32
Smith Chart

Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o 0 +R +jX -jX Smith Chart maps

Embed Size (px)

Citation preview

Page 1: Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o   0 +R +jX -jX  Smith Chart maps

Smith Chart

Page 2: Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o   0 +R +jX -jX  Smith Chart maps

Network Analyzer BasicsDJB 12/96 na_basic.pre

Smith Chart Review.

-90 o

0o180

o+-

.2

.4

.6

.8

1.0

90o

0 +R

+jX

-jX

Smith Chart maps rectilinear impedance plane onto polar plane

Rectilinear impedance plane

Polar plane

Z = ZoL

= 0

Constant X

Constant R

Z = L

= 0 O

1

Smith Chart

(open)

LZ = 0

= ±180 O1

(short)

Page 3: Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o   0 +R +jX -jX  Smith Chart maps

Circuits components

Page 4: Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o   0 +R +jX -jX  Smith Chart maps

Smith Chart main points

Page 5: Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o   0 +R +jX -jX  Smith Chart maps

From S parameters to impedance

Page 6: Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o   0 +R +jX -jX  Smith Chart maps

IF BW and averaging

Heterodyne detection scheme

IF BW reduction

Averaging

Dynamic Range (definition)

Page 7: Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o   0 +R +jX -jX  Smith Chart maps

Smoothing trace

Smoothing (similar to video filtering) averages the formatted active channel data over a portion of the displayed trace. Smoothing computes each displayed data point based on one sweep only, using a moving average of several adjacent data points for the current sweep. The smoothing aperture is a percent of the swept stimulus span, up to a maximum of 20%.Rather than lowering the noise floor, smoothing finds the mid-value of the data. Use it to reduce relatively small peak-to-peak noise values on broadband measured data. Use a sufficiently high number of display points to avoid misleading results. Do not use smoothing for measurements of high resonance devices or other devices with wide trace variations, as it will introduce errors into the measurement.

Page 8: Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o   0 +R +jX -jX  Smith Chart maps

Averaging trace

Averaging computes each data point based on an exponential average of consecutive sweeps weighted by a user-specified averaging factor. Each new sweep is averaged into the trace until the total number of sweeps is equal to the averaging factor, for a fully averaged trace. Each point on the trace is the vector sum of the current trace data and the data from the previous sweep. A high averaging factor gives the best signal-to-noise ratio, but slows the trace update time. Doubling the averaging factor reduces the noise by 3 dB.

Page 9: Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o   0 +R +jX -jX  Smith Chart maps

IF BW reduction

IF bandwidth reduction lowers the noise floor by digitally reducing the receiver input bandwidth. It works in all ratio and non-ratio modes. It has an advantage over averaging as it reliably filters out unwanted responses such as spurs, odd harmonics, higher frequency spectral noise, and line-related noise. Sweep-to-sweep averaging, however, is better at filtering out very low frequency noise. A tenfold reduction in IF bandwidth lowers the measurement noise floor by about 10 dB. Bandwidths less than 300 Hz provide better harmonic rejection than higher bandwidths.

Page 10: Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o   0 +R +jX -jX  Smith Chart maps

Impedance Measurements

Page 11: Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o   0 +R +jX -jX  Smith Chart maps

H Kobe Instrument Division

Back to Basics - LCRZ Module

Which Value Do We Measure?

TRUE

EFFECTIVE

INDICATED +/-

Instrument Test fixture Real world device

%

Page 12: Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o   0 +R +jX -jX  Smith Chart maps

H Kobe Instrument Division

Back to Basics - LCRZ Module

Frequency vs. Measurement Techniques

Network Analysis

100KHz

1 10 100 1K 10K 100K 1M 10M 100M 1G 10G

Frequency (Hz)

Auto Balancing Bridge

5HZ 40MHz

22KHz 70MHz

Resonant

I-V

10KHz 110MHz

30MHz

RF I-V

1 MHz 1.8 GHz

Page 13: Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o   0 +R +jX -jX  Smith Chart maps

H Kobe Instrument Division

Back to Basics - LCRZ Module

Auto Balancing BridgeTheory of Operation

V

-

+

2

V1

DUT

V = I R2 2 2

Z = V

I

1

2 =

V R

V

21

2

H L R2

I2

Virtual ground

II = I2

Page 14: Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o   0 +R +jX -jX  Smith Chart maps

H

Auto Balancing Bridge

Most accurate, basic accuracy 0.05%

Widest measurement range

Widest range of electrical test conditions

Simple-to-use

Advantages and Disadvantages

Low frequency, f < 40MHz

C,L,D,Q,R,X,G,B,Z,Y,O,...

