30
Spatio-Temporal Chaos and Defects Hermann Riecke, Northwestern University Yuan-Nan Young, CTR Stanford University Glen Granzow, Lander University Cristian Huepe, Northwestern University 0 10 20 30 40 50 60 y-Location 20000 20050 20100 20150 Time Dynamics Days 2003 supported by NSF, NASA, and DOE

Spatio-Temporal Chaos and Defectspeople.esam.northwestern.edu/~riecke/research/Talks/dd03.pdf · Defect chaos above line T: creation and annihilation of defects (Chate´ & Manneville,

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Spatio-Temporal Chaos

    and Defects

    Hermann Riecke, Northwestern University

    Yuan-Nan Young, CTR Stanford University

    Glen Granzow, Lander UniversityCristian Huepe, Northwestern University

    0 10 20 30 40 50 60y-Location

    20000

    20050

    20100

    20150

    Tim

    e

    Dynamics Days 2003

    supported by NSF, NASA, and DOE

  • Spatio-Temporal Chaos

    Spiral-Defect Chaos

    (Morris, Bodenschatz, Cannell, Ahlers, 1993)

    T+dT

    T

    Undulation Chaos

    (Daniels and Bodenschatz, 2002)

    T+dT

    T

    up

    down

  • Dislocations in Stripe-Based Spatio-temporal Chaos

    • statistics for number of dislocations- complex Ginzburg-Landau equation (Gil, Lega, and Meunier, 1990)- electroconvection (Rehberg et al., 1989)- undulation chaos (Daniels and Bodenschatz, 2002)

    • reconstruction of pattern from dislocations (La Porta and Surko, 1999)

    • dynamical dimension of defects- complex Ginzburg-Landau equation (Egolf, 1998)- excitable media (Strain and Greenside, 1998)

    Here:

    • hexagonal patterns: penta-hepta defects

    • stripe-based patterns: statistics of trajectories of dislocations

  • Non-Boussinesq Convection

    (Bodenschatz, de Bruyn, Ahlers, Cannell, 1991)

    T+dT

    T

  • Ginzburg-Landau Equations for Hexagons

    ~

    ~

    ~ τ1τ2

    n2

    n1

    n3 τ3

    q

    q2

    3

    1q

    • Envelope equations:Slow variation of wavevector and magnitude

    v(r̃, t̃) = ε3

    ∑j=1

    A j(εr̃,ε2t̃)︸ ︷︷ ︸

    ∝exp(iεq j ·r̃)

    eiq̃ j ·r f (z)+ c.c.+h.o.t.

    ∂tA1 = µA1 +(n1 ·∇)2A1 +A∗2A∗3 −A1|A1|

    2

    −(ν+ γ)A1|A2|2 − (ν− γ)A1|A3|2 − iβA1(τ̂1 ·∇)Q

    +iα2 (A∗3 (τ2 ·∇)A∗2 −A

    ∗2 (τ3 ·∇)A

    ∗3)

    +i(α1−α3)A∗3 (n2 ·∇)A∗2 + i(α1+α3)A

    ∗2 (n3 ·∇)A

    ∗3

    ∇2Q =3

    ∑j=1

    [2(n̂ j ·∇)(τ̂ j ·∇)+ τ

    ((n̂ j ·∇)2 − (τ̂ j ·∇)2

    )]|A j|

    2

    with drift velocity V ∝ ∇× (Qêz)

    • Strong resonance A∗2A∗3 • Variational system

  • Ginzburg-Landau Equations for Hexagons

    ~

    ~

    ~ τ1τ2

    n2

    n1

    n3 τ3

    q

    q2

    3

    1q

    • Envelope equations:Slow variation of wavevector and magnitude

    v(r̃, t̃) = ε3

    ∑j=1

    A j(εr̃,ε2t̃)︸ ︷︷ ︸

    ∝exp(iεq j ·r̃)

    eiq̃ j ·r f (z)+ c.c.+h.o.t.

