22
< Contents > 1. Introduction 2. Si Thin Film Solar Cell Technologies 3. Deposition Technologies 4. R&D Activities in LG Electronics 5. Conclusion LG Electronics / Devices & Materials Lab. Heon-Min Lee Recent Development of Thin Film Si Solar Cell Technologies for Commercialization

Solar Cell 사업추진전략 - Homepage - CMU · 2014-11-11 · 2. Si Thin Film Solar Cell Technologies 5) Nano Crystalline Si 9 / 20 Franz et al, Thin Solid Films 383 (2001) 11-14

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Solar Cell 사업추진전략 - Homepage - CMU · 2014-11-11 · 2. Si Thin Film Solar Cell Technologies 5) Nano Crystalline Si 9 / 20 Franz et al, Thin Solid Films 383 (2001) 11-14

< Contents >

1. Introduction

2. Si Thin Film Solar Cell Technologies

3. Deposition Technologies

4. R&D Activities in LG Electronics

5. Conclusion

LG Electronics / Devices & Materials Lab.

Heon-Min Lee

Recent Development of Thin Film Si Solar Cell Technologies for Commercialization

Page 2: Solar Cell 사업추진전략 - Homepage - CMU · 2014-11-11 · 2. Si Thin Film Solar Cell Technologies 5) Nano Crystalline Si 9 / 20 Franz et al, Thin Solid Films 383 (2001) 11-14

Great Company Great People LG Electronics

1. Introduction 1) Market Trends

Market Perspectives

◆ Rapid increase of market size : governmental supports and policies◆ Needs for low-cost solar cell development : Si feed-stock shortage

1 / 20

Market Driving Force

’06 ’10

Germany

(35%)

Japan(19%)

Japan(11%)USA

(10%)

USA(7%)

China(6%)

China(9%)

Spain(8%)

Italy(6%)

India(3%)

S.Korea(2%)

Spain(3%)

4.7 GW1.7 GW

Italy(2%)

Cost(billon$)

Install(GW)

Module

24

’08 ’15’10’06

6 8.213.4

11.6 GW

4.7

2.61.7

24%System

11.214.9

23.7

41.217%16%

Governmental supportsUp

19 13 19 18 23 28 3038 38 41

’06 ’07 ’08 ’09 ’10

(1,000ton)

TaxRefund Net Metering

Feed-in tariff

InstallationSubsidy

GermanJapan (~’05)

USAS. Korea

SpainItaly

Feed-stock shortageDown

Need Supply

(55%)

Germany

Page 3: Solar Cell 사업추진전략 - Homepage - CMU · 2014-11-11 · 2. Si Thin Film Solar Cell Technologies 5) Nano Crystalline Si 9 / 20 Franz et al, Thin Solid Films 383 (2001) 11-14

Great Company Great People LG Electronics

UsageProducts

• InstallationSpace

• Price ($/W)• Weight

CustomerNeeds

Product(installation type)

Roof

Ground

• Price ($/W)(needs to meet a

base efficiency)

BIPV

Miscellaneous

• Price ($/m2)• Appearance(Windows &

building facings)

• Power perDimension

Commercial

Public building/Utility

Residential

Investment

Remote

Consumer

On-Grid

Off-Grid

Usage InstallationPlace

Key decisionMaker Expectation

• Contractor

• Customer• Installer• Constructor

• Building constructor & designer

• Investor• Installer

• Investment collect through reduced electric bill

• Ecological business brand image

• Profit from power generation

• Public awareness

• Costumer/Installer

• ApplicationManufacturer

• Auxiliary power supply

• Profit from power generation

• Residential house• Apartment

• Business building• Factory

• Idle & rental space(roof/open space)

• Public building• Power plant• Public facility

• Remote area difficult to access electric supply

• Power supply

• Product imbedded

1) Interview data from SolarBuzz, Lahmeyer, domastic Installer, LGC BIPV TFT 2) Building Integrated Photovoltaic

2)

1)

1. Introduction 2) Customer & Product

2 / 20

Page 4: Solar Cell 사업추진전략 - Homepage - CMU · 2014-11-11 · 2. Si Thin Film Solar Cell Technologies 5) Nano Crystalline Si 9 / 20 Franz et al, Thin Solid Films 383 (2001) 11-14

Great Company Great People LG Electronics

1) Summary of Navigant, Lahmeyer Int’l, Solarbuzz

Market per usage

Etc

BIPV

Ground

Roof

Product

CAGR(’05~’10)