Page 15: Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o   0 +R +jX -jX  Smith Chart maps

H Kobe Instrument Division

Back to Basics - LCRZ Module

Resonance (Q - Meter) TechniqueTheory of Operation

Tune C so the circuit resonates

At resonance X = -X , only R remainsD C D

V~OSC

Tuning C (X c) V

L (X ), RD DDUT

e I= eZ

X = = (at resonance)C VI

R VeD

Q = = =|V|

e|X |

RD

D |X |

RD

C

Page 16: Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o   0 +R +jX -jX  Smith Chart maps

H

Resonant Method

Advantages and Disadvantages

requires experienced user

Vector Scalar

automatic and fast manual and slow

easy to use

No compensationlimited compensation

75kHz - 30MHz 22kHz - 70MHz

Very good for high Q - low D measurements

Requires reference coil for capacitors

Limited L,C values accuracy

Page 17: Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o   0 +R +jX -jX  Smith Chart maps

H Kobe Instrument Division

Back to Basics - LCRZ Module

I - V Probe TechniqueTheory of Operation

V2

V 1

DUT

V = I R2 2 2

Z = V

I

1

2

= V R

V

21

2

I2

R2

Page 18: Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o   0 +R +jX -jX  Smith Chart maps

H

I-V (Probe)

Medium frequency, 10kHz < f < 110MHz

Moderate accuracy and measurement range

Advantages and Disadvantages

Grounded and in-circuit measurements

Simple-to-use

Page 19: Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o   0 +R +jX -jX  Smith Chart maps

H Kobe Instrument Division

Back to Basics - LCRZ Module

RF I-VTheory of Operation

Vi

Vv

Ro

Ro

Vi

Vv

Ro

Ro DUT DUT

Voltage

Current Voltag

eDetection

Detection

CurrentDetection Detectio

n

High Impedance Test Head Low Impedance Test Head

Page 20: Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o   0 +R +jX -jX  Smith Chart maps

H

RF I-V

High frequency, 1MHz < f < 1.8GHz

Most accurate method at > 100 MHz

Grounded device measurement

Advantages and Disadvantages

Page 21: Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o   0 +R +jX -jX  Smith Chart maps

H Kobe Instrument Division

Back to Basics - LCRZ Module

Network Analysis (Reflection) Technique

Theory of Operation

DUT

V

V INC

R

V

VINC

RZ - ZL O

Z + ZL O

==

Page 22: Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o   0 +R +jX -jX  Smith Chart maps

H

Network Analysis

High frequency

- Suitable, f > 100 kHz

Moderate accuracy

Limited impedance measurement range(DUT should be around 50 ohms)

Advantages and Disadvantages

- Best, f > 1.8 GHz

Page 23: Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o   0 +R +jX -jX  Smith Chart maps

H Kobe Instrument Division

Back to Basics - LCRZ ModuleH

TDRTheory of Operation

V

VINC

RZ - Z

L O

Z + ZL O

==

ZL

DUT

Oscilloscope

Step Generator

VV INC R

Series R & L

Parallel R & C

0t

Page 24: Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o   0 +R +jX -jX  Smith Chart maps

H

TDNA (TDR)

Reflection and transmission measurements

Single and multiple discontinuities or impedance

Advantages and Disadvantages

DUT impedance should be around 50 ohms

mismatches ("Inside" look at devices)

Good for test fixture design, transmission lines,

high frequency evaluations

Not accurate for m or M DUTs

or with multiple reflections

Page 25: Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o   0 +R +jX -jX  Smith Chart maps

Measurement examples

Page 26: Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o   0 +R +jX -jX  Smith Chart maps

Ammettenza (parte reale, immaginaria)

-2

-1

0

1

2

3

4

1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08 1.0E+09frequenza (Hz)

Sie

men

s

30k-6M range, imaginary0.92 nF line, imaginary5M-100M range, imaginary5M-100M range, real80M-2G range, real80M-2G range, imaginary

-5

-2.5

0

2.5

5

7.5

10

1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08 1.0E+09 1.0E+10frequenza (Hz)

Sie

men

s

30k-6M range, imaginary9.27 nF line, imaginary5M-100M range, imaginary5M-100M range, real80M-2G range, real80M-2G range, imaginary