    ∂tA1 = µA1 +(n1 ·∇)2A1 +A∗2A∗3 −A1|A1|

    2

    −(ν+ γ)A1|A2|2 − (ν− γ)A1|A3|2 − iβA1(τ̂1 ·∇)Q

    +i(α1 −α3)A∗3 (n2 ·∇)A∗2 + i(α1 +α3)A

    ∗2 (n3 ·∇)A

    ∗3

    +iα2 (A∗3 (τ2 ·∇)A∗2 −A

    ∗2 (τ3 ·∇)A

    ∗3)

    ∇2Q =3

    ∑j=1

    [2(n̂ j ·∇)(τ̂ j ·∇)+ τ

    ((n̂ j ·∇)2 − (τ̂ j ·∇)2

    )]|A j|

    2

    with drift velocity V ∝ ∇× (Qêz)

    • Strong resonance A∗2A∗3 • Nonlinear gradient terms

  • Ginzburg-Landau Equations for Hexagons

    ~

    ~

    ~ τ1τ2

    n2

    n1

    n3 τ3

    q

    q2

    3

    1q

    • Envelope equations:Slow variation of wavevector and magnitude

    v(r̃, t̃) = ε3

    ∑j=1

    A j(εr̃,ε2t̃)︸ ︷︷ ︸

    ∝exp(iεq j ·r̃)

    eiq̃ j ·r f (z)+ c.c.+h.o.t.

    ∂tA1 = µA1 +(n1 ·∇)2A1 +A∗2A∗3 −A1|A1|

    2

    −(ν+ γ)A1|A2|2 − (ν− γ)A1|A3|2 − iβA1(τ̂1 ·∇)Q

    +i(α1 −α3)A∗3 (n2 ·∇)A∗2 + i(α1 +α3)A

    ∗2 (n3 ·∇)A

    ∗3

    +iα2 (A∗3 (τ2 ·∇)A∗2 −A

    ∗2 (τ3 ·∇)A

    ∗3)

    ∇2Q =3

    ∑j=1

    [2(n̂ j ·∇)(τ̂ j ·∇)+ τ

    ((n̂ j ·∇)2 − (τ̂ j ·∇)2

    )]|A j|

    2

    with drift velocity V ∝ ∇× (Qêz)

    • Strong resonance A∗2A∗3 • Rotation • Mean Flow

  • Ginzburg-Landau Equations for Hexagons

    ~

    ~

    ~ τ1τ2

    n2

    n1

    n3 τ3

    q

    q2

    3

    1q

    • Envelope equations:Slow variation of wavevector and magnitude

    v(r̃, t̃) = ε3

    ∑j=1

    A j(εr̃,ε2t̃)︸ ︷︷ ︸

    ∝exp(iεq j ·r̃)

    eiq̃ j ·r f (z)+ c.c.+h.o.t.

    ∂tA1 = µA1 +(n1 ·∇)2A1 +A∗2A∗3 −A1|A1|

    2

    −(ν+ γ)A1|A2|2 − (ν− γ)A1|A3|2 − iβA1(τ̂1 ·∇)Q

    +i(α1 −α3)A∗3 (n2 ·∇)A∗2 + i(α1 +α3)A

    ∗2 (n3 ·∇)A

    ∗3

    +iα2 (A∗3 (τ2 ·∇)A∗2 −A

    ∗2 (τ3 ·∇)A

    ∗3)

    ∇2Q =3

    ∑j=1

    [2(n̂ j ·∇)(τ̂ j ·∇)+ τ

    ((n̂ j ·∇)2 − (τ̂ j ·∇)2

    )]|A j|

    2

    with drift velocity V ∝ ∇× (Qêz)

    • Strong resonance A∗2A∗3 • Rotation • Mean flow

  • Penta-Hepta Defects

    (Eckert and Thess, 1999)

    • Defects in individual roll sys-tems: dislocations

    • Resonant term A∗j−1A∗j+1:

    strong attraction betweentwo dislocations indifferent roll systems⇒ penta-hepta defect

