104
Chapter 3, Solution 1 Using Fig. 3.50, design a problem to help other students to better understand nodal analysis. R R 1 2  Figure 3.50 For Prob. 3.1 and Prob. 3.39. Solution Given R 1  = 4 k , R 2  = 2 k , and R 3  = 2 k , determine the value of I x  using nodal analysis. Let the node voltage in the top middle of the circuit be designated as V x . [(V x  –12)/4k] + [(V x  –0)/2k] + [(V x  –9)/2k] = 0 or (multiply this by 4 k) (1+2+2)V x  = 12+18 = 30 or V x  = 30/5 = 6 volts and I x  = 6/(2k) = 3 mA. 12 V +  I x  + 9 V  R 3

Solucionario Circuitos Sadiku Cap 3

Embed Size (px)

Citation preview

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 1/104

Chapter 3, Solution 1

Using Fig. 3.50, design a problem to help other students to better understandnodal analysis.

R R1 2

Figure 3.50For Prob. 3.1 and Prob. 3.39.

Solution

Given R 1 = 4 k Ω , R 2 = 2 k Ω , and R 3 = 2 k Ω , determine the value of I x usingnodal analysis.

Let the node voltage in the top middle of the circuit be designated as V x .

[(V x –12)/4k] + [(V x –0)/2k] + [(V x –9)/2k] = 0 or (multiply this by 4 k)

(1+2+2)V x = 12+18 = 30 or V x = 30/5 = 6 volts and

Ix = 6/(2k) = 3 mA .

12 V+

I x

+9 V R 3

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 2/104

Chapter 3, Solution 2

At node 1,

2

vv6

5

v

10

v 2111

60 = - 8v 1 + 5v 2 (1)

At node 2,

2vv

634

v 212

36 = - 2v 1 + 3v 2 (2)

Solving (1) and (2),

v1 = 0 V , v 2 = 12 V

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 3/104

Chapter 3, Solution 3

Applying KCL to the upper node,

60

v20

30

v

20

v

10

v8 0oo0 = 0 or v 0 = –60 V

i1 =10v 0 –6 A , i2 =

20v 0 –3 A ,

i3 =30v 0 –2 A , i 4 =

60v 0 1 A .

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 4/104

Chapter 3, Solution 4

At node 1,

–6 – 3 + v 1 /(20) + v 1/(10) = 0 or v 1 = 9(200/30) = 60 V

At node 2,3 – 2 + v 2 /(10) + v 2 /(5) = 0 or v 2 = –1(1600/80) = –20 V

i1 = v 1 /(20) = 3 A , i 2 = v 1 /(10) = 6 A ,i3 = v 2 /(40) = –500 mA , i 4 = v 2 /(40) = –500 mA .

i1

10 40 2 A20

3Av v1 2

i i

6 A

2 3 i4

40

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 5/104

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 6/104

Chapter 3, Solution 6.

Solve for V using nodal analysis.1

10

10

Figure 3.55For Prob. 3.6.

Step 1. The first thing to do is to select a reference node and to identify all the

unknown nodes. We select the bottom of the circuit as the reference node. The onlyunknown node is the one connecting all the resistors together and we will call that nodeV 1 . The other two nodes are at the top of each source. Relative to the reference, the oneat the top of the 10-volt source is –10 V. At the top of the 20-volt source is +20 V.

Step 2. Setup the nodal equation (there is only one since there is only oneunknown).

Step 3. Simplify and solve.

orV 1 = –2 V .

The answer can be checked by calculating all the currents and see if they add up to zero.The top two currents on the left flow right to left and are 0.8 A and 1.6 A respectively.The current flowing up through the 10-ohm resistor is 0.2 A. The current flowing right toleft through the 10-ohm resistor is 2.2 A. Summing all the currents flowing out of the

node, V 1 , we get, +0.8+1.6 –0.2–2.2 = 0. The answer checks.

+

V 1

1010 V–+

+5 20 V

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 7/104

Chapter 3, Solution 7

0V2.020

0V10

0V2 x

xx

0.35V x = 2 or V x = 5.714 V .

Substituting into the original equation for a check we get,

0.5714 + 0.2857 + 1.1428 = 1.9999 checks!

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 8/104

Chapter 3, Solution 820i v i6 1 1 3

i1 + i 2 + i 3 = 0 020

v5v20

0)60v(10v 0111

But10

v5

2v so that 2v 1 + v 1 – 60 + v 1 – 2v 1 = 0

or v 1 = 60/2 = 30 V, therefore v o = 2v 1 /5 = 12 V .

5V 0

+V 0

– – 20

i2

4

60V

+

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 9/104

Chapter 3, Solution 9

Let V 1 be the unknown node voltage to the right of the 250- Ω resistor. Let the groundreference be placed at the bottom of the 50- Ω resistor. This leads to the following nodalequation:

0I300V5V1572V3

getwegsimplifyin

0150

0I60V50

0V250

24V

b111

b111

But250

V24I 1 b . Substituting this into the nodal equation leads to

or V08.100V2.24 1 1 = 4.165 V.

Thus, I b = (24 – 4.165)/250 = 79.34 mA .

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 10/104

Chapter 3, Solution 10

v 1 v 2 v 3

At node 1. [(v 1 –0)/8] + [(v 1 –v 3)/1] + 4 = 0At node 2. –4 + [(v 2 –0)/2] + 2i o = 0

At node 3. –2i o + [(v 3 –0)/4] + [(v 3 –v 1)/1] = 0

Finally, we need a constraint equation, i o = v 1 /8

This produces,1.125v 1 – v 3 = 4 (1)

0.25v1 + 0.5v

2 = 4 (2)

–1.25v 1 + 1.25v 3 = 0 or v 1 = v 3 (3)

Substituting (3) into (1) we get (1.125–1)v 1 = 4 or v 1 = 4/0.125 = 32 volts. This leads to,

io = 32/8 = 4 amps .

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 11/104

Chapter 3, Solution 11

Find V o and the power absorbed by all the resistors in the circuit of Fig. 3.60.

12 6

Figure 3.60For Prob. 3.11.

Solution

At the top node, KCL produces 06

)24(V12

0V12

60V ooo

(1/3)V o = 1 or V o = 3 V .

P 12 = (3–60) 2/1 = 293.9 W (this is for the 12 Ω resistor in series with the 60 Vsource)

P 12Ω = (V o)2/12 = 9/12 = 750 mW (this is for the 12 Ω resistor connecting V o toground)

P 4Ω = (3–(–24)) 2/6 = 121.5 W .

+ _60 V

–+ 24 V

V o

12

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 12/104

Chapter 3, Solution 12

There are two unknown nodes, as shown in the circuit below.

20

At node 1,

010

VV20

0V20

40V o111 or

(0.05+0.05+.1)V 1 – 0.1V o = 0.2V 1 – 0.1V o = 2 (1)

At node o,

010

0VI4

10VV o

x1o and I x = V 1/20

–0.1V 1 – 0.2V 1 + 0.2V o = –0.3V 1 + 0.2V o = 0 or (2)

V 1 = (2/3)V o (3)

Substituting (3) into (1),

0.2(2/3)V o – 0.1V o = 0.03333V o = 2 or

V o = 60 V .

10

+ _

V

20 10 40 V

V1 o

I x

4 I x

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 13/104

Chapter 3, Solution 13

Calculate v 1 and v 2 in the circuit of Fig. 3.62 using nodal analysis.

10 V

15 A

Figure 3.62For Prob. 3.13.