Market per product< Unit : MW >

’05 ’10

433,740

1,197

58164

480

38575

(21%)

(20%)

(38%)(10%)

1,460

4,670

◆ Residential house’s roof is one of the largest potential usages ◆ BIPV market is expected to grow rapidly

1. Introduction 3) Market Trends

3 / 20

Consumer

Commercial

Investment

Residential

Usage

CAGR(’05~’10)

’05 ’10

22

1,728

666

125

646

2,518

39826

(22%)

(30%)

(26%)(3%)

1,460

4,670

< Unit :MW >

Page 5: Solar Cell 사업추진전략 - Homepage - CMU · 2014-11-11 · 2. Si Thin Film Solar Cell Technologies 5) Nano Crystalline Si 9 / 20 Franz et al, Thin Solid Films 383 (2001) 11-14

Great Company Great People LG Electronics

2μm

Structures of bulk and thin film

Type Si Bulk Si Thin Film

Adva-ntage

• Mass production• Easy achievement of base efficiency

• High efficiency - 12 ~ 15% for module

• Low cost of raw materials (1/3 of Si bulk)

• Power generation 10%↑- weak effects from install angle and temperature

• Good appearance (Color)

Chall-enge

• High consumptionsof raw materials &energy

• Relatively low efficiency• High cost of production system

Wave length (nm)

a-Si

μc-Si

Sun light

400 600 800 1000

Phot

o C

urre

nt (A

/W)

0.4

0.5

0

0.3

0.2

0.1

Potential of Si thin film

Back contact

n+ emitter

Front contact

200~250μm

Si Bulk Si Thin film(Tandem)

1) Investment costs : Bulk Cell($0.5/W)+Module($0.1/W), Si Tandem - $2.2/W, Compound semiconductor thin film - $3.0/W

1)

(Single)

0.3μm

Si Wafer(p-type)

Glass

μc-Si

a-Si

TCO

Back contact

Glass

a-Si

TCO

Back contact

Eff. Improve

(6%→10%)

◆ Si bulk technology : Main stream in solar cell market◆ Si thin film technology : High potential of efficiency improvement and low cost

Type Si Bulk Si Thin film

Actualpower generation

(per 1m2-year)152kWh 72kWh

Actual power generation

(per1kW-year)1,086kWh 1,203kWh

Efficiency 14% 6%(Single)

(Kaneka’s data)

High efficiency

PowerGeneration

4 / 20

1. Introduction 4) Bulk vs. Thin film

Page 6: Solar Cell 사업추진전략 - Homepage - CMU · 2014-11-11 · 2. Si Thin Film Solar Cell Technologies 5) Nano Crystalline Si 9 / 20 Franz et al, Thin Solid Films 383 (2001) 11-14

Great Company Great People LG Electronics

2. Si Thin Film Solar Cell Technologies 1) Process Flow

5 / 20

~5μm

Reflector

μc-Si:HBottom-Cell

TCO

a-Si:HTop-Cell

Glass

SnO2:F or ZnO:Al

BufferZnO:Al (5nm)

ZnO:Al

Ag

p (20nm)

i (200nm)

n (30nm)

p (20nm)

i (3um)

n (30nm)Back electrode

Cleaning

a-Si:H Top-cell depositionp,i,n-layer by 13.56MHz PECVD

Buffer layer ZnO depositionby CVD or Sputtering

μc-Si:H Bottom-cell depositionp,i,n-layer by 13.56MHz PECVD

Increases of gas pressure and power for i-layer

Back electrode / reflector formation ZnO:Al, Ag by sputtering

Inspection (Use I-V Tester for efficiency measurement)

Laser Scribing

Laser Scribing

Laser Scribing

Wiring

Lamination

Cellfabrication

Modulefabrication Flaming

Glass

TCO Sputtering

Wet-Etching

Substratefabrication

Interconnection

μc-Sia-SiFront TCO

Glass Substrate

Back Electrode Scribe LineSilicon Scribe LineFront TCO Scribe Line

Back Electrode

Page 7: Solar Cell 사업추진전략 - Homepage - CMU · 2014-11-11 · 2. Si Thin Film Solar Cell Technologies 5) Nano Crystalline Si 9 / 20 Franz et al, Thin Solid Films 383 (2001) 11-14

