36
Soils & Hydrology (3060 Part II) 9. Soil Water 10. Precipita>on and Evapora>on 11. Infiltra>on, Streamflow, and Groundwater 12. Hydrologic Sta>s>cs and Hydraulics 13. Erosion and Sedimenta>on 14. Wastes in Soil and Water

Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

Soils  &  Hydrology  (3060  -­‐  Part  II)  

9.  Soil  Water  10. Precipita>on  and  Evapora>on  11.  Infiltra>on,  Streamflow,  and  Groundwater  12. Hydrologic  Sta>s>cs  and  Hydraulics  13. Erosion  and  Sedimenta>on  14. Wastes  in  Soil  and  Water    

Page 2: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

Global  Water  Budget  Volumes  in  PL,  Flows  in  PL/yr  

1  PL  =  1  petaliter    =  1015  L  =  1000  GL  

Page 3: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

•  Residence  Time:  The  >me  water  spends  in  a  reservoir:    

     τ  =    V  /  Q  –  τ  (tau)  is  the  residence  >me  (years)  –  V  is  the  volume  of  the  reservoir  (liters)  –  Q  is  the  flow  through  reservoir  (liters  per  year)  

 

•  Think  of  a  bathtub...  –  If  you  start  with  an  empty  bathtub  

•  τ    =  how  many  minutes  it  takes  to  fill  the  bathtub  •  V  =  size  of  tub,  (say  100  gallons)  •  Q  =  flow  into  tub,  (say  10  gallons  per  minute)  •  τ    =  V  /  Q  =  100  /  10  =  10  minutes  

–  If  you  start  with  a  full  bath  •  There  is  no  inflow  

–  And  you  let  it  drain  at  a  constant  rate  –  Will  it  take  the  same  >me  to  drain?  

–  You  add  and  drain  water  at  the  same  rate  •  Will  a  tracer  take  the  same  >me?  

Page 4: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

Water  on  Planet  Earth  

Page 5: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

•  Soil  surfaces  have  nega%ve  charge!    –  Water  is  a  polar  molecule    –  The  H-­‐side  has  a  posi>ve  (+)  charge  –  The  O-­‐side  has  a  nega>ve  (-­‐)  charge  

•  Water  is  bound  to:  –  other  water  molecules  by    

•  cohesive  (water-­‐water)  forces  –  the  soil  surface  by    

•  adhesive  (soil-­‐water)  forces  •  Think  of  water  as  a  bar  magnet  

–  soil  is  a  nega>ve  box  –  it  s>cks  to  other  water  “magnets”  –  the  posi>ve  end  s>cks  the  “box”    

Page 6: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

Soils  =  Air  +  Water  +  Solids  

Page 7: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

Capillary  Rise:    –  The  wicking  effect  caused  by  small  pores  

–  Rise  is  greater  in  finer  materials:  •  clays  >  silts  >  sands  >  gravels    

–  h  =  0.15  /  r  •  h  is  the  height  of  rise  in  tube,  cm  

•  r  is  the  radius  of  tube,  cm  

Page 8: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

Energy:    •  The  driving  force  for  water  flow    •  The  total  energy  is  the  sum  of  three  types  of  energy  

–  E  =    GE  +  KE  +  PE  •  GE  =  gravita>onal  or  poten>al  energy    

–  like  a  water  balloon  at  the  top  of  a  building  •  KE  =  kine>c  or  iner>al  energy  

–  like  when  the  balloon  is  dropped  and  it’s  picking  up  speed  •  PE  =  pressure  energy  

–  like  when  the  balloon  hits  the  ground  before  it  explodes  –  Total  Energy  is  expressed  as  a  head,  or  height  of  water:  

•  h  =  z  +  p  –  z  is  the  eleva>on  head  –  p  is  the  pressure  head  

Page 9: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

Soil  Tension  •  A  nega%ve  pressure  that  accounts  for  moisture  held  in  the  soil  

by  capillary  forces  –  A  small  tension  means  water  is  not  bound  >ghtly  –  A  large  tension  means  that  water  is  bound  >ghtly  

•  We  use  the  symbol  ψ  (psi)  =  -­‐  p  to  represent  the  tension:  –  It’s  a  nega>ve  pressure,  or  suc>on…  –  Remember,  dry  soil  sucks!  

Page 10: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

Kartchner Caverns, AZ

Page 11: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

Chimney Rock CaveBuggytop Cave

Page 12: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&
Page 13: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

Some  Defini>ons  •  Bulk  Density:  

–  BD  =  Mass  Soil  /  Volume  Soil  •  Porosity:    

–  PS  =  Volume  Voids    /  Volume  Soil  –  PS  =  1  -­‐  BD  /  PD  

•  Water  Content  (theta):  –  θv  =  Volume  Water  /  Volume  Soil    –  θg  =  Mass  Water  /  Mass  Soil  –  θv  =  θg  ·∙  BD  

•  Water  Depth:  –  Dw  =  θv  Ds  –  Ds  is  depth  of  soil  

•  Rela>ve  Satura>on  (capital  theta):  –  Θ  =  Volume  Water  /  Volume  of  pores  –  Θ  =  Θv  /  PS  

Page 14: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

Classifica>on  of  Soil  Water  

•  Satura>on  =  SAT  – The  water  content  when  the  pores  are  completely  filled  with  water.    

