Smart Grid-Exploring Options

Embed Size (px)

Citation preview

  • 8/3/2019 Smart Grid-Exploring Options

    1/32

    SmartandJustGrids:OpportunitiesforsubSaharanAfrica

    MorganBaziliana,ManuelWelscha1,DeepakDivanb,DavidElzingac,GoranStrbacd,MarkHowellse,Lawrence

    Jonesf,AndrewKeaneg,DolfGielenh,V.S.K.MurthyBalijepallii,AbeekuBrewHammondj,andKandeh

    Yumkellaa

    aUnitedNationsIndustrialDevelopmentOrganization,Vienna,AustriabGeorgiaInstituteofTechnology,Atlanta,USA

    cInternationalEnergyAgency,Paris,FrancedImperialCollegeLondon,London,UK

    eKTH,RoyalInstituteofTechnology,Stockholm,Sweden

    fALSTOMGrid,WashingtonDC,USAgUniversityCollegeDublin,Dublin,IrelandhInternationalRenewableEnergyAgency,AbuDhabi,UAEiIndianInstituteofTechnology,Bombay,India

    jKwameNkrumahUniversityofScienceandTechnology,Kumasi,Ghana

    1Correspondingauthors:[email protected],[email protected]

  • 8/3/2019 Smart Grid-Exploring Options

    2/32

    2

    Forward

    Whilstthereisaclearfocustodayonimprovingtheenergysecurityand

    sustainabilityof

    established

    economies

    in

    Europe,

    Japan

    and

    North

    America,

    for

    example,aswellasrapidlygrowingeconomiessuchasChina,wemustnotforget

    thatenergysecuritymeanssomethingverydifferenttothemanymillionsof

    peoplewhohavenoaccesstoelectricityofanykind.

    ThispaperSmartandJustGrids:opportunitiesforsubSaharanAfricatacklesthis

    veryimportantissue,settingoutthecurrentchallengesandhighlightingtherole

    thattherapidlyevolvingtechnologicalandcommercialconceptofsmartgrids

    couldplayinensuringareliableandsecureelectricitysupplyfortheregion.

    Thepaper

    is

    essential

    reading

    for

    anyone

    interested

    in

    the

    provision

    of

    energy

    in

    asustainable,

    secure

    and

    affordablewayindevelopingeconomies,andintherolethatsmartgridscanplayintransformingenergy

    supplyinfrastructuresandassociatedbusinessmodels.

    EnergyisastrategicresearchpriorityatImperialCollegeLondon,andwearecommittedtodelivering

    solutionstotheglobalenergychallenge. Afterreadingthispaper,Ihopeyouaretoo.

    ProfessorNigelBrandonFREng

    Director,EnergyFuturesLab

    ImperialCollegeLondon

  • 8/3/2019 Smart Grid-Exploring Options

    3/32

    3

    Preamble

    In2009,anestimated585millionpeoplehadnoaccesstoelectricityinsubSaharanAfrica.Unlikemany

    otherregionsoftheworld,undercurrentassumptions,thatfigureisexpectedtorisesignificantlyby2030

    toabout652millionanunsustainableandunacceptablesituation.Nationalgovernmentsandregional

    organisationshaveidentifiedtheurgentneedforacceleratedelectrificationrates.Respondingtothisneed

    willrequireinnovativeandeffectiveenergypolicies.Thewayfuturepowersystemsareplanned,designed,

    constructed,financedandoperatedwillhaveasignificantimpactonhoweffectivelytheseaspirationsare

    delivered.

    Someofthewellknownandemergingconcepts,systemsandtechnologiesofSmartGridsmayofferan

    importantcontributiontouniversalaccesstoelectricityinsubSaharanAfrica.WearguethattheseSmart

    GridadvancesmayenablesubSaharanAfricancountriestoleapfrogelementsoftraditionalpowersystems

    interms

    of

    both

    technology

    and

    regulation.

    This

    could

    accelerate

    national

    and

    regional

    electrification

    timeframes,improvingservicedelivery,minimizingcostsandreducingenvironmentalimpact.

    WeintroducethenotionofJustGridstoreflecttheneedforpowersystemstocontributetowards

    equitableandinclusiveglobal,economicandsocialdevelopment.WhileSmartGridsmayprovidean

    efficientmechanismtoaddressthemassiveelectricityinfrastructurebuildingrequirements,JustGridswill

    helpguaranteeaccesstomodernenergyserviceswithoutmarginalizingthepoor.Thispaperpresentsthe

    conceptofSmartandJustGrids,andconsidersspecificprioritiesthatcouldusefullybeimplementedinsub

    SaharanAfricaintheshortterm.Itreviewstheliterature,providesafoundationforpolicydevelopment,

    andsuggestsareasforfurther,moredetailedresearch.