Great Company Great People LG Electronics

2. Si Thin Film Solar Cell Technologies 2) Generations

6 / 20

Tandem (double junction) Triple Junction

2nd generation 3rd generation 4th generation 5th generation

- Japan: Kaneka(20MW), Sharp(15MW), Fuji Elec., Mitsubishi Heavy Ind.,

- US: Uni-Solar, EPV- EU: Oerlikon, Shott Solar

Kaneka, Sharp Kaneka

Efficiency: 5~6 % Efficiency: 6~7 % Efficiency: 7~8 % Efficiency: 11~12 % Efficiency: 13~14 %

Mass Production Stage Pilot Stage R&D Stage

1st generation(single junction)

a-Si:H a-Si:H

a-Si:H

a-Si:H

a-SiGe:H

a-Si:H

μc-Si:H

a-Si:H

a-SiGe:H

μc-Si:H

Page 8: Solar Cell 사업추진전략 - Homepage - CMU · 2014-11-11 · 2. Si Thin Film Solar Cell Technologies 5) Nano Crystalline Si 9 / 20 Franz et al, Thin Solid Films 383 (2001) 11-14

Great Company Great People LG Electronics

2. Si Thin Film Solar Cell Technologies 3) Technology Issues

7 / 20

EF

Top Cell- i-layer=a-Si- Eg=1.75 eV

Bottom Cell- i-layer=uc-Si- Eg=1.1 eV

νh

TCOp-layeri-layern-layermetal contact

1. TCO - Highly conductive & wide bandgap

2. p/i interface : - low recombination reduction

3. a-Si i-layer - low light induced degradation

4. nc-Si i-layer- high deposition rate

5. metal contact- highly conductive & reflective

6. top/intermediate/bottom TCO- light trapping

Page 9: Solar Cell 사업추진전략 - Homepage - CMU · 2014-11-11 · 2. Si Thin Film Solar Cell Technologies 5) Nano Crystalline Si 9 / 20 Franz et al, Thin Solid Films 383 (2001) 11-14

Great Company Great People LG Electronics

2. Si Thin Film Solar Cell Technologies 4) TCO layer

8 / 20

Reduced reflection

Increased travel length

Increased internal reflection

Haze ratio (H)H = Tdiffusion / (Tdiffusion + Tspecular)H = 6~12% (Generally )Enhancement factor (FE)FE = 4n2 (Theoretical Max)

SnO2:F ZnO:Al

Light Trapping Surface Texturing

Page 10: Solar Cell 사업추진전략 - Homepage - CMU · 2014-11-11 · 2. Si Thin Film Solar Cell Technologies 5) Nano Crystalline Si 9 / 20 Franz et al, Thin Solid Films 383 (2001) 11-14

Great Company Great People LG Electronics

2. Si Thin Film Solar Cell Technologies 5) Nano Crystalline Si

9 / 20

Franz et al, Thin Solid Films 383 (2001) 11-14.

nc-Si:H Solar Cellnc-Si:H Is more stable under light exposure than a-Si:H.

Meier J et al, Appl. Phys. Lett. 65 (1994) 7.

Hydrogen DilutionPassivation of dangling bonds by H atoms

Stability behavior of an all nc-Si:H p-i-n solar cell under long term light exposure.

Page 11: Solar Cell 사업추진전략 - Homepage - CMU · 2014-11-11 · 2. Si Thin Film Solar Cell Technologies 5) Nano Crystalline Si 9 / 20 Franz et al, Thin Solid Films 383 (2001) 11-14

Great Company Great People LG Electronics

2. Si Thin Film Solar Cell Technologies 5) Tandem Cell Development

10 / 20

Wave length (nm)

a-Si

μc-Si

Sun light

400 600 800 1000

Phot

o C

urre

nt (A

/W)

0.4

0.5

0

0.3

0.2

0.1

a-Si:H

nc-Si:H

a-Si:H(1.7eV)

nc-Si:H(1.1eV)

Neuchatel pioneered in 1994 « micromorph » tandem

Needs of a fast deposition technique for high-quality nc-Si:H

In a micromorph tandem, the solar spectrum is ideally shared between top (a-Si:H) and bottom (nc-Si:H) cell

Page 12: Solar Cell 사업추진전략 - Homepage - CMU · 2014-11-11 · 2. Si Thin Film Solar Cell Technologies 5) Nano Crystalline Si 9 / 20 Franz et al, Thin Solid Films 383 (2001) 11-14

Great Company Great People LG Electronics

◆ SS/MC type PECVD system is suitable for R&D◆ MS/MC type PECVD system is required for mass production