-600

-400

-200

0

200

400

600

800

1000

1200

1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08 1.0E+09 1.0E+10frequenza (Hz)

Oh

m

30k-6M range, imaginary991 ohm line, real5M-100M range, imaginary5M-100M range, real80M-2G range, real80M-2G range, imaginary30k-6M range, real

Impedenza (parte reale, immaginaria)

-100000

-80000

-60000

-40000

-20000

0

20000

40000

60000

80000

100000

1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08 1.0E+09 1.0E+10frequenza (Hz)

Oh

m

30k-6M range, imaginary0.972 mH line, imaginary5M-100M range, imaginary5M-100M range, real80M-2G range, real80M-2G range, imaginary30k-6M range, real

-100000

-80000

-60000

-40000

-20000

0

20000

40000

60000

80000

100000

1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08 1.0E+09 1.0E+10frequenza (Hz)

Oh

m

30k-6M range, imaginary8.6 mH line, imaginary30k-6M range, real

-20000

-15000

-10000

-5000

0

5000

10000

15000

20000

1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08 1.0E+09 1.0E+10frequenza (Hz)

Oh

m

30k-6M range, imaginary5M-100M range, imaginary5M-100M range, real80M-2G range, real80M-2G range, imaginary30k-6M range, real

1 nF

10 nF

10 mH

1 mH

Corto circuito

1 kOhm

Page 27: Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o   0 +R +jX -jX  Smith Chart maps

Ammettenza (parte immaginaria)

0.0001

0.001

0.01

0.1

1.0E+04 1.0E+05 1.0E+06 1.0E+07frequenza (Hz)

Sie

men

s

30k-6M range30k-1M range30k-600k range0.92 nF line

Ammettenza (parte immaginaria)

0.001

0.01

0.1

1

1.0E+04 1.0E+05 1.0E+06 1.0E+07frequenza (Hz)

Sie

men

s

30k-6M range30k-1M range30k-600k range9.27 nF line

Impedenza (parte reale)

980

985

990

995

1000

1005

1010

1.0E+04 1.0E+05 1.0E+06 1.0E+07frequenza (Hz)

Oh

m

30k-1M range30k-600k range991 Ohm line30k-6M range

Impedenza (parte immaginaria)

100

1000

10000

1.0E+04 1.0E+05 1.0E+06frequenza (Hz)

Oh

m

30k-1M range30k-600k range0.972 mH line

1000

10000

100000

1000000

1.0E+04 1.0E+05 1.0E+06frequenza (Hz)

Oh

m

30k-1M range30k-600k range8.6 mH line

Impedenza (parte reale)

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

1.0E+04 1.0E+05 1.0E+06 1.0E+07frequenza (Hz)

Oh

m

30k-1M range30k-600k range30k-6M range

1 nF

10 nF 10 mH

1 mH

Corto circuito

1 kOhm

Page 28: Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o   0 +R +jX -jX  Smith Chart maps

RF Device Characterization

Page 29: Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o   0 +R +jX -jX  Smith Chart maps

Group delay

Page 30: Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o   0 +R +jX -jX  Smith Chart maps

Network Analyzer BasicsDJB 12/96 na_basic.pre

Deviation from Linear Phase

Use electrical delay to remove linear portion of phase response

Linear electrical length added

+ yields

Frequency

(Electrical delay function)

Frequency

RF filter responseDeviation from linear

phase

Ph

ase

1 /

Div

o

Ph

ase

45

/Div

o

Frequency

Low resolution High resolution

Page 31: Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o   0 +R +jX -jX  Smith Chart maps

Network Analyzer BasicsDJB 12/96 na_basic.pre

What is group delay?

Deviation from constant group delay indicates distortion

Average delay indicates transit time

Frequency

Group DelayGroupDelay

Average Delay

Phaset o

t g

Group Delay (t )g

=1360 o

= d d

d d f

in radians

in radians/sec

in degrees

in Hzf

2=( )f

Frequency

*

Page 32: Smith Chart. Network Analyzer Basics DJB 12/96 na_basic.pre Smith Chart Review. -90 o 0 o 180 o + -.2.4.6.8 1.0 90 o   0 +R +jX -jX  Smith Chart maps

Network Analyzer BasicsDJB 12/96 na_basic.pre

Why measure group delay?

Same p-p phase ripple can result in different group delay

Pha

se

Pha

se

Gro

up

Del

ay

Gro

up

Del

ay

d d

d d

f

f

f

f