26
1. Absorption of photons generation of electron-hole pairs 2. Separation of carriers in the internal electric field created by p-n junction and collection at the electrodes potential difference and current in the external circuit 3. Potential difference at the electrodes of a p-n junction injection and recombination of carriers losses The resulting current in the external circuit: I = I L -I D (V) photocurrent I L dark (diode) current I D Solar cell operating principles

Solar cell operating principles · 2016. 2. 22. · Solar cell operating principles. PVI ffVImax mp mp oc sc= = η=PPffVIPmax I oc sc I= Short circuit current Isc [A] Open circuit

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • 1. Absorption of photons ⇒ generation of electron-hole pairs

    2. Separation of carriers in the internal electric field created by p-n junction and collection at the electrodes ⇒potential difference and current in the external circuit

    3. Potential difference at the electrodes of a p-n junction ⇒injection and recombination of carriers ⇒ losses

    The resulting current in the external circuit: I = IL - ID (V)• photocurrent IL• dark (diode) current ID

    Solar cell operating principles

  • P V I ff V Imax mp mp oc sc= =η = =P P ff V I Pmax I oc sc I

    Short circuit current Isc [A]

    Open circuit voltage Voc [V]

    Peak PowerPmax [Wp]

    External parameters:• Short circuit current Isc [A]• Open circuit voltage Voc [V]• Fill factor ff• Maximum (peak) power Pmax [Wp]• Efficiency η

    I-V measurementStandard test conditions:• AM1.5 spectrum• irradiance 1000 W/m2

    • temperature 25°C

    External parameters of a solar cell

  • - 56% colour mismatch

    - 9% reflection & transmission

    - 13% fundamental recombination

    - 7% excess recombination, resistance, etc

    15%

    Typical commercial c-Si solar cellsunlight

    solar cell

    electricity

    waste

    heat

    Solar cell performanceSingle junction solar cell:

  • Optical losses:Non-absorptionThermalizationReflectionTransmissionArea loss

    Solar cell performanceCollection losses:Recombination- bulk- surface

    ( )λΦ 0 ( )R1−

    g optη QE

    t

    f

    AA

    elQE

  • Optical losses: Non-absorption

    ( )∫∞

    =0

    0I dλλ

    hcλΦP

    ( )λΦ 0 Photon flux density: number of photons per unit area per unit time and unit wavelength

    Non-absorption Eph

  • ( )

    ( ) dλλchλΦ

    dλλΦE

    λ

    0

    0

    λ

    0

    0g

    g

    g

    EC

    EV

    EphEG

    Thermalization Eph>EGOptical losses: Thermalization

    ( )∫∞

    =0

    0I dλλ

    hcλΦP

    ( )λΦ 0 Photon flux density: number of photons per unit area per unit time and unit wavelength

    Thermalization

    g phλ λ>

    Solar cell performance

  • EC

    EV

    EphEG

    Thermalization Eph>EG

    EC

    EV

    EphEG

    Non-absorption Eph

  • ( )λΦ 0 ( )R1−

    elQE

    Optical losses: Reflection and transmission

    Reflection:• Different refractive indices

    Transmission:• finite thickness of a cell• absorption coefficient

    Area loss:• metal electrode coverage

    t

    f

    AA

    g optη QE

    Solar cell performance

  • ( )λΦ 0 ( )R1− Recombination:• bulk recombination (minority carrier lifetime)

    • surface recombination (surface recombination velocity)

    g optη QE

    t

    f

    AA

    Collection losses: Recombination

    elQE

    ( )t

    felgoptmaxsc A

    AQEηQER1JJ −=

    ( )∫=gλ

    0

    0max dλλΦqJ

    Solar cell performance

  • I

    ocsc

    PffVJη =

    ( )0I0

    hcP Φ λ dλλ

    = ∫

    ( ) ( )gλ

    0fsc opt g el

    t 0

    AJ 1 R QE η QE q Φ λ dλA

    = − ∫

    Efficiency:

    ( )

    ( )( )

    gλ0

    0 fg opt el oc

    0 t

    0

    q Φ λ dλAη= 1-R η QE QE V ffAhcΦ λ dλ

    λ

    ( )

    ( )

    ( )

    ( )( )

    g g

    g

    λ λ0 0

    G0 0 ocf

    g opt elλ0 t G0

    0 0

    h cE Φ λ dλ Φ λ dλλ q VAη= 1-R η QE QE ff

    A Ehc h cΦ λ dλ Φ λ dλλ λ

    ∫ ∫

    ∫ ∫

    Solar cell performance

  • 8. Fill factor

    7. Voltage factor

    6. Loss due to recombination

    5. Loss by incomplete absorption due to the finite thickness

    4. Loss by reflection

    3. Loss by metal electrode coverage

    2. Loss by excess energy of photons

    1. Loss by long wavelengths

    ( )

    ( )

    ( )

    ( )( ) ff

    EVq

    QEQEηR1AA

    dλλchλΦ

    dλλΦE

    dλλchλΦ

    dλλchλΦ

    ηg

    oceloptg

    t

    0

    0

    λ

    0

    0g

    0

    0

    λ

    0

    0

    g

    gg

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−=

    ∫∞

    Solar cell performance limits

    Overstraeten, Mertens: Physics, technology and Use of Photovoltaics, Adam Hilger 1986

