26
Spectral Functions from the Functional Renormalization Group Ralf-Arno Tripolt a , Nils Strodthoff b , Lorenz von Smekal a,c , Jochen Wambach a,d a Theoriezentrum, Institut für Kernphysik, TU Darmstadt b Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg c Institut für Theoretische Physik, Justus-Liebig-Universität Giessen d GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt NeD-2014 & TURIC-2014, Hersonissos, Crete, Greece June 9th, 2014 | Ralf-Arno Tripolt | Spectral Functions from the FRG | 1

Spectral Functions from the Functional Renormalization Groupebratkov/Conferences/NeD-TURIC-2014/talks/0… · Spectral Functions from the Functional Renormalization Group Ralf-Arno

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Spectral Functions from theFunctional Renormalization Group

    Ralf-Arno Tripolta, Nils Strodthoffb, Lorenz von Smekala,c , Jochen Wambacha,d

    a Theoriezentrum, Institut für Kernphysik, TU Darmstadtb Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg

    c Institut für Theoretische Physik, Justus-Liebig-Universität Giessend GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt

    NeD-2014 & TURIC-2014, Hersonissos, Crete, Greece

    June 9th, 2014 | Ralf-Arno Tripolt | Spectral Functions from the FRG | 1

  • Outline

    I) Introduction and motivation

    II) Theoretical setup

    I functional renormalization group (FRG)

    I quark-meson model

    I analytic continuation procedure

    III) Results for finite temperature and chemical potential

    I phase diagram

    I spectral functions

    IV) Summary and outlook

    June 9th, 2014 | Ralf-Arno Tripolt | Spectral Functions from the FRG | 2

  • I) Introduction and Motivation

    [courtesy L. Holicki]

    June 9th, 2014 | Ralf-Arno Tripolt | Spectral Functions from the FRG | 3

  • What is a Spectral Function?

    A spectral function ρ(ω) can be defined as:

    I ρ(ω) ≡ i2π

    (DR(ω)− DA(ω)

    )For a free scalar field with mass m,the retarded and advanced propagators are:

    I DR(ω) =(

    (ω + iε)2 −m2)−1

    I DA(ω) =(

    (ω − iε)2 −m2)−1

    and the spectral function is, for ε→ 0:

    I ρ(ω) = sgn(ω) δ(ω2 −m2)

    Re DR(ω) Im DR(ω)

    0.0 0.5 1.0 1.5 2.0

    -60

    -40

    -20

    0

    20

    40

    0.0 0.5 1.0 1.5 2.0

    -60

    -40

    -20

    0

    20

    40

    0.0 0.5 1.0 1.5 2.0

    -10

    -5

    0

    5

    10

    15

    20

    ω = m ω = m

    ρ(ω)

    ω = m[J. Kapusta and C. Gale, Finite-Temperature Field Theory, Cambridge Univ. Press (2006)]

    June 9th, 2014 | Ralf-Arno Tripolt | Spectral Functions from the FRG | 4

  • Why are Spectral Functions interesting?

    Spectral functions give information on the particlespectrum and determine both real-time andimaginary-time propagators,

    I DR(ω) = −∫

    dω′ρ(ω′)

    ω′ − ω − iε

    I DA(ω) = −∫

    dω′ρ(ω′)

    ω′ − ω + iε

    I DE (ωn) =∫

    dω′ρ(ω′)ω′ + iωn

    and thus allow access to many observables,e.g. transport coefficients like the shear viscosity:

    I η = limω→0

    ∫d4x eiωt

    〈[Tij (x), T

    ij (0)]〉

    [B. Mueller, arXiv: 1309.7616]

    June 9th, 2014 | Ralf-Arno Tripolt | Spectral Functions from the FRG | 5

  • The Analytic Continuation Problem

    In Euclidean QFT, energies are discrete for T > 0and there are infinitely many analytic continuationsD(z) from the imaginary to the real axis with:

    I D(z)|z=iωn = DE (iω)

    Ambiguity is resolved by imposing physical(Baym-Mermin) boundary conditions:

    I D(z) goes to zero as |z| → ∞

    I D(z) is analytic outside the real axis

    Im z

    Re z

    When based on numeric results for the discrete frequencies ωn, cf. lattice QCD,this analytic reconstruction is an ill-posed problem and very difficult.