Solution

At node number 2, [((v 2 + 10) – 0)/10] + [(v 2 –0)/4] – 15 = 0 or(0.1+0.25)v 2 = 0.35v 2 = –1+15 = 14 or

v 2 = 40 volts .

Next, I = [(v 2 + 10) – 0]/10 = (40 + 10)/10 = 5 amps and

v 1 = 8x5 = 40 volts .

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 14/104

Chapter 3, Solution 14

Using nodal analysis, find v o in the circuit of Fig. 3.63.

12.5 A

Figure 3.63For Prob. 3.14.

Solution

At node 1,

[(v 1 –100)/1] + [(v 1 –v o)/2] + 12.5 = 0 or 3v 1 – v o = 200–25 = 175 (1)

(2)

dding 4x(1) to 3x(2) yields,

At node o,

[(v o –v 1)/2] – 12.5 + [(v o –0)/4] + [(v o+50)/8] = 0 or –4v 1 + 7v o = 50

A

+

v o

12.5 A

v 1 v 0

4

21 – 50 V

8

– +100 V

+

v o 4

2

8

1 –50 V

100 V –

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 15/104

(1) + 3(2) = –4v o + 21v o = 700 + 150 or 17v o = 850 or

v o = 50 V .

hecking, we get v 1 = (175+v o)/3 = 75 V.

At node 1,

75–100)/1] + [(75–50)/2] + 12.5 = –25 + 12.5 + 12.5 = 0!

At node o,

[(50–75)/2] + [(50–0)/4] + [(50+50)/8] – 12.5 = –12.5 + 12.5 + 12.5 – 12.5 = 0!

4

C

[(

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 16/104

Chapter 3, Solution 155 A

8

Nodes 1 and 2 form a supernode so that v 1 = v 2 + 10 (1)

At the supernode, 2 + 6v 1 + 5v 2 = 3 (v 3 - v 2) 2 + 6v 1 + 8v 2 = 3v 3 (2)

At node 3, 2 + 4 = 3 (v 3 - v 2) v 3 = v 2 + 2 (3)

Substituting (1) and (3) into (2),

2 + 6v 2 + 60 + 8v 2 = 3v 2 + 6 v 2 =1156

v 1 = v 2 + 10 =1154

i0 = 6v i = 29.45 A

P 65 =

61154

GvR v 2

21

21 144.6 W

P 55 =

51156

Gv2

22 129.6 W

P 35 = 12 W 3)2(Gvv 223L

–+40 V

–+20 V

0 v

v 1 1 2

4

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 17/104

Chapter 3, Solution 16

At the supernode,

2 = v 1 + 2 (v 1 - v 3) + 8(v 2 – v 3) + 4v 2 , which leads to 2 = 3v 1 + 12v 2 - 10v 3 (1)But

v 1 = v 2 + 2v 0 and v 0 = v 2 .

Hencev 1 = 3v 2 (2)v 3 = 13V (3)

Substituting (2) and (3) with (1) gives,

v1 = 18.858 V , v

2 = 6.286 V , v

3 = 13 V

2 A

v 3v 2v

1

8 S

4 S1 S

i0

2 S

+ 13 V –+

v 0 –

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 18/104

Chapter 3, Solution 17

At node 1,2

vv8v

4v60 2111

120 = 7v 1 - 4v 2 (1)

At node 2, 3i 0 + 02

vv

10

v60 212

But i 0 = .4

v60 1

Hence

0

2vv

10v60

4v603 2121 1020 = 5v 1 + 12v 2 (2)

Solving (1) and (2) gives v 1 = 53.08 V. Hence i 0 =4

v60 1 1.73 A

60 V

–+60 V

4

10

2

8

3i 0

i0

v 1

v 2

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 19/104

Chapter 3, Solution 18

At node 2, in Fig. (a),2

vv

2

vv 3212

–15 = 0 or –0.5v 1 + v 2 – 0.5v 3 = 15 (1)

At the supernode,8v

4v

2vv

2vv 313212 = 0 and (v 1 /4) – 15 + (v 3/8) = 0 or

2v 1+v 3 = 120 (2)

From Fig. (b), – v 1 – 30 + v 3 = 0 or v 3 = v 1 + 30 (3)

Solving (1) to (3), we obtain,v 1 = 30 V , v 2 = 60 V = v 3

(b)

15A

v 3

84

22

v 2v 1

– +

30 V

+v 1

+v 3

(a)

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 20/104

Chapter 3, Solution 19

At node 1,

32112131 4716

48235 V V V

V V V V V (1)

At node 2,

32132221 270

428V V V

V V V V V (2)

At node 3,

32132313 724360

428

123 V V V

V V V V V (3)

From (1) to (3),

B AV

V

V

V

36

0

16

724

271

417

3

2

1

Using MATLAB,

V267.12 V,933.4 V,10

267.12

933.4

10

3211 V V V B AV

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 21/104

Chapter 3, Solution 20

Nodes 1 and 2 form a supernode; so do nodes 1 and 3. Hence

040414

321321 V V V

V V V (1)

.V 1 . V 2 2 V 3

4 1 4

Between nodes 1 and 3,12012 1331

V V V V (2)Similarly, between nodes 1 and 2,

(3)iV V 221

But . Combining this with (2) and (3) gives4/3V i

. (4)2/6 12 V V

Solving (1), (2), and (4) leads to

V15V,5.4 V,3 321 V V V

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 22/104

Chapter 3, Solution 21

4 k

Let v 3 be the voltage between the 2k resistor and the voltage-controlled voltage source.At node 1,

2000vv

4000vv

10x3 31213

12 = 3v 1 - v 2 - 2v 3 (1)

At node 2,

1v

2vv

4vv 23121 3v 1 - 5v 2 - 2v 3 = 0 (2)

Note that v 0 = v 2 . We now apply KVL in Fig. (b)

- v 3 - 3v 2 + v 2 = 0 v 3 = - 2v 2 (3)

From (1) to (3),

v 1 = 1 V , v 2 = 3 V

(b)

+v 3

+v 2

3v 0

3 mA 1 k

v 32 k

3v 0v v1 2

+v 0

(a)

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 23/104

Chapter 3, Solution 22

At node 1,8

vv3

4v

2v12 0110

24 = 7v 1 - v 2 (1)

At node 2, 3 +1

v5v8

vv 2221

But, v 1 = 12 - v 1

Hence, 24 + v 1 - v 2 = 8 (v 2 + 60 + 5v 1) = 4 V

456 = 41v 1 - 9v 2 (2)

Solving (1) and (2),

v 1 = - 10.91 V , v 2 = - 100.36 V

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 24/104

Chapter 3, Solution 23

We apply nodal analysis to the circuit shown below.

At node o,

30V25.0V25.104

)VV2(V2

0V1

30V1o

1oooo (1)

At node 1,

48V4V50316

0V4

V)VV2(o1

1o1o (2)

From (1), V 1 = 5V o – 120. Substituting this into (2) yields29V o = 648 or V o = 22.34 V .

1

2

2 V o

+ –

3 A

+ _30 V

4 V Vo 1

+

V 16 o

_

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 25/104

Chapter 3, Solution 24

Consider the circuit below.

8

_

4V125.0V125.108

VV4

10V

41411 (1)

4V25.0V75.004

VV2

0V4 32

322 (2)

2V75.0V25.0022

0V4

VV32

323 (3)

2V125.1V125.001

0V8

VV2 41

414 (4)

2

2

4

4

V

125.100125.0

075.025.00

025.075.00

125.000125.1

Now we can use MATLAB to solve for the unknown node voltages.

