Solar 2 - Solar Power Plants

Embed Size (px)

Citation preview

  • 8/17/2019 Solar 2 - Solar Power Plants

    1/60

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

    Solar Power Technologies

    Concentrated Solar Power

    James D. Spelling, KTH-EGI [email protected] 

    MJ2411: Renewable Energy Technology

    mailto:[email protected]:[email protected]

  • 8/17/2019 Solar 2 - Solar Power Plants

    2/60

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

    Solar Thermal Power

    A solar thermal system is any process which harnesses solarradiation as a power source through the conversion of the incidentsolar flux to u s e f u l h e a t

    Solar thermal power systems can be divided into two types, based onthe level of temperature at which the heat is to be delivered

    06/09/2012 James Spelling 2

    Non-Concentrating

    Harnesses the Incoming Flux Directly

    Low Temperature (

  • 8/17/2019 Solar 2 - Solar Power Plants

    3/60

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

    Concentrating Solar Power

    Concentrating solar power systems generate a high-temperatureheat source, which can be used to drive a conventional power plant

    Thermal energy can be easily stored in large quantities, allowingsolar thermal plants to be d i s p a t c h a b l e

    06/09/2012 James Spelling 3

  • 8/17/2019 Solar 2 - Solar Power Plants

    4/60

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

    Early Attempts at Solar Power

    First demonstration of concentrated solar power in 1878 by AugustinBernard Mouchot at the Universal Exhibition in Paris

    "Eventually industry will no longer find in Europe the resources tosatisfy its prodigious expansion... coal will undoubtedly be used up.What will industry do then?“ - Augustin Mouchot, 1876 

    06/09/2012 James Spelling 4

    Image Source: Wikipedia, 2012 Output: 140 kg/min of saturated steam

  • 8/17/2019 Solar 2 - Solar Power Plants

    5/60

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

    Early Attempts at Solar Power

    First power producing solar thermal power plant was built in Egypt in1913, using parabolic trough technology

    First patent deposited in 1907

    Steam production to drive a 40 kWreciprocating steam engine

    Payback time of 2 years against coalfrom England at 13 $/ton

    “One thing I feel so sure about, and thatis either the human race must finallyutilize direct sun power or revert tobarbarism” -Frank Shuman, 1914

    06/09/2012 James Spelling 5

    Image Source: Wikipedia, 2012

  • 8/17/2019 Solar 2 - Solar Power Plants

    6/60

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

    06/09/2012 James Spelling 6

    Concentrated Solar Power

    Part I: Solar Concentration Systems

    Solar Thermal Power Technologies

  • 8/17/2019 Solar 2 - Solar Power Plants

    7/60

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

    Why Concentrate?

    06/09/2012 James Spelling 7

    Image Source: J. Spelling, 2011

    Concentration increases the density of the radiant energy flux,allowing more power to be absorbed for a given surface area

    Increased concentration means lowers areas for heat loss, allowingeffective receiver operation at higher temperatures

    In a concentrating system two surfaces are defined:• The solar collector intercepts the incident solar

    radiation, concentrates and redirects it

    • Collector design fixes the aperture area Aa

    • The receiver: intercepts the concentrated

    radiation and converts it to high temperature heat

    • Receiver design fixes the receiver area Ar

     I b,a

  • 8/17/2019 Solar 2 - Solar Power Plants

    8/60

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

    Why Concentrate?

    06/09/2012 James Spelling 8

    Image Source: J. Spelling, 2011

    Concentration increases the density of the radiant energy flux,allowing more power to be absorbed for a given surface area

    Increased concentration means lowers areas for radiative heat loss,allowing effective receiver operation at higher temperatures

    Only beam radiation can be harnessed bythe solar collector, as the focusing systemrequires that incident rays have a clearly-defined direction

    I b,a: Beam irradiation at the aperture

    I r ( x ): Flux distribution at the receiver

     I b,a

  • 8/17/2019 Solar 2 - Solar Power Plants

    9/60

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

    Concentration Ratio

    06/09/2012 James Spelling 9

    Image Source: J. Spelling, 2011

    Concentration increases the density of the radiant energy flux,allowing more power to be absorbed for a given surface area