    [N. Landsman, C. v. Weert, Physics Reports 145, 3&4 (1987) 141][G. Baym, N. Mermin, J. Math. Phys. 2 (1961) 232]

    June 9th, 2014 | Ralf-Arno Tripolt | Spectral Functions from the FRG | 6

  • II) Theoretical Setup

    [courtesy L. Holicki]

    June 9th, 2014 | Ralf-Arno Tripolt | Spectral Functions from the FRG | 7

  • Functional Renormalization Group

    Flow equation for the effective average action Γk :

    ∂kΓk =12

    STr(∂k Rk

    [Γ(2)k + Rk

    ]−1)

    I Γk interpolates between bare action S at k = Λand full quantum effective action Γ at k = 0

    I regulator Rk acts as a mass term and suppressesfluctuations with momenta smaller than k

    [C. Wetterich, Phys. Lett. B301 (1993) 90]

    Γk=Λ = S

    k

    k −∆k

    Γk=0 = Γ

    June 9th, 2014 | Ralf-Arno Tripolt | Spectral Functions from the FRG | 8

  • Quark-Meson Model

    Ansatz for the scale-dependent effective average action:

    Γk [ψ̄,ψ,φ] =∫

    d4x{ψ̄(∂/ + h(σ + i~τ~πγ5)− µγ0

    )ψ + 12 (∂µφ)

    2 + Uk (φ2)− cσ

    }

    I effective low-energy model for QCD with two flavors

    I describes spontaneous and explicit chiral symmetry breaking

    I flow equation for the effective average action:

    June 9th, 2014 | Ralf-Arno Tripolt | Spectral Functions from the FRG | 9

  • Flow Equations for 2-Point Functions

    Quark-meson vertices given by Yukawa interaction:

    Γ(2,1)ψ̄ψσ

    = h, Γ(2,1)ψ̄ψ~π

    = ihγ5~τ

    Mesonic vertices obtained from scale-dependent effective potential:

    Γ(0,3)k ,φiφjφm =δ3Uk

    δφmδφjδφi, Γ(0,4)k ,φiφjφmφn =

    δ4Ukδφnδφmδφjδφi

    June 9th, 2014 | Ralf-Arno Tripolt | Spectral Functions from the FRG | 10

  • Decay Channels for Sigma Meson

    Possible processes affecting the sigma 2-point function Γ(2)σ,k :

    I σ∗ → σ σ, ω ≥ 2 mσ

    I σ∗ → π π, ω ≥ 2 mπ

    I σ∗ → ψ̄ ψ, ω ≥ 2 mψ

    Diagrams involving 4-point vertices only give rise to ω-independent contributions.

    June 9th, 2014 | Ralf-Arno Tripolt | Spectral Functions from the FRG | 11

  • Decay Channels for Pions

    Possible processes affecting the pion 2-point function Γ(2)π,k :

    I π∗ → σ π, ω ≥ mσ + mπ

    I π∗ π → σ, ω ≤ mσ −mπ

    I π∗ → ψ̄ ψ, ω ≥ 2 mψ

    Diagrams involving 4-point vertices only give rise to ω-independent contributions.

    June 9th, 2014 | Ralf-Arno Tripolt | Spectral Functions from the FRG | 12

  • Analytic Continuation Procedure

    Two-step procedure on the level of flow equations to obtain Γ(2),R(ω):

    1) Use periodicity in external energy p0 = n 2πT :

    I nB,F (E + ip0)→ nB,F (E)

    2) Substitute p0 by continuous real frequency:

    I Γ(2),R(ω) = − lim�→0

    Γ(2),E (p0 = iω − �)

    Spectral function is then given by:

    I ρ(ω) =1π

    Im Γ(2),R(ω)(Re Γ(2),R(ω)

    )2 + (Im Γ(2),R(ω))2

    p0 p0

    [N. Landsman, C. v. Weert, Physics Reports 145, 3&4 (1987) 141]

    [A. Das, R. Francisco, J. Frenkel, Phys. Rev. D 86 (2012) 047702]

    June 9th, 2014 | Ralf-Arno Tripolt | Spectral Functions from the FRG | 13

  • III) Results for finite T and µ

    [courtesy L. Holicki]