>> Y=[1.125,0,0,-0.125;0,0.75,-0.25,0;0,-0.25,0.75,0;-0.125,0,0,1.125]

Y =

1

4

2 1

+ V o

4 A 2 A

V V2 3V V1 4

2

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 26/104

1.1250 0 0 -0.12500 0.7500 -0.2500 00 -0.2500 0.7500 0

-0.1250 0 0 1.1250

>> I=[4,-4,-2,2]'

I =

4-4-22

>> V=inv(Y)*I

V =3.8000

-7.0000-5.00002.2000

V o = V 1 – V 4 = 3.8 – 2.2 = 1.6 V .

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 27/104

Chapter 3, Solution 25

Consider the circuit shown below.

20

At node 1.1 2 1 4

1 24 80 2

1 20

V V V V V V

41 20 V (1)

At node 2,2 31 2 2

1 20 80 98 8

1 8 10

V V V V V V V 3

V (2)

At node 3,2 3 3 3 4

2 3 40 2 5 2

10 20 10

V V V V V V V V

(3)

At node 4,3 41 4 4

1 30 3 6 11

20 10 30

V V V V V V V V 4 (4)

Putting (1) to (4) in matrix form gives:

1

2

3

4

80 21 20 0 1

0 80 98 8 0

0 0 2 5 2

0 3 0 6 11

V

V

V

V

B = A V V = A -1 B

Using MATLAB leads to

V 1 = 25.52 V , V 2 = 22.05 V , V 3 = 14.842 V , V 4 = 15.055 V

10

4

1

8

2 1 3

4

10

30

20

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 28/104

Chapter 3, Solution 26

At node 1,

32121311 24745

5103

2015 V V V V V V V V (1)

At node 2,

554

532221

V V V I V V o

(2)

But10

31 V V

I o . Hence, (2) becomes

321 31570 V V V (3)At node 3,

321

32331 V11V6V37005

VV

15

V10

10

VV3 (4)

Putting (1), (3), and (4) in matrix form produces

BAV

70

0

45

V

V

V

1163

3157

247

3

2

1

Using MATLAB leads to

89.2

78.2

19.7

BAV 1

Thus,V 1 = –7.19V ; V 2 = –2.78V ; V 3 = 2.89V .

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 29/104

Chapter 3, Solution 27

At node 1,

2 = 2v 1 + v 1 – v 2 + (v 1 – v 3)4 + 3i 0 , i 0 = 4v 2 . Hence,

2 – v (2)

2

2 = 7v 1 + 11v 2 – 4v 3 (1)At node 2,

v 1 – v 2 = 4v 2 + v 2 – v 3 0 = – v 1 + 6v 3

At node 3,v3 = 4 + v 2 – v 3 + 12v 2 + 4(v 1 – v 3)

or – 4 = 4v 1 + 13v 2 – 7v 3 (3)

In matrix form,

4

0

2

v

v

v

7134

161

4117

3

2

1

,1767134

161

4117

1107134

160

4112

1

,66

744

101

427

2 286

4134

061

2117

3

v 1 = ,V625.01761101 v 2 = V375.0

176662

v 3 = .V625.11762863

v 1 = 625 mV , v 2 = 375 mV , v 3 = 1.625 V .

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 30/104

Chapter 3, Solution 28

At node c,

d cbcbccd V V V

V V V V V 21150

5410 (1)

At node b,

c ba b bc ba V2V4V90

8V

4VV

8V90V (2)

At node a,

d ba baad a V4V2V7600

8V90V

16V

4V60V (3)

At node d,

d cacd d d a V8V2V5300

10VV

20V

4V60V (4)

In matrix form, (1) to (4) become

BAV

300

60

90

0

V

V

V

V

8205

4027

0241

21150

d

c

b

a

We use MATLAB to invert A and obtain

75.43389.1

56.20

56.10

BAV 1

Thus,V a = –10.56 V ; V b = 20.56 V ; V c = 1.389 V ; VC d = –43.75 V .

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 31/104

Chapter 3, Solution 29

At node 1,

42121141 45025 V V V V V V V V (1)At node 2,

32132221 4700)(42 V V V V V V V V (2)At node 3,

4324332 546)(46 V V V V V V V (3)At node 4,

43144143 5232 V V V V V V V V (4)In matrix form, (1) to (4) become

B AV

V

V

V

V

2

6

0

5

5101

1540

0471

1014

4

3

2

1

Using MATLAB,

7076.0

309.2

209.1

7708.0

1 B AV

i.e.V7076.0 V,309.2 V,209.1 V,7708.0 4321

V V V V

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 32/104

Chapter 3, Solution 30

At node 1,

[(v 1 –80)/10]+[(v 1 –4v o)/20]+[(v 1 –(v o –96))/40] = 0 or(0.1+0.05+0.025)v 1 – (0.2+0.025)v o =0.175v 1 – 0.225v o = 8–2.4 = 5.6 (1)

At node 2,

–2 i o + [((v o –96)–v 1)/40] + [(v o –0)/80] = 0 and i o = [(v 1 –(v o –96))/40] –2[(v 1 –(v o –96))/40] + [((v o –96)–v 1)/40] + [(v o –0)/80] = 0 –3[(v 1 –(v o –96))/40] + [(v o –0)/80] = 0 or –0.0.075v 1 + (0.075+0.0125)v o = 7.2 = –0.075v

1 + 0.0875v

o = 7.2 (2)

Using (1) and (2) we get,

2.7

6.5

0015625.0175.0075.0

225.00875.0

2.7

6.5

016875.00153125.0175.0075.0

225.00875.0

2.7

6.5

0875.0075.0

225.0175.0

1

1

o

o

v

v

or v

v

v1 = –313.6–1036.8 = –1350.4

vo = –268.8–806.4 = –1.0752 kV

and i o = [(v 1 –(v o –96))/40] = [(–1350.4–(–1075.2–96))/40] = –4.48 amps .

v 1

10

20

80

40

1

v 0

i 0

2i 0

– +

2

– + +

96 V

4v80 V 0

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 33/104

Chapter 3, Solution 31

1

At the supernode,

1 + 2v 0 =1

vv

1

v

4

v 3121

(1)

But v o = v 1 – v 3 . Hence (1) becomes,

4 = -3v 1 + 4v 2 +4v 3 (2)

At node 3,

2v o +2

v10vv

4v 3

313

or 20 = 4v 1 + 0v 2 – v 3 (3)

At the supernode, v 2 = v 1 + 4i o . But i o =4

v 3 . Hence,

v 2 = v 1 + v 3 (4)

Solving (2) to (4) leads to,

v 1 = 4.97V , v 2 = 4.85V , v 3 = –0.12V .

i0

4

v 2v 1

1 A – +10 V

+ v – 0

4

22v v0 3

1

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 34/104

Chapter 3, Solution 32

v 35 k 10 V 20 V

We have a supernode as shown in figure (a). It is evident that v 2 = 12 V, Applying KVLto loops 1and 2 in figure (b), we obtain,

-v 1 – 10 + 12 = 0 or v 1 = 2 and -12 + 20 + v 3 = 0 or v 3 = -8 V

Thus, v 1 = 2 V , v 2 = 12 V , v 3 = -8V .

(b)

v 1v 2

+ – – +

(a)

4 mA

10 k

+v 1

+

v 3 –

– +12 V

loop 1loop 2

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 35/104

Chapter 3, Solution 33

(a) This is a planar circuit. It can be redrawn as shown below.

5

13

4

(b) This is a planar circuit. It can be redrawn as shown below.

– +12 V

5

4

3

2

1

2 A

2

6

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 36/104

Chapter 3, Solution 34

(a) This is a planar circuit because it can be redrawn as shown below,

7

231

6

(b) This is a non-planar circuit.

