50
SOLPART Project Solar reactors for particle processing: The solar rotary kiln November 28th 2019 - ENSIACET Toulouse Stefania Tescari, Lamark de Oliveira, Gkiokchan Moumin DLR: German aerospace center Cologne, Germany SOLPART Project > Infoday > 28.11.2019 DLR.de Chart 1

SOLPART Project Solar reactors for particle processing

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: SOLPART Project Solar reactors for particle processing

SOLPART Project

Solar reactors for particle processing: The solar

rotary kiln

November 28th 2019 - ENSIACET Toulouse

Stefania Tescari, Lamark de Oliveira,

Gkiokchan Moumin

DLR: German aerospace center

Cologne, Germany

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 1

Page 2: SOLPART Project Solar reactors for particle processing

• The solar rotary kiln concept

• Detailed design

• Construction

• Some trials and errors

• Experiments

• Conclusions and Outlook

Overview

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 2

Page 3: SOLPART Project Solar reactors for particle processing

DLR.de • Chart 3 SOLPART Project > Infoday > 28.11.2019

How we introduce concentrated solar energy to the particles?

Page 4: SOLPART Project Solar reactors for particle processing

Solar calcination reactors – Overview

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 4

[1] G. Flamant et al., Solar Energy, vol. 24, 1980 [2] A. Imhof, Renewable Energy, vol. 10, 1997 [3] A. Meier et al., Energy, vol. 29, 2004[4] A. Meier et al., Solar Energy, vol. 80, 2006

[1]

[2]

[3]

[4][1]

Page 5: SOLPART Project Solar reactors for particle processing

Indirect concept – Double cylinder

Gas

Particles

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 5

Page 6: SOLPART Project Solar reactors for particle processing

crucible

incidentradiation

particlefeeder

particles outlet

thermocouples

Rotary Kiln: Concept

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 6

Page 7: SOLPART Project Solar reactors for particle processing

DLR.de • Chart 7 SOLPART Project > Infoday > 28.11.2019

Reactor design

Page 8: SOLPART Project Solar reactors for particle processing

Solar reactor modeling – Thermal model

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 8

1

2

3 4 5 6

8 7

Empty reactor

Heat sink on back

Conduction through insulation

Convection and radiation outside

Incident flux Gaussian distribution

Page 9: SOLPART Project Solar reactors for particle processing

Case 1: Improving inner insulation

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 9

Conduction losses = 35 %

Tout = 150°C

Improved insulation:

Conduction losses = 26 %

Tout = 120°C

Page 10: SOLPART Project Solar reactors for particle processing

Case 2: Improving axial contact of the ceramic ring

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 10

Conduction losses = 35 %

Tout = 150°C

Thermal performances are satisfying

Improved insulation and contact:

Conduction losses = 12 %

Tout = 60°C

Page 11: SOLPART Project Solar reactors for particle processing

Mixing analysis

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 11

Page 12: SOLPART Project Solar reactors for particle processing

SOLPART Project > Infoday > 28.11.2019DLR.de • Folie 12

Influence of lifters

Problem:

Page 13: SOLPART Project Solar reactors for particle processing

Image analysis

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 13

Page 14: SOLPART Project Solar reactors for particle processing

20 pixels (ca. 280 µm)

