQ9 BWC

V20 VSS VSS

V21 VSS VSS

V22 VSS VSS

V23 VSS VSS

V24 VSS VSS

V25 VSS VSS

V26 VCFG CFG

V27 VSS VSS

V28 VSS VSS

V29 VSS VSS

V3 PAD_WS_BYTEIO1_DQ2 BWS

V30 VSS VSS

V31 VSS VSS

V32 VSS VSS

V33 VSS VSS

V34 VCC SVDD

V35 VDDO_B32 BES

V36 VDDO_B32 BES

V37 VDDA_NOM_E EVDDA

V38 VSS VSS

V39 VSS VSS

V4 PAD_WS_BYTEIO1_DQ9 BWS

V40 PAD_ES_BYTEIO0_DQ9 BES

V41 PAD_ES_BYTEIO0_DQ6 BES

V42 PAD_ES_BYTEIO2_DQSN BES

V43 PAD_ES_BYTEIO2_DQS BES

V44 PAD_EC_BYTEIO12_DQ6 BEC

V45 PAD_EC_BYTEIO12_DQ8 BEC

V46 PAD_EC_BYTEIO10_DQ7 BEC

V47 PAD_EC_BYTEIO10_DQ3 BEC

V48 PAD_ES_BYTEIO1_DQ9 BES

V49 PAD_ES_BYTEIO1_DQ2 BES

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 134 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 135: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