    The key parameter that determines the level of temperature that canbe reached is the solar concentration ratio

    Two different definitions exist:• Ge om e t r i c Co n c e n t r a t i o n R a t i o :   

    A simple ratio of receiver area to

    aperture area

    • O p t i c a l Co n c e n t r a t i o n R a t i o :

    A more accurate value based on

    the intercepted solar flux

    ag

     A

     ACR   =

    ab

    r r 

    r o

     I 

     A I 

     ACR,

    1∫

    =

    δ 

     I b,a

  • 8/17/2019 Solar 2 - Solar Power Plants

    10/60

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

    Concentration Ratio

    06/09/2012 James Spelling 10

    Image Source: J. Spelling, 2011

    Concentration increases the density of the radiant energy flux,allowing more power to be absorbed for a given surface area

    The key parameter that determines the level of temperature that canbe reached is the solar concentration ratio

    Two different definitions exist:• Geometric Concentration Ratio: CRg

    • Optical Concentration Ratio: CRo

    Linked by the o p t i c a l e f f i c ie n c y of the collector: 

    gopt o   CRCR   η =

     I b,a

  • 8/17/2019 Solar 2 - Solar Power Plants

    11/60

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

    Concentration Technologies

    Currently four key solar thermal power technologies:

    06/09/2012 James Spelling 11

    Parabolic Trough Central Receiver

    Linear Fresnel Parabolic Dish

  • 8/17/2019 Solar 2 - Solar Power Plants

    12/60

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

    Key Solar Technologies

    Each solar collector technology has its own specific range ofpracticably achievable concentration ratios

    As such, each technology is adapted to one or more types oftemperature range and thus power generation cycles

    Other technologies do exist, but are significantly less developed

    Concentration Tracking Focal Spot Temperatures Scale

    Linear Fresnel 15 – 60 One-Axis Line < 500°C unlimited

    Parabolic Trough 30 - 100 One-Axis Line < 600°C unlimited

    Heliostat Field 500 - 1’000 Two-Axis Point < 1200°C < 360 MWth

    Parabolic Dish 1’000 - 10’000 Two-Axis Point < 750°C < 100 kWth

    06/09/2012 James Spelling 12

    Data Source: C. Philibert, 2005

  • 8/17/2019 Solar 2 - Solar Power Plants

    13/60

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

    Line Focusing Systems

    06/09/2012 James Spelling 13

    Line focusing systems employ single-axis tracking and reach mediumtemperatures (typically between 120°C and 600°C)

    They can be used for both power production as well as high-temperature process heat in industrial applications

    Parabolic Trough Concentrators Linear Fresnel Concentrators 

    Image Source: RISE Information Portal, 2004

  • 8/17/2019 Solar 2 - Solar Power Plants

    14/60

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

    Line Focusing Systems

    06/09/2012 James Spelling 14

    Line focusing systems employ single-axis tracking and reach mediumtemperatures (typically between 120°C and 600°C)

    They can be used for both power production as well as high-temperature process heat in industrial applications

    Parabolic Trough Concentrators

    • Fully parabolic in one axis to provide

    high optical efficiency

    • Parabolic shape requires complex

    molding increasing cost• Large mirror surface results in high

    wind loading, thus stronger structures

    Linear Fresnel Concentrators 

    • A number of linear mirrors approximate

    parabolic concentration resulting in

    lower optical efficiencies

    • Planar mirrors are simple and cheap to

    manufacture• Gaps between mirrors, coupled with a

    lower centre of gravity result in lower

    loading and lighter structures

    i i fö i k ik f h k l i

  • 8/17/2019 Solar 2 - Solar Power Plants

    15/60

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

    Point Focusing Systems

    06/09/2012 James Spelling 15

    Point focusing systems employ dual-axis tracking and can reach hightemperatures (typically between 600°C and 2000°C)

    They are used mainly for power production, as well as solar chemistryand high-temperature materials testing