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 14

Page 15: SOLPART Project Solar reactors for particle processing

Image analysis

0

50000

100000

150000

200000

250000

300000

0 5 10 15 20 25 30 35 40 45

Pix

el w

ith

tra

cer

ne

igh

bo

urs

Image number

Low sensitivity

High sensitivity

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 15

S > 0 %

S > 10 %

Page 16: SOLPART Project Solar reactors for particle processing

Optimal lifters shape: 1 mm x 10 mm bars

12 optimal number

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 16

Page 17: SOLPART Project Solar reactors for particle processing

Reactor manufacture

DLR.de • Chart 17 SOLPART Project > Infoday > 28.11.2019

Page 18: SOLPART Project Solar reactors for particle processing

Crucible and holding

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 18

Page 19: SOLPART Project Solar reactors for particle processing

Housing

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 19

Page 20: SOLPART Project Solar reactors for particle processing

Frame

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 20

Page 21: SOLPART Project Solar reactors for particle processing

Insulation

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 21

d_i 0.25 m

lambda1 0.2 W/mKlambda2 0.035 W/mKthick. 1 0.1 mthick. 2 0.04 m

L 0.7 mA ext 1.17 m²

T_inside 1050 °C

T_end1 666 °CT_out 56 °C

T_amb 20 °C

Page 22: SOLPART Project Solar reactors for particle processing

Reactor design and construction

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 22

Page 23: SOLPART Project Solar reactors for particle processing

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 23

Screw feeder

Page 24: SOLPART Project Solar reactors for particle processing

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 24

Measuring system

Page 25: SOLPART Project Solar reactors for particle processing

Experiments

DLR.de • Chart 25 SOLPART Project > Infoday > 28.11.2019

Page 26: SOLPART Project Solar reactors for particle processing

Test facilities – Solar Furnace

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 26

Heliostat ConcentratorExperimental

chamber

• Heliostat dimensions: 8.2 m x 7.4 m (= 57 m²)

• Concentrator dimensions: 7.3 x 6.3 m (= 46 m²)

• Available power in chamber: 25 kW (for DNI of 850 W/m²)

Page 27: SOLPART Project Solar reactors for particle processing

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 27

Solar simulator

10 Xenon lamps

Pmax = 24 kW

Pin aperture = 14 kW

Flux density = 4.2 MW/m²

Page 28: SOLPART Project Solar reactors for particle processing

Closed configuration

leaf sealing

gas outlet

sealing

window

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 2828

Page 29: SOLPART Project Solar reactors for particle processing

First experimental campaign – Solar furnace

1 2

3 4 5 6

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 29

Problem: T out too low

Page 30: SOLPART Project Solar reactors for particle processing

Lessons learnt: No insulation gaps allowed

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 30

Problem: high temperature at the chain was reached. Fat of chain at high temperature burns

Page 31: SOLPART Project Solar reactors for particle processing

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 31

Thermal tests

1 2

3 4 5 6

Page 32: SOLPART Project Solar reactors for particle processing

Experimental campaign-close configuration

> SOLPART Infoday > 27th November 2019DLR.de • Chart 32

→ 𝜂 ≈ 62%𝜂𝑡ℎ =ሶ𝑚 ∙ 𝑐𝑃 ∙ ∆𝑇

𝑄𝑖𝑛𝑐

Page 33: SOLPART Project Solar reactors for particle processing

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 33

Chemical tests CRM CaCO3 s ՞CaO s + CO2 g

Page 34: SOLPART Project Solar reactors for particle processing

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 34

Second experimental campaign – Solar simulator, CRM

20 slm 45 slm

Problem...

Page 35: SOLPART Project Solar reactors for particle processing

Open configuration (parallel study to solve the window

problem)

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 35

incidentradiation

gas outlet

gas outlet

Few more problems with feeding system or

material blocked inside the hopper

Page 36: SOLPART Project Solar reactors for particle processing

But then we could start chemical tests!!