– Satura>on  corresponds  to  pressure  poten>als  of  zero,  and  above  (posi>ve  pressure).    

– This  is  the  same  as  saying  p  =  0,  ψ  =  0  – At  satura>on,  the  volumetric  water  content  equals  the  porosity.  

Page 15: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

•  Field Capacity = FC –  The water content held after rapid gravitational drainage has

occurred. –  Field capacity is sometimes described as the amount of water a soil

can hold against gravity. –  This is not completely true, however, as water continues to drain

slowly by gravity at pressures below field capacity. –  The tensions associated with field capacity are between ψ = 0.1

and 0.3 bars, equal to 100 to 300 cm.

Page 16: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

•  Wil>ng  Point  =  WP    –  The  amount  of  water  held  when  plant  roots  can  no  longer  extract  water  from  the  soil.  •  This  tension  is  usually  assumed  to  be  ψ  =15  bars    

•  Different  plants  have  different  wil>ng  points  –  Xeriphytes  (dry-­‐loving  plant)  can  go  down  to  ψ  =  75  bars    

–  Phreatophytes  (water-­‐loving  plants)  can  only  go  down  to  ψ    =  5  bars  

Page 17: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

•  Air  Dry  =  AD    –  The  amount  of  water  held  by  soil  when  it  is  exposed  to  the  atmosphere.    

•  Related  to  the  rela>ve  humidity.    •  Soils  let  in  moist  air  are  weuer  than  soils  let  in  dry  air.    

–  Soils  in  caves  and  greenhouses  are  moist  –  Soils  in  the  desert  are  dry  

–  ψ  varies  from  75  to  over  1000  bars  depending  on  the  RH  

•  Oven  Dry  =  OD  –  The  amount  of  water  held  once  the  soil  has  been  dried  in  a  105°C  oven  

for  48  hours.  –  ψ  is  about  10,000  bars  in  the  oven.  

Page 18: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&
Page 19: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

Lab  9  -­‐  This  week  in  lab…  •  Moisture  Characteris4c  Curves  –  Plot  of  tension  (pressure)  vs.  water  content  (satura>on)  – Measure  water  content  at  various  tensions  •  Saturated,  Field  Capacity,  Wil>ng  Point,  Air  Dry,  Oven  Dry  •  Determine  plant  available  water  content  

•  Demonstrate  some  concepts  –  Capillary  rise  –  a  func>on  of  par>cle  and  void  size  –  How  to  measure  field  water  tension  and  satura>on  •  Tensiometer,  Time  Domain  Reflectometry  (TDR),  Gypsum  Blocks  

 

Page 20: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

Moisture  Characteris>c  Curve    A  plot  of  water  content,  θ,  vs  soil  tension,  ψ.    

Page 21: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

•  Plant  Available  Water  =  AW  =  FC  -­‐  WP  –  The  water  in  the  soil  between  field  capacity,  ψ  =  0.1  bar,  and  the  wil%ng  point,  ψ  =  15  bars:  •  The  water  bound  less  >ghtly  than  the  field  capacity  is  termed  gravita%onal  water  because  gravity  easily  drains  this  water  before  the  plants  can  get  it.  

•  Water  bound  beyond  the  wil>ng  point  is  unavailable,  because  plant  roots  can  not  pull  hard  enough  to  overcome  absorp%on  of  the  water  to  the  soil  

Page 22: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

Soil  Tensiometer  

This part buried in soil

This dial gives soil tension (negative pressure)

A small reservoir to hold water

Page 23: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

Time  Domain  Reflectometer  

Used to measure soil moisture

An electrical pulse is sent down the rod

The pulse bounces off the end and returns to the source

The wetter the soil, the longer the delay in returning

Page 24: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

Capillary  Rise:    –  The  wicking  effect  caused  by  small  pores  

–  Rise  is  greater  in  finer  materials:  •  clays  >  silts  >  sands  >  gravels    

–  h  =  0.15  /  r  •  h  is  the  height  of  rise  in  tube,  cm  

•  r  is  the  radius  of  tube,  cm  

Page 25: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

Hysteresis: Caused by air blocking water in pores

“Ink Bottle” effect

Page 26: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

Soil  Water  Movement  •  Hydraulic  head:  h  =  z  +  p  –  h  is  total  head,  the  driving  force  –  z  is  eleva>on  head,  water  moves  from  high  to  low  eleva>on  –  p  is  pressure  head,  water  moves  from  high  to  low  pressure  –  Ψ  is  matric  tension,  which  is  a  nega>ve  pressure  (-­‐p),  so  that  water  moves  from  low  to  high  tension  