    Heliostat Field Concentrators Parabolic Dish Concentrators 

    Image Source: RISE Information Portal, 2004

    I i i fö E i k ik K f h Vä k l i

  • 8/17/2019 Solar 2 - Solar Power Plants

    16/60

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

    Point Focusing Systems

    06/09/2012 James Spelling 16

    Point focusing systems employ dual-axis tracking and can reach hightemperatures (between 600°C and 2000°C)

    They are used mainly for power production, as well as solar chemistryand high-temperature materials testing

    Heliostat Field Concentrators

    • Many planar mirrors focus to a small

    receiver area, approximating full 3D

    concentration

    • Large number of mirrors can be focused

    to one receiver, allowing multi-MWsystems to be designed

    • Planar mirrors are cheap to mass-

    produce

    • Central power system benefits from

    economies of scale

    Parabolic Dish Concentrators 

    • True parabolic shape gives 3D

    concentration at high concentration

    ratios and high efficiencies

    • Power output limited to ~25 kWe  by

    maximum dish diameter of ~15m due tooptical precision and support

    • Parabolic dish is a complex 3D geometry

    which is expensive to manufacture

    • Dishes can be deployed modularly to

    increase the power output

    I tit ti fö E it k ik K ft h Vä t k l i

  • 8/17/2019 Solar 2 - Solar Power Plants

    17/60

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

    Energy Balance at the Receiver

    06/09/2012 James Spelling 17

    The energy balance at the receiver can be established as function ofthe operating temperature of the receiver

    At higher temperatures the key losses will be by radiation from thesurface of the receiver

    The useful energy extracted is function of the temperature, theconcentration ratio, the incident flux and some material properties:

    α : surface absorptivity [-]

    ε: surface emissivity [-]

    σ : Stephan-Boltzmann constant

    T surf : surface temperature [K]

     Ar : receiver surface area [m2]

    ( )44 asurf r r r use   T T  A I  AQ   −−=   εσ α 

    ( )( )44,   asurf abor use   T T  I CR AQ   −−=   εσ α 

    r

    Image Source: J. Spelling, 2011

    I tit ti fö E it k ik K ft h Vä t k l i

  • 8/17/2019 Solar 2 - Solar Power Plants

    18/60

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

    Maximum Temperature

    06/09/2012 James Spelling 18

    Image Source: J. Spelling, 2011

    The maximum temperature that can be reached is when the usefulenergy extracted from the receiver is equal to zero

    The incident solar flux is totally dissipated by the radiation losses

    From the energy balance equation this gives:

    Re-arranging, T m ax  can be found:

    ( )   044,

      =−−=   asurf r abor use   T T  A I CR AQ   εσ α 

    4,

    4

    max   ab

    g

    opt a   I CR

    T T σ ε 

    α η +=r

    I tit ti fö E it k ik Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    19/60

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

    Example 1: Temperature

    What is the maximum operating temperature fora parabolic trough collector with a concentrationratio of 120 at standard conditions?

    T a = 25°C, AM = 1.5 (i.e. 850 W/m2)

    The optical efficiency of the trough is 90%, andthe absorber is non-selective.

    06/09/2012 James Spelling 19

    ηopt: optical efficiency

    α: receiver absorptivity

    ε: receiver emissivity

    CRg: concentration ratio

    σ: Stefan-Boltzmann cst.

    Ib,a : beam irradiation

    4,

    4

    max   ab

    g

    opt a   I CR

    T T σ ε 

    α η +=

    N.B σ = 5.67e-8

    Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    20/60

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

    Example 1: Temperature

    What is the maximum operating temperature fora parabolic trough collector with a concentrationratio of 120 at standard conditions?

    T a = 25°C, AM = 1.5 (i.e. 850 W/m2)

    The optical efficiency of the trough is 90%, andthe absorber is non-selective.

    T max  = 1129 K = 856°C

    06/09/2012 James Spelling 20

    ηopt: optical efficiency

    α: receiver absorptivity

    ε: receiver emissivity

    CRg: concentration ratio

    σ: Stefan-Boltzmann cst.