510 V – +

4

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 37/104

Chapter 3, Solution 35

Assume that i 1 and i 2 are in mA. We apply mesh analysis. For mesh 1,

-30 + 20 + 7i 1 – 5i 2 = 0 or 7i 1 – 5i 2 = 10 (1)For mesh 2,

-20 + 9i 2 – 5i 1 = 0 or -5i 1 + 9i 2 = 20 (2)

Solving (1) and (2), we obtain, i 2 = 5.

v0 = 4i 2 = 20 volts .

5 k

i1

i2+v 0

– +30 V 20 V – +

4 k

2 k

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 38/104

Chapter 3, Solution 36

10 V 4

+ – i

Applying mesh analysis gives,

10I 1 – 6I 2 = 12 and –6I 1 + 8I 2 = –10

or5

611

53

34

IIor

56

II

4335

56

2

1

2

1

I1 = (24–15)/11 = 0.8182 and I 2 = (18–25)/11 = –0.6364

i1 = –I 1 = –818.2 mA ; i 2 = I 1 – I 2 = 0.8182+0.6364 = 1.4546 A ; andi3 = I 2 = –636.4 mA .

I 1 I 2

– +12 V 6 2

1 i i2 3

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 39/104

Chapter 3, Solution 37

Applying mesh analysis to loops 1 and 2, we get,

30i 1 – 20i 2 + 60 = 0 which leads to i 2 = 1.5i 1 + 3 (1)

–20i 1 + 40i 2 – 60 + 5 v 0 = 0 (2)But, v 0 = –4i 1 (3)

Using (1), (2), and (3) we get –20i 1 + 60i 1 + 120 – 60 – 20i 1 = 0 or

20i 1 = –60 or i 1 = –3 amps and i 2 = 7.5 amps.

Therefore, we get,v 0 = –4i 1 = 12 volts .

20

i1

i2+v 0

– + –

– + 60 V

6

5v 0 4

20

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 40/104

Chapter 3, Solution 38

Consider the circuit below with the mesh currents.

4 3

+ _

22.5V + _

Io

1

2 2

10 A

I4I31 60 V

I2I11

4

5 A

I1 = –5 A (1)

1(I 2 –I 1) + 2(I 2 –I 4) + 22.5 + 4I 2 = 07I 2 – I 4 = –27.5 (2)

–60 + 4I 3 + 3I 4 + 1I 4 + 2(I 4 –I 2) + 2(I 3 – I 1) = 0 (super mesh) –2I 2 + 6 I 3 + 6I 4 = +60 – 10 = 50 (3)

But, we need one more equation, so we use the constraint equation –I 3 + I 4 = 10. Thisnow gives us three equations with three unknowns.

1050

5.27

II

I

110662

107

4

3

2

We can now use MATLAB to solve the problem.

>> Z=[7,0,-1;-2,6,6;0,-1,0]

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 41/104

Z =

7 0 -1-2 6 60 -1 0

>> V=[–27.5,50,10]'

V = –27.5

5010

>> I=inv(Z)*V

I = –1.3750 –10.0000

17.8750Io = I 1 – I 2 = –5 – 1.375 = –6.375 A .

Check using the super mesh (equation (3)):

–2I 2 + 6 I 3 + 6I 4 = 2.75 – 60 + 107.25 = 50!

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 42/104

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 43/104

Chapter 3, Solution 40

Assume all currents are in mA and apply mesh analysis for mesh 1.

–56 + 12i 1 – 6i 2 – 4i 3 = 0 or 6i 1 – 3i 2 – 2i 3 = 28 (1)

for mesh 2, –6i 1 + 14i 2 – 2i 3 = 0 or –3i 1 + 7i 2 – i 3 = 0 (2)

for mesh 3,

–4i 1 – 2i 2 + 10i 3 = 0 or –2i 1 – i 2 + 5i 3 = 0 (3)

Solving (1), (2), and (3) using MATLAB, we obtain,

i o = i 1 = 8 mA .

4 k

– 56V i1

i3

2 k

6 k

4 k

6 k

i 2

2 k

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 44/104

Chapter 3, Solution 41

10

i 1 6 V

For loop 1,6 = 12i 1 – 2i 2 3 = 6i 1 – i 2 (1)

For loop 2,-8 = – 2i 1 +7i 2 – i 3 (2)

For loop 3,

-8 + 6 + 6i 3 – i 2 = 0 2 = – i 2 + 6i 3 (3)

We put (1), (2), and (3) in matrix form,

2

8

3

i

i

i

610

172

016

3

2

1

,234610172

016

240620182

036

2

5

i3

i2

i3

+ –

– + 8 V

2

1

4

ii2

0

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 45/104

38

210

872

316

3

At node 0, i + i 2 = i 3 or i = i 3 – i 2 =234

2403823 = 1.188 A

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 46/104

Chapter 3, Solution 42

Although there are many ways to work this problem, this is an example based on the same kindof problem asked in the third edition.

Problem

Determine the mesh currents in the circuit of Fig. 3.88.

Figure 3.88

Solution

For mesh 1,(1)2121 3050120305012 I I I I

For mesh 2,(2)321312 40100308040301008 I I I I I I

For mesh 3,

(3)3223 50406040506 I I I I Putting eqs. (1) to (3) in matrix form, we get

B AI

I

I

I

6

8

12

50400

4010030

03050

3

2

1

Using Matlab,

44.0

40.0

48.01 B A I

i.e. I 1 = 480 mA , I 2 = 400 mA , I 3 = 440 mA

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 47/104

Chapter 3, Solution 43

20

For loop 1,

80 = 70i 1 – 20i 2 – 30i 3 8 = 7i 1 – 2i 2 – 3i 3 (1)

For loop 2,

80 = 70i 2 – 20i 1 – 30i 3 8 = -2i 1 + 7i 2 – 3i 3 (2)

For loop 3,

0 = -30i1 – 30i

2 + 90i

3 0 = i

1 + i

2 – 3i

3

(3)

olving (1) to (3), we obtain i 3 = 16/9

Io = i 3 = 16/9 = 1.7778 A

V ab = 30i 3 = 53.33 V .

S

a

i1

i2

i3

– +80 V

– 3080 V +

V ab 3020

– 30

b20

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 48/104

Chapter 3, Solution 44

90 V

+

Loop 1 and 2 form a supermesh. For the supermesh,

6i 1 + 4i 2 – 5i 3 + 180 = 0 (1)

For loop 3, –i 1 – 4i 2 + 7i 3 + 90 = 0 (2)

Also, i 2 = 45 + i 1 (3)

Solving (1) to (3), i 1 = –46, i 3 = –20; i o = i 1 – i 3 = –26 A

– 180V

45 A

i1

i2i3 4

5

2

1

ii1 2

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 49/104

Chapter 3, Solution 45

4 8

i

For loop 1, 30 = 5i 1 – 3i 2 – 2i 3 (1)

For loop 2, 10i 2 - 3i 1 – 6i 4 = 0 (2)

For the supermesh, 6i 3 + 14i 4 – 2i 1 – 6i 2 = 0 (3)

But i 4 – i 3 = 4 which leads to i 4 = i 3 + 4 (4)

Solving (1) to (4) by elimination gives i = i 1 = 8.561 A .

1i1 i2

3 i4

62

30V

3

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 50/104

Chapter 3, Solution 46

For loop 1,12811081112)(8312 2121211

iiiiiii (1)For loop 2,

0214826)(8 21212 oo viiviii But ,13iv

o

21121 706148 iiiii (2)Substituting (2) into (1),

1739.012877 222 iii A and 217.17 21

ii A

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 51/104

Chapter 3, Solution 47

First, transform the current sources as shown below.