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 361

2 3 4 5 6

46 %

𝑋 =𝑋𝑚𝑒𝑎𝑠

𝑋𝑡ℎ𝑒𝑜𝑟

Page 37: SOLPART Project Solar reactors for particle processing

Final results of chemical tests

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 37

𝜂𝑇𝑜𝑡 =ሶ𝑚 ∙ 𝑐𝑃 ∙ ∆𝑇 + ሶ𝑚 ∙ 𝑋 ∙ ∆𝐻

𝑄𝑖𝑛𝑐𝑋𝑐ℎ𝑒𝑚 = 𝑋𝑚𝑒𝑎𝑠/𝑋𝑡ℎ𝑒𝑜𝑟

Page 38: SOLPART Project Solar reactors for particle processing

• A continuous solar rotary kiln was built and tested

• 17 succesful chemical tests with rotary kiln

• 4-12 kg/h of CRM treated

• DOC in the range 24-99 %

• Efficiency above 60% were achieved in thermal tests and between 20-

40% in the chemical tests

• Calcination of CaCO3 was successfully shown

Conclusions

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 38

Outlook

• The suction unit must be optimized

• Mixing identified as key factor – parallel study

• Window cleaning system is developed

• Scale up

Page 39: SOLPART Project Solar reactors for particle processing

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 39

Acknowledgements: EU for financing the Project SOLPART (contract 654663)

under the H2020 research and innovation programme

Thanks for your attention

Page 40: SOLPART Project Solar reactors for particle processing

𝑋𝑐ℎ𝑒𝑚 = 𝑋𝑚𝑒𝑎𝑠/𝑋𝑡ℎ𝑒𝑜𝑟

Efficiency calculations

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 40

𝜂𝑇𝑜𝑡 =ሶ𝑚 ∙ 𝑐𝑃 ∙ ∆𝑇 + ሶ𝑚 ∙ 𝑋 ∙ ∆𝐻

𝑄𝑖𝑛𝑐

𝜂𝑐ℎ𝑒𝑚𝜂𝑡ℎ𝑒𝑟𝑚

Page 41: SOLPART Project Solar reactors for particle processing

Experimental campaigns

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 41

Page 42: SOLPART Project Solar reactors for particle processing

Many industrial processes treat material in the form of particles

Examples:

-Pharmaceutical industry

-Chemical plants

-Food industry

-Pyrolisis

-Phosphate production

-Cement production ...

Importance of particle treatment

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 42

Page 43: SOLPART Project Solar reactors for particle processing

1) Water

2) Concrete

SOLPART Project > Infoday > 28.11.2019

Most used commodities worldwide

DLR.de • Folie 43

[Cement Technology Roadmap 2009, WBCSD and IEA, 2009]

Page 44: SOLPART Project Solar reactors for particle processing

• Main concrete components (Cement + Filler + Water)

• Limestone (CaCO3), Sand (SiO2), Iron ore (Fe2O3), Clay

Cement industry is responsible for 8 % of human-made CO2-emissions

High temperatures necessary in the process:

SOLPART Project > Infoday > 28.11.2019

Facts about cement

DLR.de • Folie 44

[http://www.mastour.com/blog/wp-content/uploads/2013/08/concrete-constituents.jpg][Cement Technology Roadmap 2009, WBCSD and IEA, 2009]

> 900 °C for calcination (CaCO3 CaO + CO2)

> 1300 °C for sintering (Formation of 3 CaO·SiO2)

Page 45: SOLPART Project Solar reactors for particle processing

Conventional cement plant:

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 45

Pre-heating Calcination Clinker furnace

Fresh

raw meal Clinker

Heat

recoveryBurner

> 900 °C for calcination (CaCO3 CaO + CO2)

> 1300 °C for sintering (Formation of 3 CaO·SiO2)

Burner

Page 46: SOLPART Project Solar reactors for particle processing

Industrial process

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 46

[http://www.wtert.eu/default.asp?Menue=13&ShowDok=49]

Page 47: SOLPART Project Solar reactors for particle processing

The SOLPART project:

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 47

Solar

CalcinationStorage

Pre-heating Calcination Clinker furnace

Fresh

raw meal Clinker

Heat

recoveryBurnerBurner

Page 48: SOLPART Project Solar reactors for particle processing

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 48

Page 49: SOLPART Project Solar reactors for particle processing

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 49

Thanks for your

attention!

http://www.dlr.de/dlr/jobs/en/desktopdefault.a

spx#Promotion/S:77

Page 50: SOLPART Project Solar reactors for particle processing

SOLPART Project > Infoday > 28.11.2019DLR.de • Chart 50