    Ib,a : beam irradiation

    4,

    4

    max   ab

    g

    opt a   I CR

    T T σ ε 

    α η +=

    N.B σ = 5.67e-8

    Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    21/60

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

    Collector Efficiency

    06/09/2012 James Spelling 21

    The efficiency of the solar collector is the ratio of energy input tou s e f u l   heat output:

    At a given temperature, efficiency can be increased by:

    • Increasing the concentration ratio

    • Increasing the absorptivity of the receiver

    • Reducing the emissivity of the receiver

    • Increasing the optical efficiency of the collector

    ( )( )aba

    asurf abor 

    sol

    usesol

     I  A

    T T  I CR A

    Q

    Q

    ,

    44

    ,  −−

    ==  εσ α 

    η 

      ( )abg

    asurf 

    opt sol

     I CR

    T T 

    ,

    44 −−=

      εσ α η η 

    Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    22/60

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

    Example 2: Efficiency

    What concentration ratio is needed to operate asolar collector at 500°C with 75% efficiencyunder nominal conditions:

    T a = 25°C, AM = 1.5 (i.e. 850 W/m2)

    The optical efficiency is 90%, and the absorbercan be considered as a black-body.

    06/09/2012 James Spelling 22

    ηopt: optical efficiency

    α: receiver absorptivity

    ε: receiver emissivity

    CRg: concentration ratio

    σ: Stefan-Boltzmann cst.

    Ib,a : beam irradiation

    ( )abg

    arecopt sol

     I CR

    T T 

    ,

    44 −−=

      εσ α η η 

    N.B σ = 5.67e-8

    Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    23/60

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

    Example 2: Efficiency

    What concentration ratio is needed to operate asolar collector at 500°C with 75% efficiencyunder nominal conditions:

    T a = 25°C, AM = 1.5 (i.e. 850 W/m2)

    The optical efficiency is 90%, and the absorbercan be considered as a black-body.

    • CRg = 159

    06/09/2012 James Spelling 23

    ηopt: optical efficiency

    α: receiver absorptivity

    ε: receiver emissivity

    CRg: concentration ratio

    σ: Stefan-Boltzmann cst.Ib,a : beam irradiation

    ( )abg

    arecopt sol

     I CR

    T T 

    ,

    44 −−=

      εσ α η η 

    N.B σ = 5.67e-8

    ( )( )   abopt sol

    arecg

     I 

    T T CR

    ,

    44

    αη η 

    εσ 

    −=

    ε = α = 1

    Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    24/60

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

    Collector Efficiency

    06/09/2012 James Spelling 24

    The strongest parameter influencing the efficiency of the solar collectoris the concentration ratio of the system

    ( )abg

    arecopt sol

     I CRT T 

    ,

    44

    −−=   εσ α η η 

    Image Source: J. Spelling, 2012

    Example Graph has following data:

    I b,a = 850 W/m2, nopt  = 0.9, ε =α=1.00

    Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    25/60

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

    Power Cycle Efficiency

    06/09/2012 James Spelling 25

    Image Source: J. Spelling, 2012

    Receiver efficiency decreases at higher temperatures

    However, the efficiency of the power conversion equipment increaseswith temperature, with the limit set by the Ca r n o t e f f i c ie n c y  :

    Trade-off -> optimum?

    rec

    arecreccar 

    T −=Θ=   1,η 

    Example Graph has following data:

    I b,a = 850 W/m2, nopt  = 0.9, ε =α=1.00

    Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    26/60

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

    System Efficiency

    06/09/2012 James Spelling 26

    Image Source: J. Spelling, 2012

    Can combined the efficiencies to get the system efficiency:

    For each concentration ratiothere exists an o p t i m u m   operating temperature…

    Example Graph has following data:

    I b,a = 850 W/m2, nopt  = 0.9, ε =α=1.00

    ( ) 

      

     −

     

     

     