    June 9th, 2014 | Ralf-Arno Tripolt | Spectral Functions from the FRG | 14

  • Phase Diagram

    Phase diagram of the quark-meson model:

    I chiral order parameter σ0 ≡ fπ ,decreases with darker color

    I critical endpoint at µ = 293 MeVand T = 10 MeV

    I we will study spectral functionsalong µ = 0 and T = 10 MeV line

    100 200 300 400Μ @MeVD

    50

    100

    150

    200

    250T @MeVD

    270 290 310

    5

    10

    15

    20

    [R.-A. T., N. Strodthoff, L. v. Smekal, J. Wambach, Phys. Rev. D 89, 034010 (2014)]

    June 9th, 2014 | Ralf-Arno Tripolt | Spectral Functions from the FRG | 15

  • Masses and Order Parameter

    Screening masses and order parameter invacuum, T = 0 and µ = 0:

    I σ0 = 93.5 MeV

    I mπ = 138 MeV

    I mσ = 509 MeV

    I mψ = 299 MeV

    Screening masses determine thresholds inspectral functions, e.g. at T = 10 MeV, µ = 0:

    I σ∗ → π π, ω ≥ 2 mπ ≈ 280 MeVI σ∗ → ψ̄ ψ, ω ≥ 2 mψ ≈ 600 MeV

    0 50 100 150 200 250 300T @MeVD0

    100

    200

    300

    400

    500

    @MeVDΜ = 0 MeV

    200 250 300 350 400Μ @MeVD0

    100

    200

    300

    400

    500

    @MeVDT = 10 MeV

    [R.-A. T., N. Strodthoff, L. v. Smekal, J. Wambach, Phys. Rev. D 89, 034010 (2014)]

    June 9th, 2014 | Ralf-Arno Tripolt | Spectral Functions from the FRG | 16

  • Spectral Functions along µ = 0

    0 100 200 300 400 500 600 700Ω @MeVD10-4

    0.01

    1

    100

    @LUV-2 DT=10 MeV

    ΡΣ

    ΡΠ

    2

    3

    456

    1: σ∗ → σσ

    2: σ∗ → ππ

    3: σ∗ → ψ̄ψ

    4: π∗ → σπ

    5: π∗π → σ

    6: π∗ → ψ̄ψ

    [R.-A. T., N. Strodthoff, L. v. Smekal, J. Wambach, Phys. Rev. D 89, 034010 (2014)]

    June 9th, 2014 | Ralf-Arno Tripolt | Spectral Functions from the FRG | 17

  • Spectral Functions along µ = 0

    0 100 200 300 400 500 600 700Ω @MeVD10-4

    0.01

    1

    100

    @LUV-2 DT=100 MeV

    ΡΣ

    ΡΠ

    2

    3

    45

    6

    1: σ∗ → σσ

    2: σ∗ → ππ

    3: σ∗ → ψ̄ψ

    4: π∗ → σπ

    5: π∗π → σ

    6: π∗ → ψ̄ψ

    [R.-A. T., N. Strodthoff, L. v. Smekal, J. Wambach, Phys. Rev. D 89, 034010 (2014)]

    June 9th, 2014 | Ralf-Arno Tripolt | Spectral Functions from the FRG | 18

  • Spectral Functions along µ = 0

    0 100 200 300 400 500 600 700Ω @MeVD10-4

    0.01

    1

    100

    @LUV-2 DT=150 MeV

    ΡΣ

    ΡΠ

    12 3

    4

    5

    6

    1: σ∗ → σσ

    2: σ∗ → ππ

    3: σ∗ → ψ̄ψ

    4: π∗ → σπ

    5: π∗π → σ

    6: π∗ → ψ̄ψ

    [R.-A. T., N. Strodthoff, L. v. Smekal, J. Wambach, Phys. Rev. D 89, 034010 (2014)]

    June 9th, 2014 | Ralf-Arno Tripolt | Spectral Functions from the FRG | 19

  • Spectral Functions along µ = 0

    0 100 200 300 40010-4

    0.01

    1

    100

    @LUV-2 DT=200 MeV

    ΡΣΡΠ

    3

    5

    6

    0 100 200 300 400Ω @MeVD10-4

    0.01

    1

    100

    @LUV-2 DT=250 MeV

    ΡΣΡΠ

    3

    6

    1: σ∗ → σσ

    2: σ∗ → ππ

    3: σ∗ → ψ̄ψ

    4: π∗ → σπ

    5: π∗π → σ

    6: π∗ → ψ̄ψ

    [R.-A. T., N. Strodthoff, L. v. Smekal, J. Wambach, Phys. Rev. D 89, 034010 (2014)]

    June 9th, 2014 | Ralf-Arno Tripolt | Spectral Functions from the FRG | 20

  • Spectral Functions along µ = 0 - Animation

    (Loading movie...)