- 6V +

2

I3 V 1 8 V 2 4 V 3

4 8

I1 2 I 2 + +

20V 12V- -

For mesh 1,

321321 47100821420 I I I I I I (1)For mesh 2,

321312 2760421412 I I I I I I (2)For mesh 3,

321123 7243084146 I I I I I I (3)Putting (1) to (3) in matrix form, we obtain

B AI

I

I

I

3

6

10

724

271

417

3

2

1

Using MATLAB,

8667.1,0333.0 ,5.2

8667.1

0333.0

2

3211 I I I B A I

But

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 52/104

111 420

420

I V V

I 10 V

)(2 212 I I V 4.933 V

Also,

23

32 812

8

12 I V

V I 12.267 V .

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 53/104

Chapter 3, Solution 48

We apply mesh analysis and let the mesh currents be in mA. 3k

I4

4k 2k 5k

Io

1k I 3 -I1 I 2 3 V

+ +6 V + 10k

- 4 V-

For mesh 1,

421421 I4II520I4II586 (1)For mesh 2,

43214312 I2I10I13I40I2I10II134 (2)For mesh 3,

432423 I5I15I1030I5I10I153 (3)

For mesh 4, 014524 4321 I I I I (4)

Putting (1) to (4) in matrix form gives

BAI

0

3

4

2

I

I

I

I

14524

515100

210131

4015

4

3

2

1

Using MATLAB,

3

896.3

044.4

608.3

BAI 1 0.148

The current through the 10k resistor is I o= I 2 – I 3 = 148 mA .

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 54/104

Chapter 3, Solution 49

3

i3

For the supermesh in figure (a),

3i 1 + 2i 2 – 3i 3 + 27 = 0 (1)

At node 0, i 2 – i 1 = 2i 0 and i 0 = –i 1 which leads to i 2 = –i 1 (2)

For loop 3, –i 1 –2i 2 + 6i 3 = 0 which leads to 6i 3 = –i 1 (3)

Solving (1) to (3), i 1 = (–54/3)A, i 2 = (54/3)A, i 3 = (27/9)A

i0 = –i 1 = 18 A , from fig. (b), v 0 = i 3 –3i 1 = (27/9) + 54 = 57 V .

–+

1

i1

+v 0 or

+v 0

– i2

227V

2

(b)

i1

2 i1 i2

21

27 V –+

2i 0

i20

(a)

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 55/104

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 56/104

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 57/104

Chapter 3, Solution 52

For mesh 1,

2(i 1 – i 2) + 4(i 1 – i 3) – 12 = 0 which leads to 3i 1 – i 2 – 2i 3 = 6 (1)

(2)

or the independent current source, i 3 = 3 + i 2 (3)

olving (1), (2), and (3), we obtain,

i1 = 3.5 A , i 2 = -0.5 A , i 3 = 2.5 A .

For the supermesh, 2(i 2 – i 1) + 8i 2 + 2v 0 + 4(i 3 – i 1) = 0 But v 0 = 2(i 1 – i 2) which leads to -i 1 + 3i 2 + 2i 3 = 0

F S

– +V S

–2V 0

+iv

0 2

– 3A

i1

i3

8

4

2i2

i3

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 58/104

Chapter 3, Solution 53

Applying mesh analysis leads to; –12 + 4kI 1 – 3kI 2 – 1kI 3 = 0 (1)

–3kI 1 + 7kI 2 – 4kI 4 = 0

–3kI 1 + 7kI 2 = –12 (2) –1kI 1 + 15kI 3 – 8kI 4 – 6kI 5 = 0 –1kI 1 + 15kI 3 – 6k = –24 (3)

I4 = –3mA (4) –6kI 3 – 8kI 4 + 16kI 5 = 0 –6kI 3 + 16kI 5 = –24 (5)

Putting these in matrix form (having substituted I 4 = 3mA in the above),

24

24

12

12

I

I

I

I

k

16600

61501

0073

0134

5

3

2

1

ZI = V

Using MATLAB,

>> Z = [4,-3,-1,0;-3,7,0,0;-1,0,15,-6;0,0,-6,16]

Z =

4 -3 -1 0-3 7 0 0-1 0 15 -60 0 -6 16

>> V = [12,-12,-24,-24]'

V =

12

-12-24-24

We obtain,

>> I = inv(Z)*V

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 59/104

I =1.6196 mA

–1.0202 mA–2.461 mA

3 mA

–2.423 mA

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 60/104

Chapter 3, Solution 54

Let the mesh currents be in mA. For mesh 1,

2121 22021012 I I I I (1)

For mesh 2,(2)321312 3100310 I I I I I I

For mesh 3,

3223 2120212 I I I I (3)Putting (1) to (3) in matrix form leads to

B AI

I

I

I

12

10

2

210

131

012

3

2

1

Using MATLAB,

mA25.10,mA5.8 ,mA25.5

25.10

5.8

25.5

3211 I I I B A I

I 1 = 5.25 mA , I 2 = 8.5 mA , and I 3 = 10.25 mA .

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 61/104

Chapter 3, Solution 55Chapter 3, Solution 5510 V

It is evident that I 1 = 4 (1)It is evident that I For mesh 4, 12(I 4 – I 1) + 4(I 4 – I 3) – 8 = 0For mesh 4, 12(I (2)(2)

For the supermesh 6(I 2 – I 1) + 10 + 2I 3 + 4(I 3 – I 4) = 0For the supermesh 6(I or -3I 1 + 3I 2 + 3I 3 – 2I 4 = -5 (3)or -3I At node c, I 2 = I 3 + 1 (4)At node c, I Solving (1), (2), (3), and (4) yields, I 1 = 4A, I 2 = 3A, I 3 = 2A, and I 4 = 4ASolving (1), (2), (3), and (4) yields, I

At node b, i 1 = I 2 – I 1 = -1A At node b, i

At node a, i 2 = 4 – I 4 = 0A At node a, i

At node 0, i 3 = I 4 – I 3 = 2A At node 0, i

ddI 1I

1 = 4 (1)

4 – I 1) + 4(I 4 – I 3) – 8 = 0

2 – I 1) + 10 + 2I 3 + 4(I 3 – I 4) = 01 + 3I 2 + 3I 3 – 2I 4 = -5 (3)

2 = I 3 + 1 (4)

1 = 4A, I 2 = 3A, I 3 = 2A, and I 4 = 4A

1 = I 2 – I 1 = -1A

2 = 4 – I 4 = 0A

3 = I 4 – I 3 = 2A

1

I

I 3

I 4

4 A

+ –

+I 2b c

1Ai1

61A

2i2

i3

I 34A 412

a 0I 4

8 V

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 62/104

Chapter 3, Solution 56+ v – 1

For loop 1, 12 = 4i 1 – 2i 2 – 2i 3 which leads to 6 = 2i 1 – i 2 – i 3 (1)

For loop 2, 0 = 6i 2 –2i 1 – 2 i 3 which leads to 0 = -i 1 + 3i 2 – i 3 (2)For loop 3, 0 = 6i 3 – 2i 1 – 2i 2 which leads to 0 = -i 1 – i 2 + 3i 3 (3)

In matrix form (1), (2), and (3) become,

0

0

6

i

i

i

311

131

112

3

2

1

= ,8

311

131112

2 = 24

301

131162

3 = 24

011

031

612

, therefore i 2 = i 3 = 24/8 = 3A,

v1 = 2i 2 = 6 volts , v = 2i 3 = 6 volts

– +12 V

i1

i2

i3

2

22

+2 2v 2

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 63/104

Chapter 3, Solution 57

Assume R is in kilo-ohms.V306090V90V,V60mA15xk 4V 212

Current through R is

R )15(R 3

330R iViR 3

3i R 1,oR

This leads to R = 90/15 = 6 k Ω .