V5 PAD_WC_BYTEIO10_DQ3 BWC

V50 PAD_EC_BYTEIO11_DQ9 BEC

V51 PAD_EC_BYTEIO11_DQ5 BEC

V6 PAD_WC_BYTEIO10_DQ7 BWC

V7 PAD_WC_BYTEIO12_DQ8 BWC

V8 PAD_WC_BYTEIO12_DQ6 BWC

V9 PAD_WS_BYTEIO2_DQS BWS

W1 PAD_WC_BYTEIO11_DQS BWC

W10 PAD_WS_BYTEIO2_DQ5 BWS

W11 PAD_WS_BYTEIO0_DQS BWS

W12 PAD_WS_BYTEIO0_DQSN BWS

W13 VSS VSS

W14 VSS VSS

W15 VREF_B22 S12P75G

W16 VDDO_B21 BWS

W17 VDDO_B21 BWS

W18 VSS VSS

W19 VDDL CVDD

W2 PAD_WC_BYTEIO11_DQSN BWC

W20 VDD_BRAM VDD_BRAM

W21 VDDL CVDD

W22 VDDL CVDD

W23 VDDL CVDD

W24 VDD_BRAM VDD_BRAM

W25 VDDL CVDD

W26 VDDL CVDD

W27 VDDL CVDD

W28 VDD_BRAM VDD_BRAM

W29 VDDL CVDD

W3 PAD_WS_BYTEIO1_DQ7 BWS

W30 VDDL CVDD

W31 VDDL CVDD

W32 VDD_BRAM VDD_BRAM

W33 VDDL CVDD

W34 VSS VSS

W35 VDDO_B31 BES

W36 VDDO_B31 BES

W37 VREF_B32 S12P75G

W38 VSS VSS

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 135

Page 136: Speedster22i HD FPGA Family

Pinouts Speedster22i HD FPGA Family

W39 VSS VSS

W4 PAD_WS_BYTEIO1_DQ4 BWS

W40 PAD_ES_BYTEIO0_DQSN BES

W41 PAD_ES_BYTEIO0_DQS BES

W42 PAD_ES_BYTEIO2_DQ5 BES

W43 PAD_ES_BYTEIO2_DQ9 BES

W44 PAD_EC_BYTEIO12_DQ7 BEC

W45 PAD_EC_BYTEIO12_DQ3 BEC

W46 PAD_EC_BYTEIO10_DQ1 BEC

W47 PAD_EC_BYTEIO10_DQ5 BEC

W48 PAD_ES_BYTEIO1_DQ4 BES

W49 PAD_ES_BYTEIO1_DQ7 BES

W5 PAD_WC_BYTEIO10_DQ5 BWC

W50 PAD_EC_BYTEIO11_DQSN BEC

W51 PAD_EC_BYTEIO11_DQS BEC

W6 PAD_WC_BYTEIO10_DQ1 BWC

W7 PAD_WC_BYTEIO12_DQ3 BWC

W8 PAD_WC_BYTEIO12_DQ7 BWC

W9 PAD_WS_BYTEIO2_DQ9 BWS

Y1 VSS VSS

Y10 PAD_WS_BYTEIO2_DQ4 BWS

Y11 VSS VSS

Y12 PAD_WS_BYTEIO0_DQ7 BWS

Y13 RCOMP_DRV_B22 BES

Y14 RCOMP_TERM_B22 BES

Y15 VDDA_NOM_W WVDDA

Y16 VSS VSS

Y17 VDDO_B21 BWS

Y18 VSS VSS

Y19 VSS VSS

Y2 PAD_WC_BYTEIO11_DQ1 BWC

Y20 VSS VSS

Y21 VSS VSS

Y22 VSS VSS

Y23 VSS VSS

Y24 VSS VSS

Y25 VSS VSS

Y26 VSS VSS

Y27 VSS VSS

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

PAGE 136 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 137: Speedster22i HD FPGA Family

Speedster22i HD FPGA Family Pinouts

Y28 VSS VSS

Y29 VSS VSS

Y3 VSS VSS

Y30 VSS VSS

Y31 VSS VSS

Y32 VSS VSS

Y33 VSS VSS

Y34 VSS VSS

Y35 VDDO_B31 BES

Y36 VSS VSS

Y37 VDDA_NOM_E EVDDA

Y38 RCOMP_DRV_B32 BWN

Y39 RCOMP_TERM_B32 BWN

Y4 PAD_WS_BYTEIO1_DQ6 BWS

Y40 PAD_ES_BYTEIO0_DQ7 BES

Y41 VSS VSS

Y42 PAD_ES_BYTEIO2_DQ4 BES

Y43 VSS VSS

Y44 PAD_EC_BYTEIO12_DQ4 BEC

Y45 VSS VSS

Y46 PAD_EC_BYTEIO10_DQ8 BEC

Y47 VSS VSS

Y48 PAD_ES_BYTEIO1_DQ6 BES

Y49 VSS VSS

Y5 VSS VSS

Y50 PAD_EC_BYTEIO11_DQ1 BEC

Y51 VSS VSS

Y6 PAD_WC_BYTEIO10_DQ8 BWC

Y7 VSS VSS

Y8 PAD_WC_BYTEIO12_DQ4 BWC

Y9 VSS VSS

Table 61: FG2597 52.5mm x 52.5mm Package Pin Out

Pin Pin Name Pin Group

DS004 Rev. 1.8– Sept 24, 2012 www.achronix.com PAGE 137

Page 138: Speedster22i HD FPGA Family

Ordering Information Speedster22i HD FPGA Family

Ordering Information

Device

Company ID

Modifier

Package Type

Speed Grade

Package Size Temperature GradeC = 0°C to +70°CI = –40°C to +85°C

A C 2 2 I H D 1 0 0 0 – F 5 3 C 3 E S

HD210, HD680, HD1000, HD1500

F = Fine Ball Grid Array

ds001_33_v06

Family

53 = 52.5 x 52.5, 2597 Pin Package45 = 45 x 45, 1936 Pin Package

ES = Engineering Samples

1 = Fastest2 3

PAGE 138 www.achronix.com DS004 Rev. 1.8– Sept 24, 2012

Page 139: Speedster22i HD FPGA Family

DS004 Rev. 1.8– Sept 24, 2012 Speedster22i HD FPGA Family

Revision HistoryThe following table lists the revision history of this document.

Version Revision

1.5 Initial public release

1.6 Minor Updates and Corrections

1.7 Updated part numbers. Updated Pin listing to G32375-001_r1p0 release. Updated figure 28.

1.8 Updated Voltages and tolerance information. Updates device resource counts.

www.achronix.com

Achronix Semiconductor Corporation

2953 Bunker Hill Lane, Suite 101Santa Clara, CA, 95045USA

Phone : 877.GHZ.FPGA (877.449.3742)Fax : 408.286.3645E‐mail : [email protected]

Copyright © 2012 Achronix Semiconductor Corporation. All rights reserved. Achronix is a trademark and Speedster is a registered trademark of Achronix Semiconductor Corporation. All othertrademarks are the property of their prospective owners. All specifications subject to change without notice.

NOTICE of DISCLAIMER: The information given in this document is believed to be accurate and reliable. However, Achronix Semiconductor Corporation does not give any representationsor warranties as to the completeness or accuracy of such information and shall have no liability for the use of the information contained herein. Achronix Semiconductor Corporation reservesthe right to make changes to this document and the information contained herein at any time and without notice. All Achronix trademarks, registered trademarks, and disclaimers are listedat http://www.achronix.com and use of this document and the Information contained therein is subject to such terms.