    June 9th, 2014 | Ralf-Arno Tripolt | Spectral Functions from the FRG | 21

    Lavf55.25.101

    spectral_functions.mp4Media File (video/mp4)

  • Spectral Functions along T = 10 MeV

    0 100 200 300 400 500 600 700Ω @MeVD10-4

    0.01

    1

    100

    @LUV-2 DΜ=200 MeV

    ΡΣ

    ΡΠ

    2

    3

    46

    1: σ∗ → σσ

    2: σ∗ → ππ

    3: σ∗ → ψ̄ψ

    4: π∗ → σπ

    5: π∗π → σ

    6: π∗ → ψ̄ψ

    [R.-A. T., N. Strodthoff, L. v. Smekal, J. Wambach, Phys. Rev. D 89, 034010 (2014)]

    June 9th, 2014 | Ralf-Arno Tripolt | Spectral Functions from the FRG | 22

  • Spectral Functions along T = 10 MeV

    0 100 200 300 400 500 600 700Ω @MeVD10-4

    0.01

    1

    100

    @LUV-2 DΜ=292 MeV

    ΡΣΡΠ

    123

    46

    1: σ∗ → σσ

    2: σ∗ → ππ

    3: σ∗ → ψ̄ψ

    4: π∗ → σπ

    5: π∗π → σ

    6: π∗ → ψ̄ψ

    [R.-A. T., N. Strodthoff, L. v. Smekal, J. Wambach, Phys. Rev. D 89, 034010 (2014)]

    June 9th, 2014 | Ralf-Arno Tripolt | Spectral Functions from the FRG | 23

  • Spectral Functions along T = 10 MeV

    0 100 200 300 400 500 600 700Ω @MeVD10-4

    0.01

    1

    100

    @LUV-2 DΜ=292.8 MeV

    ΡΣΡΠ

    1

    23

    46

    1: σ∗ → σσ

    2: σ∗ → ππ

    3: σ∗ → ψ̄ψ

    4: π∗ → σπ

    5: π∗π → σ

    6: π∗ → ψ̄ψ

    [R.-A. T., N. Strodthoff, L. v. Smekal, J. Wambach, Phys. Rev. D 89, 034010 (2014)]

    June 9th, 2014 | Ralf-Arno Tripolt | Spectral Functions from the FRG | 24

  • Spectral Functions along T = 10 MeV

    0 50 100 150 200 25010-4

    0.01

    1

    100

    @LUV-2 DΜ=292.97 MeV

    ΡΣ ΡΠ

    1

    0 100 200 300 400Ω @MeVD10-4

    0.01

    1

    100

    @LUV-2 DΜ=400 MeV

    ΡΣΡΠ

    3

    6

    1: σ∗ → σσ

    2: σ∗ → ππ

    3: σ∗ → ψ̄ψ

    4: π∗ → σπ

    5: π∗π → σ

    6: π∗ → ψ̄ψ

    [R.-A. T., N. Strodthoff, L. v. Smekal, J. Wambach, Phys. Rev. D 89, 034010 (2014)]

    June 9th, 2014 | Ralf-Arno Tripolt | Spectral Functions from the FRG | 25

  • Summary and Outlook

    A new method to obtain spectral functions at finite T and µ from the FRGhas been presented:

    I involves analytic continuation from imaginary toreal frequencies on the level of the flow equations

    I feasibility of the method demonstrated by calculatingmesonic spectral functions in the quark-meson model

    I allows to iteratively take into account full momentum dependenceof 2-point functions without assumptions on structure of propagator

    I inclusion of finite external spatial momenta will allow forcalculation of transport coefficients like the shear viscosity

    June 9th, 2014 | Ralf-Arno Tripolt | Spectral Functions from the FRG | 26