  • Side-bandInstabilities

    InducedNucleation

    -0.5 0 0.5Reduced Wave Number q

    0

    1

    2

    3

    4

    5

    Con

    trol

    Par

    amet

    er µ osc. long-wave

    steady long-wavesteady short-wave

    ~

    ~

    ~ τ1τ2

    n2

    n1

    n3 τ3

    q

    q2

    3

    1q

    v = ε3

    ∑j=1

    A j eiq̃j·r

    A1 . A2 A3

    A1. A2 A3

  • • Temporal evolution of mean wavevector

    0 500 1000 1500 2000 2500Time

    0

    1

    2

    3

    Loc

    al w

    avev

    ecto

    r

    β = 0

    Transverse

    Longitudinal

    0 500 1000 1500 2000 2500Time

    0

    1

    2

    3

    Loc

    al w

    aven

    umbe

    r

    β = -0.1

    Transv

    erse

    Longitudinal

    - transient induced nucleation - ‘persistent’ chaos(Colinet, Nepomnyashchy, and Legros, 2002)

    ~

    ~

    ~ τ1τ2

    n2

    n1

    n3 τ3

    q

    q2

    3

    1q

    • Dependence on chiral, nonlinear gradient term α3

    Separation of dislocations in PHD

    0 0.1 0.2 0.3 0.4 0.5Chiral gradient term α3

    0

    0.2

    0.4

    0.6

    0.8

    1

    Dis

    tanc

    e

    β = 0

    Limit of persistent creation of PHDs

    0 0.2 0.4 0.6 0.8Chiral gradient term α3

    -1.5

    -1

    -0.5

    0M

    ean

    flow

    βPHD stable

    PHD unstable

    Chaos

    µ=1

  • Swift-Hohenberg Model

    • Rotation and mean flow

    ∂tψ = Rψ− (∇2 +1)2ψ−ψ3 +α(∇ψ)2 +

    γ êz · {∇ψ×∇4ψ}−U ·∇ψ

    ∇2ξ = êz · {∇ψ×∇4ψ}+δ{(4ψ)2 +∇ψ ·∇4ψ

    }U = β(∂yξ,−∂xξ)

    R = 0.17, Lx = 233, α = 0.4, β = −2.6, γ = 2, δ = 0.0067

  • Defect Proliferation

    .

    .

  • Defect Statistics in Stripe-Based Defect Chaos

    • Complex Ginzburg-Landau equation(Gil, Lega, and Meunier, 1990)

    • Electroconvection(Rehberg et al., 1989)

    • Convection in inclined layer(Daniels and Bodenschatz, 2002)

    (Gil et al., 1990)

    • Statistical model for defect pairs(Gil et al., 1990)

    – random pairwise creation– uncorrelated diffusion– pairwise annihilation upon collision

    Squared Poisson distributionfor number of defects

    P(n;ρ) ∝ρn

    (n!)2

  • Penta-Hepta Defect Statistics

    0 10 20 30 40Number of Dislocation Pairs

    0

    0.05

    0.1

    0.15

    Rel

    ativ

    e F

    requ

    ency

    L=233 (+,-,0)(+,0,-)(0,+,-)PPoisson Fit

    Induced Nucleation

    α

    β

    γ δ

    P(n+12,n−12,n

    +23,n

    −23,n

    +31,n

    −31) → P(n

    +12) ≡ P(n)

    P(n+1)Γ−(n+1) = P(n)Γ+(n)

    Γ−(n) = a1 n+a2 n2

    Γ+(n) = c0 + c1 n+ c2 n2

    For L = 244

    a1 = α = 8.6

    a2 = 2β+δ ≡ 1

    c0 = γ = 20.07

    c1 = 2α = 20.7

    c2 = β = 0.12

  • Creation and Annihilation Rates

    • follow defect trajectories:creation and annihilationrates

    • consistent with distributionfunction

    • spontaneous creation:locally unstable at low q

    0 5 10 15 20Number of Dislocation Pairs

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    Rat

    e

    CreationAnnihilation

    • Defect distribution function

    0 5 10 15 20Number of Dislocation Pairs

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    Rel

    ativ

    e F

    requ

    ency

    L=114

    Poisson FitPHDP(n)

    • Wavenumber distribution function

    0.7 0.8 0.9 1 1.1Wavenumber q

    0

    0.01

    0.02

    0.03

    0.04R

    elat

    ive

    Fre

    quen

    cy

    unstable stable

  • Summary:

    Penta-Hepta Defect Chaos in Hexagons

    • Induced Nucleation of Defects

    • Proliferation of Defects

    • Broad Defect Distribution Functionnot squared Poisson distribution

    • Creation and Annihilation Ratesconsistent with distribution function

  • Parametrically Excited Standing Waves

    • Coupled Ginzburg-Landau equations

    ∂tA+ s∂xA = dx∂2xA+dy∂2yA+aA+bB+

    c|A|2A+g|B|2A

    ∂tB− s∂xB = d∗x ∂2xB+d

    ∗y ∂

    2yB+a

    ∗B+bA+

    c∗|B|2B+g∗|A|2B

    Forcing f (t) ∼ b

    h(x,t)f(t)

    (cf. Faraday waves)

    • Typical phase diagram: periodically forced Hopf bifurcation

    0Linear growth rate ar

    0

    For

    cing

    Am

    plit

    ude

    b

    standing

    waves

    nowaves

    travelingwaves

    paritybreaking

  • • Patterns

    OrderedChaos

    L = 272

    b = 0.7

    DisorderedChaos

    L = 272

    b = 0.625

    • Correlation Functions

  • 0 10 20 30 40 50 60y-Location

    15000

    15200

    15400

    15600T

    ime

    0 10 20 30 40 50 60y-Location

    20000

    20050

    20100

    20150

    Tim

    e Defect Loopsin

    Space-Time

    • Defect motionclimb ⇒ local change in wavelengthglide ⇒ local rotation of pattern