  • Optical losses:Non-absorptionThermalizationReflectionTransmissionArea loss

    Solar cell performance

    Collection losses:Recombination- surface- bulk

    Optical gapOptical gapRefractive indicesAbsorption coefficientMetal grid design

    Surface recombination velocityMinority carriers lifetimeDiffusion coefficient

    Properties:

  • Total current: ( ) LkTqV0T I1eII −−=Short circuit current (V=0):

    LSC II −=

    Open circuit voltage (I=0):

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+= 1lnV

    0OC I

    Iq

    kT L

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+=

    Dp

    ip

    An

    in

    NLnDq

    NLnDqAI

    22

    0

    Low I0:• High doping densities• Low surface recombination

    velocities• Large diffusion lengths

    Optimal design

    High Isc :• Minimize front surface reflection

    - antireflection coatings• Minimize transmission losses

    - thick absorber • Minimize surface recombination

    - passivation layers• Minimize bulk recombination

    - large diffusion lengths- high electronic quality material

    Solar cell performance

  • p++ p++

    Al

    Al Al

    SiO2 n+

    p-typec-Si

    Solar cell performanceOptimal thickness of the absorber layer:

    Absorption versus collection:- Thickness of the absorber layer- Minority carrier diffusion length

    c-Si (300 µm)Al

    Le

  • p++ p++

    Al

    Al Al

    SiO2 n+

    p-typec-Si

    Solar cell performanceOptimal thickness of the absorber layer:

    Absorption versus collection:- Thickness of the absorber layer- Minority carrier diffusion length

    Le

    Le

  • Solar cell performanceOptimal thickness of the absorber layer:

    Absorption versus collection:- Thickness of the absorber layer- Minority carrier diffusion length

    p++ p++

    Al

    Al Al

    SiO2 n+

    p-typec-Si

    Le

    p++ p++

    Al

  • Solar cell performanceOptimal thickness of the absorber layer:

    Absorption versus collection:- Thickness of the absorber layer- Minority carrier diffusion length

    p++ p++

    Al

    Al Al

    SiO2 n+

    p-typec-Si

  • Solar cell performanceThin absorber layer:

    Increase absorption:- Surface texture- Antireflection coating

    Avoid surface recombination:- Surface passivation

    SiO2 n+

    p++ p++

    Al

    AlAl

  • IL 1 2 V+

    -

    I

    Equivalent circuit:

    • current source IL• diode diffusion current• diode recombination current

    Solar cell performance

    1

    2

    I-V characteristics

    Voltage

    Cur

    rent

    IL

    ID

    IT

    ISC

    VOC

  • RS

    RshIL 1 2 V

    +

    -

    IEquivalent circuit:

    Solar cell performance

    • series resistor RS• parallel resistor Rsh

  • RP

    RS

    Series resistance (RS)• Bulk resistance of semiconductor• Bulk resistance of metal electrodes• Contact resistance between semiconductor and metal

    Shunt (parallel) resistance (RP)• Leakage across the p-n junction around the edge

    • Crystal defects, pinholes, impurity precipitates

    Solar cell performance

  • Total current:( ) ( )( ) LkTRIVqT IeTII ST −−= + 10

    Saturation current:kTEgeTKI 030

    −=

    Open circuit voltage:

    ( ) ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−=

    L

    gOC I

    kTq

    kTq

    ETV

    30 ln

    ( )⎥⎦

    ⎤⎢⎣

    ⎡−−= TV

    qE

    TdTdV

    OCgOC 01

    CmVdTdVOCo3.2−=Si

    1.0

    0.9

    0.8

    0.7

    0.6

    0 100 200 300

    VOC [V]

    ff

    η

    Temperature [oC]

    External parameters

    11

    10

    9

    8

    7

    6

    [%]

    Solar cell performance

  • n-type Si

    p-type Si

    (+) (+)

    (-)

    Fabricated in 1954• wrap-around structure• p-n junction formed by B

    dopant diffusion• high resistive losses in the p-

    layer• efficiency 6%

    First c-Si solar cell

    First c-Si solar cell

  • University of New South Wales (Australia)

    c-Si solar cell: Efficiency improvement

    c-Si solar cell

  • Passivated Emitter and Rear Locally diffused

    External parameters (1994):• Jsc =40.9 mA/cm2• Voc =0.709 V• ff = 0.827• η = 24.0 %

    c-Si solar cell: PERL structure (UNSW)

    Record c-Si solar cell

  • Key attributes for high efficiency solar cells:

    • Surface texture (inverted pyramids for light trapping)

    • Selective emitter (n+-layer for contact, n-layer for active part of surface)

    • Passivation of surface (SiO2 on both sides of solar cell)

    • Thin metal fingers on the front side

    • Back side metalization with small contact area to the base material

    • Locally diffused regions under contact points at the back(BSF field)

    • Minority diffusion lengths well in excess of device thickness

    Record c-Si solar cell