3. Deposition Technologies 1) Categorization of PECVD Systems

11 / 20

SS: Single Substrate, SC: Single Chamber, MS: Multi Substrate, MC: Multi Chamber

Adv. : High stability of each process Low cost of raw material

Disadv. : Low productivity in mass production

Manufacturer : MV Systems (USA)▶ Suitable for R&D

Adv. : High stability of each processDisadv. : Low perfection of production

system developmentHigh cost of raw material

Manufacturer : IHI (Japan), Centrotherm (Germany)

Substrate

Single Multi

Cha

mbe

r

Mul

tiSi

ngle

SS/SC Type MS/SC Type

SS/MC Type MS/MC Type

Adv. : Low cost of production facilityDisadv. : Cross contamination

between processesManufacturer : EPV (USA)- for R&D

Adv. : High productivity in mass production

Disadv. : Cross contaminationManufacturer : EPV [USA],

Oerlikon [Swiss]

Page 13: Solar Cell 사업추진전략 - Homepage - CMU · 2014-11-11 · 2. Si Thin Film Solar Cell Technologies 5) Nano Crystalline Si 9 / 20 Franz et al, Thin Solid Films 383 (2001) 11-14

Great Company Great People LG Electronics

3. Deposition Technologies 2) Cluster System

12 / 20

L/D IN & OUTL/D IN & OUT(Multi(Multi--slot orslot or

Cassette)Cassette)

ProcessProcessChamberChamber

11

ProcessProcessChamberChamber

22

ProcessProcessChamberChamber

44

ProcessProcessChamberChamber

33

PrePre--heating Chamberheating Chamber

Basic PrincipleCapacitively-coupled parallel plateplasma reactorp-, i-, n-layer at each chamberMultiple i-chamberPlasma Cleaning (NF3 or SF6)VHF for nc-Si:H film

ConsiderationPre-heating chamberSputter system for BR-layer

Page 14: Solar Cell 사업추진전략 - Homepage - CMU · 2014-11-11 · 2. Si Thin Film Solar Cell Technologies 5) Nano Crystalline Si 9 / 20 Franz et al, Thin Solid Films 383 (2001) 11-14

Great Company Great People LG Electronics

3. Deposition Technologies 3) Batch Systems

13 / 20

L/D INL/D INL/D OUTL/D OUT

ProcessProcessChamberChamber

11

ProcessProcessChamberChamber

22

X20X20 X20X20

X10X10X10X10

L/D L/D IN/OUTIN/OUT

ProcessProcessChamber 1Chamber 1

TransferTransferChamberChamber

TransferTransferChamberChamber

System specification 2 Process chambers :• 40MHz VHF-PECVD• 10 reactors / 1 chamberSubstrate size : • 520x410, 1250x1100 mm2

FeaturesHigh throughput equipmentCross contamination problem between processesDifficulty of maintenance

Page 15: Solar Cell 사업추진전략 - Homepage - CMU · 2014-11-11 · 2. Si Thin Film Solar Cell Technologies 5) Nano Crystalline Si 9 / 20 Franz et al, Thin Solid Films 383 (2001) 11-14

Great Company Great People LG Electronics

3. Deposition Technologies 4) High pressure & High Power (HpHP) Process

14 / 20

◆ Requirements for nc-SI:H in tandem junction thin film solar cells- High hydrogen dilution and denser films- High material quality at high deposition rate

VHF-PECVD (40~120MHz) High pressure & High Power

Kyocera, World Conf. 2003 from J. K. Rath, Solar Energy Materials & Solar Cells 76, 431, 2003

Low plasma damage

Efficiency > 12 %nc-Si DR > 3 nm/s

Page 16: Solar Cell 사업추진전략 - Homepage - CMU · 2014-11-11 · 2. Si Thin Film Solar Cell Technologies 5) Nano Crystalline Si 9 / 20 Franz et al, Thin Solid Films 383 (2001) 11-14

Great Company Great People LG Electronics

3. Deposition Technologies 5) VHF PECVD

15 / 20

U shape : IHI

Ladder shape : MHI

Electrode

Δθ=0o Δθ=90oΔθ=-90o

Δθ=180o

Glass

plasma

Wave 1 Wave 2

Control of standing-wave position by changing the phase difference of two waves with time

Phase Shift of Incidence Waves Specific Electrode Design

Divided electrode : Sharp Inc.