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 64/104

Chapter 3, Solution 5830

i2

For loop 1, 120 + 40i 1 – 10i 2 = 0, which leads to -12 = 4i 1 – i 2 (1)

For loop 2, 50i 2 – 10i 1 – 10i 3 = 0, which leads to -i 1 + 5i 2 – i 3 = 0 (2)

For loop 3, -120 – 10i 2 + 40i 3 = 0, which leads to 12 = -i 2 + 4i 3 (3)

Solving (1), (2), and (3), we get, i 1 = -3A , i 2 = 0, and i 3 = 3A

– +

120 V

30

i1 i3

10 1030

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 65/104

Chapter 3, Solution 59

For loop 1, -80 + 30i 1 – 20i 2 + 4v 0 = 0, where v 0 = 80i 3

(3)

From (1), (2), and (3),

=

or 4 = 1.5i 1 – i 2 + 16i 3 (1)

For the supermesh, 60i 2 – 20i 1 – 96 + 80i 3 – 4 v 0 = 0, where v 0 = 80i 3

or 4.8 = -i 1 + 3i 2 – 12i 3 (2)

Also, 2I 0 = i 3 – i 2 and I 0 = i 2 , hence, 3i 2 = i 3

130

12313223

0

8.48

3

2

1

i

i

i

,5

130

1231

3223

2 = ,4.22

100

128.41

3283

3 = 2.67

030

8.431

823

I0 = i 2 = 2 / = -28/5 = –4.48 A

v 0 = 8i 3 = (-84/5)80 = –1.0752 kvolts

i1

i2

i3

40– +

96 V

4v 0 – –

+80V

+v 0

– 80

20

10

I

i

0

2I 0

i2 3

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 66/104

Chapter 3, Solution 60

0.5 i0

At node 1, [(v 1 –0)/1] + [(v 1 –56)/4] + 0.5[(v 1 –0)/1] = 0 or 1.75v 1 = 14 or v 1 = 8 VAt node 2, [(v 2 –56)/8] – 0.5[8/1] + [(v 2 –0)/2] = 0 or 0.625v 2 = 11 or v 2 = 17.6 V

P1 = (v 1)2/1 = 64 watts , P 2 = (v 2)2/2 = 154.88 watts ,

P4 = (56 – v 1)2/4 = 576 watts , P 8 = (56 – v 2)2/8 = 1.84.32 watts .

v 2

– +56 V

856 V4v 1

1 2

i0

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 67/104

Chapter 3, Solution 61

20 10

At node 1, i s = (v 1/30) + ((v 1 – v 2)/20) which leads to 60i s = 5v 1 – 3v 2

s

(1)

But v 2 = -5v 0 and v 0 = v 1 which leads to v 2 = -5v 1 Hence, 60i s = 5v 1 + 15v 1 = 20v 1 which leads to v 1 = 3i s, v 2 = -15i

i0 = v 2 /50 = -15i s/50 which leads to i 0 /i s = -15/50 = –0.3

+v 0

v 2

v 1

i0

i s 30 40

5v 0

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 68/104

Chapter 3, Solution 62

4 k

We have a supermesh. Let all R be in k , i in mA, and v in volts.

For the supermesh, -100 +4i 1 + 8i 2 + 2i 3 + 40 = 0 or 30 = 2i 1 + 4i 2 + i 3 (1)

At node A, i 1 + 4 = i 2 (2)

At node B, i 2 = 2i 1 + i 3 (3)

Solving (1), (2), and (3), we get i 1 = 2 mA , i 2 = 6 mA , and i 3 = 2 mA .

i1 i2 i3 – +100V

B8 k 2 k

A

40 V

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 69/104

Chapter 3, Solution 63

10 A

For the supermesh, -50 + 10i 1 + 5i 2 + 4i x = 0, but i x = i 1 . Hence,

2 (2)

50 = 14i 1 + 5i 2 (1)

At node A, i 1 + 3 + (v x /4) = i 2 , but v x = 2(i 1 – i 2), hence, i 1 + 2 = i Solving (1) and (2) gives i 1 = 2.105 A and i 2 = 4.105 A

v x = 2(i 1 – i 2) = –4 volts and i x = i 2 – 2 = 2.105 amp

– +50 V

4i x–

i1 i2

5

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 70/104

Chapter 3, Solution 64

i

For mesh 2, 20i 2 – 10i 1 + 4i 0 = 0 (1)

But at node A, i o = i 1 – i 2 so that (1) becomes i 1 = (16/6)i 2 (2)

or the supermesh, –250 + 50i 1 + 10(i 1 – i 2) – 4i 0 + 40i 3 = 0

r 28i 1 – 3i 2 + 20i 3 = 125

e B,

becomes i 3 = 5 + (2/3)i 2 (5)

Solving (1) to

v 0 = 10i 2 = 2.941 volts , i 0 = i 1 – i 2 = (5/3)i 2 = 490.2mA .

F o (3)

At nod i 3 + 0.2v 0 = 2 + i 1 (4)

But, v 0 = 10i 2 so that (4)

(5), i 2 = 0.2941 A,

40i1

i2

i3

– 250V

–4i 0

50 iA 10

0.2V 0

1 2

10

5 A

B

i0 + v 0

i i1 3

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 71/104

Chapter 3, Solution 65

For mesh 1, –12 + 12I 1 – 6I 2 – I 4 = 0 or

421 61212 I I I (1)For mesh 2,

–6I 1 + 16I 2 – 8I 3 – I 4 – I 5 = 0 (2)For mesh 3,

–8I 2 + 15I 3 – I 5 – 9 = 0 or9 = –8I 2 + 15I 3 – I 5 (3)

For mesh 4, –I 1 – I 2 + 7I 4 – 2I 5 – 6 = 0 or

(4)6 = –I 1 – I 2 + 7I 4 – 2I 5 For mesh 5,

–I 2 – I 3 – 2I 4 + 8I 5 – 10 = 0 or 5432 8210 I I I I (5)

Casting (1) to (5) in matrix form gives

BAI

10

6

9

0

12

I

I

I

I

I

82110

27011

101580

118166

010612

5

4

3

2

1

Using MATLAB we input:

Z=[12,-6,0,-1,0;-6,16,-8,-1,-1;0,-8,15,0,-1;-1,-1,0,7,-2;0,-1,-1,-2,8]and V=[12;0;9;6;10]

This leads to>> Z=[12,-6,0,-1,0;-6,16,-8,-1,-1;0,-8,15,0,-1;-1,-1,0,7,-2;0,-1,-1,-2,8]

Z =

12 -6 0 -1 0-6 16 -8 -1 -10 -8 15 0 -1

-1 -1 0 7 -20 -1 -1 -2 8

>> V=[12;0;9;6;10]

V =

12

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 72/104

096

10

>> I=inv(Z)*V

I =

2.17011.99121.81192.09422.2489

Thus,

I = [2.17, 1.9912, 1.8119, 2.094, 2.249] A .

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 73/104

Chapter 3, Solution 66

The mesh equations are obtained as follows.