•  Hydraulic  gradient:  G  =  Δh  /  Δx    –  Δh  is  the  change  in  head  –  Δx  is  the  distance  –  This  is  the  slope,  or  gradient,  of  the  head.  –  The  steeper  the  slope,  the  higher  the  gradient  

Page 27: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

Soil  water  can  move    from  dry  to  wet  

Page 28: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

Darcy’s  Law  •  Water  Flux:  q  =  -­‐  K  G  =  -­‐  K  (Δh  /  Δx  )  –  K  is  the  hydraulic  conduc>vity,  or  how  permeable  the  soil  is  •  A  big  K  (sands,  gravels)  means  that  water  flows  fast  •  A  small  K  (clay,  rock)  means  that  water  flows  more  slowly  

–  q  is  the  flux,  or  flow  per  unit  area  •  The  nega>ve  shows  that  the  flux  is  moving  from  high  to  low  •  It  has  a  nega>ve  slope…  

•  Total  Flow:  Q  =  q  A  –  A  is  the  cross-­‐sec>onal  area    

•  For  example,  the  cross-­‐sec>onal  area  of  a  pipe  is  π  r2  

•  The  bigger  the  pipe,  the  more  the  flow  –  Q  is  the  total  flow  

Page 29: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

Soil Water Movement

•  Total Head: –  h = z + p = z – Ψ

•  Hydraulic Gradient, G –  change in energy w/ distance –  G = Δh / Δx

•  Hydraulic conductivity, K –  a function of pore size (d)

and connectivity –  K = f(d2)

Page 30: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

•  Typical  Values  – Gravel,  lava,  caves  •  K  =  10  cm/s  

– Sands  •  K  =  20  cm/hr  

– Soils  •  K  =  5  cm/day  

– Clays  •  K  =  0.9  cm/yr  

Hydraulic Conductivity

Page 31: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

•  Darcy’s  Law,  Q  =  A  K  G  –  A  =  The  area  of  flow  

•  The  greater  the  area,  the  greater  the  flow.  –  K  =  The  hydraulic  conduc>vity  or  permeability  

•  The  higher  the  conduc>vity,  the  greater  the  flow.  –  G  =  ΔH  /  L  =  The  magnitude  of  the  driving  force  (L  =  Δx)  

•  The  steeper  the  water  slope,  the  greater  the  flow  

Page 32: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

Unsaturated  Hydraulic  Conduc>vity  •  Less  than  the  Saturated  Conduc>vity!!  –  q  =  Ku  G  =  K  Kr  G  –  Ku  =  K  Kr    =  unsaturated  hydraulic  conduc>vity  –  Kr  =  rela>ve  hydraulic  conduc>vity  

Page 33: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

Plant Stomata Control Water Loss

•  Plant Water Uptake –  Water is pumped through plants partly by

the pull or tension of the atmosphere –  The tension in the atmosphere is generally

hundreds of bars –  The moisture in the soil is only weakly

bound. –  We can measure the tension in the plant,

and find the tension is lowest in the roots, and highest in the leaf

Page 34: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

Plant  Water  Uptake    •  Plant  Available  Water  –  Soil  water  that  is  poten>ally  used  by  plants  –  Limited  by  soil  tension,  from  wil>ng  point  to  field  capacity  –  PAW  =  FC  –  WP  

Page 35: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&
Page 36: Soils&&&Hydrology&(3060&1&PartII)&hydrology.uga.edu/rasmussen/class/3060/Chap09.pdf · Soils&&&Hydrology&(3060&1&PartII)& 9. Soil&Water& 10. Precipitaon&and&Evaporaon& 11. Infiltraon,&Streamflow,&and&Groundwater&

Chapter  9  Quiz  –  Soil  Water  1.  Adhesion  –  Cohesion  (circle  one)  is  the  aurac>on  of  the  water  to  

the  soil  surface.  2.  What  is  the  volumetric  water  content  if  the  bulk  density  is  1.33  

kg/L  (same  as  g/cm3)  and  the  gravimetric  water  content  is  0.25?    3.  What  is  the  depth  of  water  in  a  foot  of  soil  if  the  volumetric  

water  content  is  0.10  (10%)?  

4.  Is  available  water  primarily  held  in:  ___  Macropores  (greater  than  100  μm)  ___  Mesopores  (between  0.1  and  100  μm)  ___  Micropores  (smaller  than  0.1  μm)  

5.  Which  soil  type  has  the  greatest  plant  available  water?  Least?  ___Clay    ___  Sand    ___  Silt    ___  Loam      ___  Clay  Loam