Page 17: Solar Cell 사업추진전략 - Homepage - CMU · 2014-11-11 · 2. Si Thin Film Solar Cell Technologies 5) Nano Crystalline Si 9 / 20 Franz et al, Thin Solid Films 383 (2001) 11-14

Great Company Great People LG Electronics

4. R&D Activities in LG Electronics 1) a-Si based Solar Cell

16 / 20

1) H2:SiH4:CH4:B2H6 = 100:50:x:3, 20W, 0.2T

Cross sectional View

J-V Characteristics

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

V [V]

J [m

A/cm

2 ]

Voc: 0.829V Jsc: 19.52mA/cm2FF: 0.662Eff: 10.71%

0.72

0.76

0.8

0.84

0 50 100 150

Voc

[V]

14

1618

20

22

0 50 100 150

Jsc

[mA/c

m2 ]

0.60.620.640.660.68

0.7

0 50 100 150

FF

7

8

9

10

11

0 50 100 150

CH4 [sccm]

Effic

ienc

y [%

]

LightGlass TCO p/i/n ZnO/Al

P-layer CH4 Flow Dependences1) Cell Structure & Properties

Page 18: Solar Cell 사업추진전략 - Homepage - CMU · 2014-11-11 · 2. Si Thin Film Solar Cell Technologies 5) Nano Crystalline Si 9 / 20 Franz et al, Thin Solid Films 383 (2001) 11-14

Great Company Great People LG Electronics

4. R&D Activities in LG Electronics 2) a-Si based Solar Module

17 / 20

Cell No.: 17Period: 9.75mmLength: 182mmArea: 17.74cm2

Effective width: 9.35mm

0.4 mm

TCO PV Metal

Scribing pattern

Module Design & Measured Results

Metal TCO

PV

Metal TCO

Sn detection (FE Auger analysis )Burr formation0 2 4 6 8 10 12 14

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Cur

rent

(A)

Voltage (V)

Ideal Module

Fab. Module

Voc: 14.3V Isc: 0.278AFF: 0.603Eff: 7.4%

Page 19: Solar Cell 사업추진전략 - Homepage - CMU · 2014-11-11 · 2. Si Thin Film Solar Cell Technologies 5) Nano Crystalline Si 9 / 20 Franz et al, Thin Solid Films 383 (2001) 11-14

Great Company Great People LG Electronics

4. R&D Activities in LG Electronics 3) Tandem Cell

18 / 20

i a-Si:H optimization H2/SiH4 effects

Crystallity : 60 ~ 70 %

Amorphous

R&D subjects• Deposition Rate

• Crystallite and structure

• Incubation time control

• Low defect density

nTCO

Glass

Metal (Al)

TCO (SnO2)

a-Si:H

nc-Si:H

n

p + buffer

p + buffer

Page 20: Solar Cell 사업추진전략 - Homepage - CMU · 2014-11-11 · 2. Si Thin Film Solar Cell Technologies 5) Nano Crystalline Si 9 / 20 Franz et al, Thin Solid Films 383 (2001) 11-14

Great Company Great People LG Electronics

4. R&D Activities in LG Electronics 4) Nano structure control

19 / 20

Glass

i a-Si (~7nm) Glass

i a-Si (~7nm)

Hydrogen annealing (tens sec)

Glass

i a-Si

i a-Si

i a-Si

i a-Si ▪▪▪

Multi layer

PECVD Deposition

Glass

Expectations• Low Defect density

: High Initial Efficiency

• Low Photo-degradation

: High Stabilized Efficiency

- s Dark: 1.30E-12, s Photo: 1.76E-5- In investigation :

Bonding structure & Defect density

Hydrogen Annealed Multi-layer

Page 21: Solar Cell 사업추진전략 - Homepage - CMU · 2014-11-11 · 2. Si Thin Film Solar Cell Technologies 5) Nano Crystalline Si 9 / 20 Franz et al, Thin Solid Films 383 (2001) 11-14

Great Company Great People LG Electronics20 / 20

5. Conclusion

High potentials in thin film Si tandem solar cells Eventual raw material cost reduction (current problem in Si feed-stock)Expectation of a high efficiency (more than 12%) via tandem cell technologies

For commercial success, high demands for the development of nano-crystalline Si thin films deposition technologies

with a very high deposition rateProcess-condition optimization technology

: Batch type PECVD and HpHP ProcessVHF-PECVD technology : various electrode designs

LG Electronics is focusing on the key technology development of thin film Si solar cell

and on its commercialization

Page 22: Solar Cell 사업추진전략 - Homepage - CMU · 2014-11-11 · 2. Si Thin Film Solar Cell Technologies 5) Nano Crystalline Si 9 / 20 Franz et al, Thin Solid Films 383 (2001) 11-14

Great Company Great People LG ElectronicsA-1

< Appendix > BIPV types

See-throughFacade