    y

    x

  • Statistics of Space-Time Loops

    100

    101

    102

    103

    Number n of Defects in Loop

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    Rel

    ativ

    e F

    requ

    ency

    n-1.5

    b=0.4b=0.5 b=0.625 b=0.7b=1.0

    ∆t

    x

    n=6

    • ordered: exponential decay

    • disordered: power-law decay

    100

    101

    102

    103

    x-span ∆x10

    -6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    Rel

    ativ

    e F

    requ

    ency

    ∆x-3

    b=0.4b=0.5b=0.625b=0.7b=1.0

    101

    102

    103

    t-span ∆t10

    -6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    Rel

    ativ

    e F

    requ

    ency

    ∆t-2.7

    b=0.4b=0.5b=0.625b=0.7b=1.0

  • Loop Statistics in a Lattice Model

    • Random creation of defect pairs

    • Defects diffuse independentlyon lattice

    100

    101

    102

    103

    104

    10510

    -7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    Rel

    ativ

    e F

    requ

    ency

    n-1.6

    ∆x-2.9∆t-2.4

    n∆x∆y∆t

    p=0.000016 & p=0.0001 L=1600

  • Loop Statistics in a Lattice Model

    • Random creation of defect pairs

    • Defects diffuse independentlyon lattice

    α β γ

    Coupled CGL 1.5 3 2.7

    Lattice 1.6 2.9 2.4

    100

    101

    102

    103

    104

    10510

    -7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    Rel

    ativ

    e F

    requ

    ency

    n-1.6

    ∆x-2.9∆t-2.4

    n∆x∆y∆t

    p=0.000016 & p=0.0001 L=1600

  • Single Complex Ginzburg-Landau Equation

    • Generic description of Hopf bifurcation

    ∂tA = A+(1+ ib1)∇2A− (b3 − i)A|A|2

    • Defect chaos above line T :creation and annihilation of defects

    (Chaté & Manneville, 1996) 0 0.5 1 1.5 2 2.5b3

    -2

    0

    2

    4

    b1

    DefectPhase

    Frozen

    Vortices

    L

    BF

    T

    Stable

    Plane Waves

    Chaos

    S2

    Chaos

    • Defect loop statistics

    1 10 100 1000Number n of Defects in Loop

    1e-05

    1e-04

    1e-03

    1e-02

    1e-01

    1e+00

    Cum

    ul. R

    elat

    ive

    Fre

    quen

    cy

    n-1.5

    b1=4 b3=0.5b1=2 b3=1b1=1 b3=0.5

    1 10 100 1000x-span ∆x

    1e-05

    1e-04

    1e-03

    1e-02

    1e-01

    1e+00

    Cum

    ul. R

    elat

    ive

    Fre

    quen

    cy

    ∆x-3

    b1=4 b3=0.5b1=2 b3=1b1=1 b3=0.5

    1 10 100 1000t-span ∆t

    1e-05

    1e-04

    1e-03

    1e-02

    1e-01

    1e+00

    Cum

    ul. R

    elat

    ive

    Fre

    quen

    cy

    ∆t-2.5

    b1=4 b3=0.5b1=2 b3=1b1=1 b3=0.5

  • Defects and Spatio-Temporal Chaos

    • Penta-Hepta Defect Chaosinduced nucleation, proliferationbroad distribution(Y.-N. Young & HR, Physica D, to appear)

    • Ordered ⇔ Disordered Spatio-Temporal Chaosdefect loops in space-timeexponential vs. algebraicdefect unbinding transition(G.D. Granzow & HR, Phys. Rev. Lett. 87 (2001) 174502)

    0 10 20 30 40 50 60y-Location

    15000

    15200

    15400

    15600

    Tim

    e

    • Power Laws in Disordered Regime: Exponents

    – Parametrically driven waves

    – Lattice model

    – Complex Ginzburg-Landau equation

    www.esam.northwestern.edu/riecke

  • Parameters

    Ginzburg-Landau:ν = 2, α1 = α2 = 0, α3 = 0.7, γ = 0.2, τ = 0.5.β = 0 and β = −0.1 as indicated

    large SH:α = 0.4, γ = 2, β = −2.6, δ = 0??????, R = 0.17, and L = 233.

    small SH:L = 114, α = 0.4, γ = 3, β = −5, δ = 0?????????????????? and R = 0.09.

    Distribution function in SH: L = 244fit with a1 = 8.6, a2 = 1 (normalization), c0 = 20.07, c1 = 20.7, c2 = 0.12

    update (1/15/2003): the creation rates are actually: L=114 c0=31.8 c1=3.3c2=.4 a1=5

    Coupled Ginzburg-Landau equations:a = +0.25, c = −1+4i, d = 1+0.5i, s = 0.2, g = −1−12ib as indicated

    Lattice Model:L = 1600, p = 0.000016

  • Farben fuer TEX (aus /usr/local/lib/tex/macros/dvips/colordvi.tex

    GreenYellow Yellow Goldenrod Dandelion Apricot Peach Melon YellowOrangeOrange BurntOrange Bittersweet RedOrange Mahogany Maroon BrickRedRed OrangeRed RubineRed WildStrawberry Salmon CarnationPinkMagenta VioletRed Rhodamine Mulberry RedViolet Fuchsia Lavender ThistleOrchid DarkOrchid Purple Plum Violet RoyalPurple BlueVioletPeriwinkleCadetBlue CornflowerBlue MidnightBlue NavyBlue RoyalBlueBlue Cerulean Cyan ProcessBlue SkyBlue Turquoise TealBlue AquamarineBlueGreen Emerald JungleGreen SeaGreen Green ForestGreenPineGreen LimeGreen YellowGreen SpringGreen OliveGreen RawSiennaSepia Brown Tan Gray Black White

    aαbβaαbβaαbβ

    a α

    acroread erst maximieren bevor auf full-screen gegangen wird

    check ps2pdf: what’s differentbetter picture of undulation chaoswarum bekommt α2 Term keinen Rotationsterm? warum faktor 2

  • in Gamma+-

  • Notes:

    Kl Faraday mean flow not to be expected to be knownmention only when actually used

    PSW: don’t discuss Faraday as the relevant aspect: this is a model thatshows a certain transition and it happens to be relevant to Faraday fornegative growth rate

  • spatially extended dynamical systems − > structured patterened states

    Greenside: RB, excitation waves in heart

    disordered in space and chaotic in time

    exhibit defects: striking features of pattern

    use for characterization and description of spatio-temporal chaos

    present results of 2 lines of research

    hexagons YY

    defect trajectories