        −−=Θ=

    rec

    a

    abg

    arecopt recsolsys

     I CR

    T T 1

    ,

    44εσ α η η η 

    Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    27/60

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

    Power Generation Cycles

    06/09/2012 James Spelling 27

    Image Source: J. Spelling, 2012

    The choice of which power generation cycle to use is closely linked tothe level of temperature that is achieved

    Three main cycle types are considered: Rankine, Stirling and Brayton

    Example Graph has following data:

    I b,a = 850 W/m2, nopt  = 0.9, ε =α=1.00

     Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    28/60

    MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

    06/09/2012 James Spelling 28

    Concentrated Solar Power

    Part II: Solar Thermal Power Plants

    Solar Power Technologies

     Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    29/60

    MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

    SEGS Power Plants

    First modern solar thermal power plants, the Solar EnergyGenerating Systems (or SEGS) were built in California in the 1980s

    Initial built to hedge against high oil/gas prices after the oil crises ofthe 1970s

    06/09/2012 James Spelling 29

    SEGS 3-7, Kramer Jct.

    Parabolic Troughs

    Mirror Washing

     Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    30/60

    MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

    SEGS Power Plants

    First modern solar thermal power plants, the Solar EnergyGenerating Systems (or SEGS) were built in California in the 1980s

    Initial built to hedge against high oil/gas prices after the oil crises ofthe 1970s

    A total of 354 MW of capacity was installed over a period of 6 years

    06/09/2012 James Spelling 30

    Output Collector Field Storage Temperature Oil Type Location Completed

    SEGS 1 14 MWe 82’960 m2 3 h 307°C Mineral Daggett 1984

    SEGS 2 30 MWe

    165’380 m2 - 316°C Mineral Daggett 1985

    SEGS 3, 4, 5 30 MWe 230’300 m2 - 349°C Synthetic Kramer Jct. 1986, 86, 87

    SEGS 6, 7 30 MWe 191’140 m2 - 391°C Synthetic Kramer Jct. 1988, 88

    SEGS 8, 9 80 MWe 474’160 m2 - 391°C Synthetic Harper Lake 1989, 90

    Data Source: National Renewable Energy Laboratory, 2004

     Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    31/60

    MJ2411: Renewable Energy Technology – Concentrated Solar Power

    g g

    Recent CSP Deployment

    Solar thermal power development began in the 1980s with the SEGS

    A new “solar renaissance” started in 2006 with new power plants

    06/09/2012 James Spelling 31

     Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    32/60

    MJ2411: Renewable Energy Technology – Concentrated Solar Power

    g g

    Spanish Solar Renaissance

    In 2004 a royal decree equalized conditions for CSP and PV plants

    Feed-in tariffs for solar energy were guaranteed, removing someeconomic barriers to the deployment of solar thermal technology

    By early 2012, over 1’000 MW of solarthermal power had been deployed

    Another 1’200 MW are currently underconstruction

    Over 90% of all CSP plants built are ofthe parabolic trough type

    06/09/2012 James Spelling 32

    Image Source: Protermosolar, 2011

     Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    33/60

    MJ2411: Renewable Energy Technology – Concentrated Solar Power

    g g

    Commercial Solar Plants

    06/09/2012 James Spelling 33

    Solnova 1, 2 & 4

    Commercial solar thermal power plants in Spain:

    Andasol 1, 2 & 3

    PS 10 & 20

    Puerto Errado II

     Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    34/60

    MJ2411: Renewable Energy Technology – Concentrated Solar Power

    g g

    Parabolic Trough Plants

    06/09/2012 James Spelling 34

    Over 90% of all installed solar thermal power plants are basedaround the use of parabolic troughs with Rankine-cycles

    The technology was well-proven, making it easier to obtain fundingwhen the second wave of CSP construction started

    • Continuous operation of the SEGS plants since 1984However, limited innovation in commercial plants…

     Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    35/60

    MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Types of Trough Plants

    06/09/2012 James Spelling 35

    Two main types of parabolic trough plant have emerged:

    •  ‘SEGS-type’: daytime-peaking, no storage

    •  ‘Andasol-type´: dayload and evening peak, with storage

    Power-plants based around standard steam-cycle technology

    • Compatible temperature levels betweensolar collector and power block

    • Lower risk: well understood technology

    Plant design strongly affect by local regulationand incentive measures:

     –  USA: loan guarantees and tax credits

     –  Spain: limited to 50MW power block

    »  limited to 13% fossil co-firing

     Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    36/60

    MJ2411: Renewable Energy Technology – Concentrated Solar Power

    SEGS-Type Power Plant

    06/09/2012 James Spelling 36

    Designed primarily to meet midday peak electricity demands

    Reheat steam cycle used to allow higher cycle efficiency at the lowsteam temperatures

    • Operating temperatures limited by heat transfer fluid

    Thermal Oil HTF-System

    Medium: Therminol-72

    Thermal Stability: 400°C

    Power Block

    Reheat Rankine-cycle

    Steam Temperature: 390°C

    Steam Pressure: 100 bar

     Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    37/60

    MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Andasol-Type Power Plant

    06/09/2012 James Spelling 37

    Designed to meet two daily peaks, midday and early evening

    Thermal energy storage tanks used to harness extra energy duringdaily hours, allowing production to be extended in the evening

    • Larger solar field required to charge storage tanks

    Molten-Salt Storage

    Medium: NaNO3-KNO3Thermal Stability: 580°C

    Power Block

    Reheat Rankine-cycle

    Steam Temperature: 390°C

    Steam Pressure: 100 bar

     Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    38/60

    MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Molten-Salt Storage System

    06/09/2012 James Spelling 38

    Thermal energy storage based on molten salts adds complexity to thesystem, as three separate fluid loops are required

    Thermal Oil Molten Salt Water/Steam

    Thermal Oil

    Good heat transfer

    Low freezing point

    No phase-change

    Molten SaltHigh heat capacity

    Pre-available product

    Inexpensive

    Chemically inert

     Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    39/60

    MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Molten-Salt Storage System

    06/09/2012 James Spelling 39

    Thermal energy storage based on molten salts adds complexity to thesystem, as three separate fluid loops are required

    Complexity is outweighed by reduced cost and increased safety!

    Image Source: L. Hartley, 1999

    SEGS FireOriginal oil-based storage

    Damaged in fire

    Never replaced

    Parabolic Troughs

    HTF Heaters

     Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    40/60

    MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Parabolic Trough Plants

    06/09/2012 James Spelling 40

    Over 90% of all installed solar thermal power plants are basedaround the use of parabolic troughs with Rankine-cycles

    HTF Headers

    Collector Arrays

    Molten Salt

    Storage Tanks

    Power Block

     bl h l d l

    Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    41/60

    MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Parabolic Trough Collector

    06/09/2012 James Spelling 41

    A large number of different parabolic collector designs have beenproposed but all share a similar structure

    Parabolic MirrorAbsorber Tube

    Support Structure

    Drive Pillar

    Flexible Joint

    Intermediate Pillar

     MJ2411 R bl E T h l C t t d S l P

    Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    42/60

    MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Parabolic Trough Collector

    06/09/2012 James Spelling 42

    A large number of different parabolic collector designs have beenproposed but all share a similar structure

    The central drive pillar provides tracking power and control for theentire solar collector assembly

    Tracking device uses a PV-cell sensor to align the shadow created bythe central tub receiverParabolic Mirrors PV Panel

    Tube Receiver Drive Axis

     MJ2411 R bl E T h l C t t d S l P

    Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    43/60

    MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Alternative Trough Collectors

    06/09/2012 James Spelling 43

    In addition to the conventional single-axis tracked parabolic troughcollectors, more advanced designs have been proposed

    MAN Dual-Axis Tracking Collector

    Azimuth/elevation trackingRemoves incidence angle losses

    Increased power input

    Increased cost/complexity did not

    compensate for added power

    -> Current focus mainly on increasing

    aperture and reducing structural cost

     MJ2411: Renewable Energy Technology Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    44/60

    MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Conventional Trough Evolution

    06/09/2012 James Spelling 44

    There has been a steady evolution in the design of parabolic troughsfor the typical commercial solar thermal power plant

    General trends towards increased aperture and length

    • Reduction in end-losses as well as drives and tracking!