1 2 3 412 24 30 4 6 2 0I I I I

or30I 1 – 4I 2 – 6I 3 – 2I 4 = –12 (1)

1 2 4 524 40 4 30 2 6 0I I I I

or –4I 1 + 30I 2 – 2I 4 – 6I 5 = –16 (2)

–6I 1 + 18I 3 – 4I 4 = 30 (3)

–2I 1 – 2I 2 – 4I 3 + 12I 4 –4I 5 = 0 (4)

–6I 2 – 4I 4 + 18I 5 = –32 (5)

Putting (1) to (5) in matrix form

32

0

30

16

12

I

184060

412422

041806

620304

026430

ZI = V

Using MATLAB,

>> Z = [30,-4,-6,-2,0;-4,30,0,-2,-6;-6,0,18,-4,0;-2,-2,-4,12,-4;

0,-6,0,-4,18]Z =

30 -4 -6 -2 0-4 30 0 -2 -6-6 0 18 -4 0-2 -2 -4 12 -4

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 74/104

0 -6 0 -4 18

>> V = [-12,-16,30,0,-32]'

V =

-12-16300

-32

>> I = inv(Z)*V

I =

-0.2779 A-1.0488 A1.4682 A-0.4761 A-2.2332 A

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 75/104

Chapter 3, Solution 67

Consider the circuit below.

V 3

+ V o -

15

0

V35

V

5.05.00

5.095.025.0

025.035.0 o

Since we actually have four unknowns and only three equations, we need a constraintequation.

Vo = V

2 – V

3

Substituting this back into the matrix equation, the first equation becomes,

0.35V 1 – 3.25V 2 + 3V 3 = –5

This now results in the following matrix equation,

V 2

10 5 10 A 3 V o

V 1 2

5 A

4

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 76/104

15

0

5

V

5.05.00

5.095.025.0

325.335.0

Now we can use MATLAB to solve for V.

>> Y=[0.35,-3.25,3;-0.25,0.95,-0.5;0,-0.5,0.5]

Y =

0.3500 -3.2500 3.0000-0.2500 0.9500 -0.5000

0 -0.5000 0.5000

>> I=[–5,0,15]'

I =

–5015

>> V=inv(Y)*I

V = –410.5262 –194.7368 –164.7368

V o = V 2 – V 3 = –77.89 + 65.89 = –30 V .

Let us now do a quick check at node 1.

–3(–30) + 0.1(–410.5) + 0.25(–410.5+194.74) + 5 =90–41.05–102.62+48.68+5 = 0.01; essentially zero considering theaccuracy we are using. The answer checks.

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 77/104

Chapter 3, Solution 68

Although there are many ways to work this problem, this is an example based on thesame kind of problem asked in the third edition.

Problem

Find the voltage V o in the circuit of Fig. 3.112.

3 A

40 20

_

+

V o

25 10

+ _4A 24 V

Figure 3.112For Prob. 3.68.

Solution

Consider the circuit below. There are two non-reference nodes.

3 A

V 1 V o

40 20

_

+

V o

25 10

+ _4 A 24 V

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 78/104

04.2

7

25/243

34V

19.01.0

1.0125.0

Using MATLAB, we get,

>> Y=[0.125,-0.1;-0.1,0.19]

Y =

0.1250 -0.1000-0.1000 0.1900

>> I=[7,-2.04]'

I =

7.0000-2.0400

>> V=inv(Y)*I

V =

81.890932.3636

Thus, V o = 32.36 V .We can perform a simple check at node V o ,

3 + 0.1(32.36–81.89) + 0.05(32.36) + 0.04(32.36–24) =3 – 4.953 + 1.618 + 0.3344 = – 0.0004; answer checks!

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 79/104

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 80/104

Chapter 3, Solution 70

7I4

20I4V

50

03

x

x

With two equations and three unknowns, we need a constraint equation,

Ix = 2V 1 , thus the matrix equation becomes,

7

20V

58

05

This results in V 1 = 20/(–5) = –4 V andV 2 = [–8(–4) – 7]/5 = [32 – 7]/5 = 5 V .

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 81/104

Chapter 3, Solution 71

015

30

I915174

549

We can now use MATLAB solve for our currents.

>> R=[9,–4,–5;–4,7,–1;–5,–1,9]

R =

9 –4 –5 –4 7 –1 –5 –1 9

>> V=[30,–15,0]'

V =

30 –15

0

>> I=inv(R)*V

I =

6.255 A1.9599 A3.694 A

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 82/104

Chapter 3, Solution 72

R 11 = 5 + 2 = 7, R 22 = 2 + 4 = 6, R 33 = 1 + 4 = 5, R 44 = 1 + 4 = 5,R 12 = -2, R 13 = 0 = R 14 , R 21 = -2, R 23 = -4, R 24 = 0, R 31 = 0,R 32 = -4, R 34 = -1, R 41 = 0 = R 42 , R 43 = -1, we note that R ij = R ji for

all i not equal to j.

v1 = 8, v 2 = 4, v 3 = -10, and v 4 = -4

Hence the mesh-current equations are:

4

10

4

8

5100

1540

0462

0027

4

3

2

1

i

i

i

i

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 83/104

Chapter 3, Solution 73

R 11 = 2 + 3 +4 = 9, R 22 = 3 + 5 = 8, R 33 = 1+1 + 4 = 6, R 44 = 1 + 1 = 2,R 12 = -3, R 13 = -4, R 14 = 0, R 23 = 0, R 24 = 0, R 34 = -1

v 1 = 6, v 2 = 4, v 3 = 2, and v 4 = -3 Hence,

3

2

4

6

2100

1604

0083

0439

4

3

2

1

i

i

i

i

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 84/104

Chapter 3, Solution 74

R 11 = R 1 + R 4 + R 6 , R 22 = R 2 + R 4 + R 5 , R 33 = R 6 + R 7 + R 8 ,,R 44 = R 3 + R 5 + R 8 , R 12 = -R 4 , R 13 = -R 6 , R 14 = 0, R 23 = 0

R 24 = -R 5 , R 34 = -R 8 , again, we note that R ij = R ji for all i not equal to j.

The input voltage vector is =

4

3

2

1

V

V

V

V

4

3

2

1

4

3

2

1

85385

88766

55424

64641

0

0

0

0R

V

V

V

V

i

i

i

i

R R R R R

R R R R R

R R R R R

R R R R

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 85/104

Chapter 3, Solution 75

* Schematics Netlist *

R_R4 $N_0002 $N_0001 30R_R2 $N_0001 $N_0003 10

R_R1 $N_0005 $N_0004 30R_R3 $N_0003 $N_0004 10R_R5 $N_0006 $N_0004 30V_V4 $N_0003 0 120Vv_V3 $N_0005 $N_0001 0v_V2 0 $N_0006 0v_V1 0 $N_0002 0

i3

i2i1

Clearly, i 1 = –3 amps , i 2 = 0 amps , and i 3 = 3 amps , which agrees with the answers inProblem 3.44.

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 86/104

Chapter 3, Solution 76

* Schematics Netlist *

I_I2 0 $N_0001 DC 4AR_R1 $N_0002 $N_0001 0.25

R_R3 $N_0003 $N_0001 1R_R2 $N_0002 $N_0003 1F_F1 $N_0002 $N_0001 VF_F1 3VF_F1 $N_0003 $N_0004 0VR_R4 0 $N_0002 0.5R_R6 0 $N_0001 0.5I_I1 0 $N_0002 DC 2AR_R5 0 $N_0004 0.25

Clearly, v 1 = 625 mVolts , v 2 = 375 mVolts , and v 3 = 1.625 volts , which agrees withthe solution obtained in Problem 3.27.