    LS-1 LS-2 LS-3 Eurotrough HeliotroughUltimate

    Trough

    Aperture 2.5 m 5 m 5.8 m 5.8 m 6.77 m 7.8 mUnit Length 6.3 m 12m 15 m 12 m 19 m 24 m

    SCA Length 50.4 m 48 m 99 m 148.5 m 191 m 242 m

    Active Surface 128 m2 235 m2  547 m2  820 m2  1’263 m2  1’813 m2 

    Early LUZ Designs (1980s) Recent EU/FLABEG Designs (2000s)

     MJ2411: Renewable Energy Technology Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    45/60

    MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Parabolic Trough Receiver

    06/09/2012 James Spelling 45

    The receiver tube placed at the focal point is a composite tubestructure consisting of different layers

    • Stainless-steel tube covered with absorptive coating

    • Glass envelope to reduce heat losses from tubes

    Cermet coating: ε = 0.14, α = 0.97 (@400°C)

    Image Source: J. Spelling, 2011

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    46/60

    MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Solar Tower Power Plants

    06/09/2012 James Spelling 46

    A much wider array of power plant concepts is encountered whenconsidering solar tower (central receiver) systems

    • No standard or “optimal” plant concepts has yet emerged

    • Competing concepts between technology suppliers

    Four main solar tower system concepts:

    • Direct steam generation (solar boiler concept)

    • Molten salt tower with direct thermal storage tanks

    • Volumetric air receiver with packed-bed storage tanks

    • Pressurised volumetric receiver with hybrid gas-turbines

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    47/60

    MJ2411: Renewable Energy Technology Concentrated Solar Power

    Solar Tower Concentrator

    06/09/2012 James Spelling 47

    A much wider array of power plant concepts is encountered whenconsidering solar tower (central receiver) systems

    Heliostats

    Solar Receiver

    Power Block

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    48/60

    MJ2411: Renewable Energy Technology Concentrated Solar Power

    Heliostats

    06/09/2012 James Spelling 48

    Image Source: Southern California Edison Co., 1982

    A heliostat is a Sun-tracking mirror, mounted on a dual-axis trackingsystem, allowing it to be positioned freely and direct the solar flux

    A number of issues must be addressed duringdesign of a heliostat:

    • High reflectivity

    • High optical precision

    • High tracking accuracy

    • Resistant structureAll of these serve to maintain a high optical

    efficiency of the collections system:

    ηopt   T max

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    49/60

    MJ2411: Renewable Energy Technology Concentrated Solar Power

    Heliostat Designs

    06/09/2012 James Spelling 49

    Currently, each solar tower power plant has had its own heliostatdesign, each with advantages and disadvantages

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    50/60

    MJ2411: Renewable Energy Technology Concentrated Solar Power

    Trough vs. Tower Collector

    06/09/2012 James Spelling 50

    Both trough and tower plants typically operate using Rankine steam-cycles but differ in a number of key aspects

    Both are capable of utility scale but trough plants can be larger

    • Largest plant under construction: Solana, 280 MWe (trough)

    Parabolic Trough Central Receiver

    Heat Collection Modular Centralised

    Energy Transfer Heat via HTF circulation Light

    Max. Size Almost unlimited Limited by efficiency

    of heliostats furthest

    from the tower

    Temp. Limited By Heat transfer fluid Receiver materials

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    51/60

    gy gy

    Solar Tower Power Plants

    06/09/2012 James Spelling 51

    A much wider array of power plant concepts is encountered whenconsidering solar tower (central receiver) systems

    • No standard or “optimal” plant concepts has yet emerged

    • Competing concepts between technology suppliers

    Concept Power Plants Size Receiver Conditions Storage Status

    Direct Solar Steam PS 10 &20

    eSolar Tower

    Ivanpah

    11/20 MWe5 MWe131 MWe

    265°C / 40 bar

    440°C / 60 bar

    550°C / 165 bar

    Steam buffer

    N/A

    Salt tanks (opt.)

    Operational

    Operational

    Under construction

    Molten-Salt Tower GemasolarTonopah 20 MWe

    110 MWe

    565°C

    550°C

    Salt tanks

    Salt tanks

    Operational

    Planning

    Volumetric Air Jülich Tower 1.5 MWe  680°C Packed-bed Operational

    Pressurised Air AORA Solar 100 kWe 1000°C N/A (hybrid) Operational

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    52/60

    gy gy

    PS10/20 Solar Tower Plants

    06/09/2012 James Spelling 52

    The first of the new generation of solar power plants to be built wasthe PS10 direct steam solar tower

    Low-temperature (265°C) saturated-steam receiver demonstrated

    Saturated Steam

    Power Block

    Heliostat

    Field

    Receiver

    Tower Steam

    Buffer

    Turbine Capacity: 11 MWeStorage Capacity: 0.5 hrs

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    53/60

    PS10/20 Solar Tower Plants

    06/09/2012 James Spelling 53

    The first of the new generation of solar power plants to be built wasthe PS10 direct steam solar tower

    Low-temperature (265°C) saturated-steam receiver demonstrated

    Power Block

    Heliostat Field

    Steam

    Buffer

    Central

    Tower

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    54/60

    The Ivanpah Solar Complex

    06/09/2012 James Spelling 54

    The next generation of direct steam solar thermal power is underdevelopment in California by the Brightsource company

    The Luz Power Tower (LPT) technology allows production ofsuperheated steam at 550°C, efficiently driving steam turbines

    Turbine Capacity: 131 MWe

    Storage: optional molten-salt tanks

    steam-salt heat exchange

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    55/60

    The Ivanpah Solar Complex

    06/09/2012 James Spelling 55

    The next generation of direct steam solar thermal power is underdevelopment in California by the Brightsource company

    When completed in 2013, the Ivanpah complex will total 393 MWe 

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    56/60

    Gemasolar Power Plant

    06/09/2012 James Spelling 56

    Molten-salt tower present the possibility to reach significantly highersteam temperatures than conventional parabolic trough

    Compared to direct steam tower, molten-salt technology allowsintegration of large-scale thermal energy storage

    Salt Storage Tanks

    Reheat Steam

    Power Block

    Turbine Capacity: 20 MWeStorage Capacity: 15 hrs

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    57/60

    Gemasolar Power Plant

    06/09/2012 James Spelling 57

    Molten-salt tower present the possibility to reach significantly highersteam temperatures than conventional parabolic trough

    Heliostat Field

    Central Tower

    Solar Receiver

    Storage Tanks

    Power Block

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    58/60

    Jülich Solar Tower Plant

    06/09/2012 James Spelling 58

    Volumetric air technology allows solar heat to be harnessed at evenhigher temperatures as air is chemically very stable

    Air is a poor heat transfer fluid, so the volumetric concept is used toovercome this and provide a large surface area for absorption

    Packed-bed Storage

    Conventional HRSG-Type Boiler

    1,5 MWe Turbine

    Superheated Steam

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    59/60

    Jülich Solar Tower Plant

    06/09/2012 James Spelling 59

    Volumetric air technology allows solar heat to be harnessed at evenhigher temperatures as air is chemically very stable

    Air has a low thermal energy density so direct storage of air isuneconomical and cumbersome

    • Regenerative storage technology allows storage in a secondmedium with better thermal properties and later recovered

     MJ2411: Renewable Energy Technology – Concentrated Solar Power

    Institutionen för Energiteknik: Kraft och Värmeteknologi

  • 8/17/2019 Solar 2 - Solar Power Plants

    60/60

    Jülich Solar Tower Plant

    Volumetric air technology allows solar heat to be harnessed at evenhigher temperatures

    Small plant size allows integration of entire plant into thecentral receiver tower -> efficient use of space

    Volumetric Receiver

    Storage Tank

    Power Block