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 87/104

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 88/104

Chapter 3, Solution 78

The schematic is shown below. When the circuit is saved and simulated the nodevoltages are displayed on the pseudocomponents as shown. Thus,

,V15V,5.4 V,3 321

V V V

.

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 89/104

Chapter 3, Solution 79

The schematic is shown below. When the circuit is saved and simulated, we obtain thenode voltages as displayed. Thus,

V a = –10.556 volts ; V b = 20.56 volts ; V c = 1.3889 volts ; and V d = –43.75 volts .

R1

20

R2

8

R3

10

R4

5

R5

4

R6

4 R7

16

R8

8

V1

90VdcV2

60Vdc

20.56 V

1.3889 V

–43.75 V

–10.556 V

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 90/104

Chapter 3, Solution 80

* Schematics Netlist *

H_H1 $N_0002 $N_0003 VH_H1 6VH_H1 0 $N_0001 0V

I_I1 $N_0004 $N_0005 DC 8AV_V1 $N_0002 0 20VR_R4 0 $N_0003 4R_R1 $N_0005 $N_0003 10R_R2 $N_0003 $N_0002 12R_R5 0 $N_0004 1R_R3 $N_0004 $N_0001 2

Clearly, v 1 = 84 volts , v 2 = 4 volts , v 3 = 20 volts , and v 4 = -5.333 volts

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 91/104

Chapter 3, Solution 81

Clearly, v 1 = 26.67 volts , v 2 = 6.667 volts , v 3 = 173.33 volts , and v 4 = –46.67 volts which agrees with the results of Example 3.4.

This is the netlist for this circuit.

* Schematics Netlist *

R_R1 0 $N_0001 2R_R2 $N_0003 $N_0002 6R_R3 0 $N_0002 4R_R4 0 $N_0004 1R_R5 $N_0001 $N_0004 3I_I1 0 $N_0003 DC 10AV_V1 $N_0001 $N_0003 20VE_E1 $N_0002 $N_0004 $N_0001 $N_0004 3

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 92/104

Chapter 3, Solution 82

This network corresponds to the Netlist.This network corresponds to the Netlist.

+ v 0 – + v

4 4

3 k3 k

0 –

2 k

4 k 8 k

6 k

2i 0

+4A

–+100V

2 30 3v1

0

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 93/104

Chapter 3, Solution 83

The circuit is shown below.

20 70

When the circuit is saved and simulated, we obtain v 2 = –12.5 volts

0

2 A 30 – +

1 2 3

20 V 50

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 94/104

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 95/104

Chapter 3, Solution 85

The amplifier acts as a source.

R s

+V s R L

-

For maximum power transfer,

9s L R R

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 96/104

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 97/104

Chapter 3, Solution 87

v 1 = 500(v s)/(500 + 2000) = v s/5

v 0 = -400(60v 1)/(400 + 2000) = -40v 1 = -40(v s /5) = -8v s,

Therefore, v 0/v s = –8

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 98/104

Chapter 3, Solution 88

Let v 1 be the potential at the top end of the 100-ohm resistor.

(v s – v 1)/200 = v 1/100 + (v 1 – 10 -3v 0)/2000 (1)

For the right loop, v 0 = -40i 0(10,000) = -40(v 1 – 10 -3)10,000/2000,

or, v 0 = -200v 1 + 0.2v 0 = -4x10 -3v 0 (2)

Substituting (2) into (1) gives, (v s + 0.004v 1)/2 = -0.004v 0 + (-0.004v 1 – 0.001v 0)/20

This leads to 0.125v 0 = 10v s or (v 0/v s) = 10/0.125 = –80

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 99/104

Chapter 3, Solution 89

Consider the circuit below.

For the left loop, applying KVL gives

–2.25 – 0.7 + 10 5IB + V BE = 0 but V BE = 0.7 V means 10 5IB = 2.25 or

IB = 22.5 µA .

For the right loop, –V CE + 15 – I Cx10 3 = 0. Addition ally, I C = βIB = 100x22.5x10 –6 =2.25 mA. Therefore,

V CE = 15–2.25x10 –3x10 3 = 12.75 V .

+ _

1 k

+ _

2.25 V

0.7 V 100 k

C 15 V | |

+ I C

_V CE

E

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 100/104

Chapter 3, Solution 90

For loop 1, -v s + 10k(I B) + V BE + I E (500) = 0 = -v s + 0.7 + 10,000I B + 500(1 + )I B

which leads to v s + 0.7 = 10,000I B + 500(151)I B = 85,500I B

But, v 0 = 500I E = 500x151I B = 4 which leads to I B = 5.298x10 -5

Therefore, v s = 0.7 + 85,500I B = 5.23 volts

+V 0

1 k

500-+

18V -+

v s i1

i2

I10 k B

+V CE +

– V BE –

I E

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 101/104

Chapter 3, Solution 91

We first determine the Thevenin equivalent for the input circuit.

R Th = 6||2 = 6x2/8 = 1.5 k and VTh = 2(3)/(2+6) = 0.75 volts

For loop 1, -0.75 + 1.5kIB + VBE + 400IE = 0 = -0.75 + 0.7 + 1500I B + 400(1 + )IB

IB = 0.05/81,900 = 0.61 A

v0 = 400IE = 400(1 + )IB = 49 mV

For loop 2, -400IE – VCE – 5kIC + 9 = 0, but, IC = IB and IE = (1 + )IB

VCE = 9 – 5k IB – 400(1 + )IB = 9 – 0.659 = 8.641 volts

+V 0 –

5 k

400-+

9 V -+

I

i1

i2

C

I1.5 k B +V CE + – V BE

– 0.75 V

I E

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 102/104

Chapter 3, Solution 92

Although there are many ways to work this problem, this is an example based on the same kindof problem asked in the third edition.

ProblemFind I B and V C for the circuit in Fig. 3.128. Let = 100, V BE = 0.7V.

Figure 3.128

Solution

I 5 k 1

I1 = I B + I C = (1 + )I B and I E = I B + I C = I 1

+

V 0 –

4 k -+

12V

10 k

V

+V CE

– +

V BE –

I B

I E

C

I C

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 103/104

Applying KVL around the outer loop,

4kI E + V BE + 10kI B + 5kI 1 = 12

12 – 0.7 = 5k(1 + )I B + 10kI B + 4k(1 + )I B = 919kI B

IB = 11.3/919k = 12.296 A

Also, 12 = 5kI 1 + V C which leads to V C = 12 – 5k(101)I B = 5.791 volts

8/10/2019 Solucionario Circuitos Sadiku Cap 3

http://slidepdf.com/reader/full/solucionario-circuitos-sadiku-cap-3 104/104

Chapter 3, Solution 93

From (b), -v 1 + 2i – 3v 0 + v 2 = 0 which leads to i = (v 1 + 3v 0 – v 2)/2

2

2

At node 1 in (a), ((24 – v 1)/4) = (v 1 /2) + ((v 1 +3v 0 – v 2)/2) + ((v 1 – v 2)/1), where v 0 = v

or 24 = 9v 1 which leads to v 1 = 2.667 volts

At node 2, ((v 1 – v 2)/1) + ((v 1 + 3v 0 – v 2)/2) = (v 2 /8) + v 2/4, v 0 = v

v 2 = 4v 1 = 10.66 volts

Now we can solve for the currents, i 1 = v 1 /2 = 1.333 A , i 2 = 1.333 A , and

i3 = 2.6667 A.

+v 0

i3v 1 v 2i

(b) (a)

2 3v 0

– +24V

1

3v4 0

i i 21 i2 + +2 8 v 1 v 2 4

– –