    Disclaimer:

    Theviewsexpressedhereinarethoseoftheauthor(s)anddonotnecessarilyreflecttheviewsoftheirrespective

    institutions.Thedesignationsemployedandthepresentationofthematerialinthisdocumentdonotimplythe

    expressionofanyopinionwhatsoeverconcerningthelegalstatusofanycountry,territory,cityorareaorofits

    authorities,orconcerningthedelimitationofitsfrontiersorboundaries,oritseconomicsystemordegreeof

    development.Designationssuchasdeveloped,industrializedanddevelopingareintendedforstatistical

    convenienceanddonotnecessarilyexpressajudgmentaboutthestagereachedbyaparticularcountryorareainthe

    developmentprocess.Mentionoffirmnamesorcommercialproductsdoesnotconstituteanendorsementbythe

    respectiveinstitutions.

  • 8/3/2019 Smart Grid-Exploring Options

    4/32

    4

    Contents

    Preamble 3

    1. Introduction 5

    1.1ElectricityinsubSaharanAfrica 5

    1.2Regionalandnationalinitiatives 6

    1.3Regionalpowerpoolsandregulatoryauthorities 7

    2. ASmartGridapproach 8

    2.1Definingtheterm 9

    2.2Technologies 9

    2.3Costsandbenefits 10

    3. SmartandJustGridsforsubSaharanAfrica 13

    3.1Redefiningtheconcept 13

    3.2Opportunitiesforleapfrogging 16

    3.2.1TheICTprecedent 17

    3.3Effectsonenergyplanning 17

    3.4Effectsonregulationanddesignpractices 19

    3.5Effectsonoverallmarketdesign 19

    3.6Transmissionanddistributionsystems 20

    4. Neartermconsiderations 21

    4.1Applying

    the

    concept

    21

    4.2Ensuringcoordinatedaction 24

    5. Conclusion 25

    Acknowledgements 26

    References 26

  • 8/3/2019 Smart Grid-Exploring Options

    5/32

    5

    1.IntroductionAccordingtotheInternationalEnergyAgency(IEA)referencescenario,Africasfinalelectricityconsumption

    isexpectedtodoublebetween2007and2030from505to1012TWh(IEA2009).Overthesametime

    period,theUnitedNations(UN)SecretaryGeneralsAdvisoryGrouponEnergyandClimateChange

    (AGECC)hasproposedthattheUNSystemandMemberStatescommittoensuringuniversalaccessto

    reliable,affordableandsustainablemodernenergyservicesby2030(AGECC2010).Tomeetthisgoal,

    massiveelectricityinfrastructure2developmentwillberequiredintheshort andmediumterm.

    TheIEA(2010)estimatesthatachievinguniversalaccesstoelectricityby2030willrequireadditional

    powersectorinvestmentofUSD33billionperannumonaverage,muchofwhichisneededinsubSaharan

    Africa.Efficiencyimprovements,demandmanagement,optimalgenerationplanning,improvedgrid

    operationand

    increased

    electricity

    trade

    across

    sub

    Saharan

    African

    countries

    will

    be

    essential

    for

    minimizingthevolumeofinvestmentsneeded(UNEnergyAfrica2008).Weproposethatspecificelements

    ofcurrentandemergingSmartGrid3concepts,systemsandtechnologiesmaymakeanimportant

    contributiontoimprovingequitableandjustaccesstoelectricityservicesinsubSaharanAfrica(Bazilian,

    Sagar,etal.2010).

    ThispaperfirstbrieflydescribestheelectricitysectorinsubSaharanAfrica,includingregionalinitiatives,

    powerpoolsandregulatoryauthorities(Section1).Section2reviewscurrentSmartGridconcepts,

    technologiesandrelatedcostsandbenefits.Section3placestheSmartGridsconceptinthecontextofsub

    SaharanAfrican,shiftingthefocustowardsthefacilitationofjustaccess.Itillustratespotential

    opportunitiesfor

    leapfrogging

    elements

    of

    traditional

    power

    systems,

    the

    role

    of

    energy

    planning,

    and

    effectsonregulationandmarketdesign.Finally,Section4offersthoughtsonhowtoapplyspecific

    conceptsintheshortterm,andsuggestsareasforinternationalcooperationtocomplementongoingand

    plannedregionalandnationalinitiativesinsubSaharanAfrica.Thispaperrepresentsonlyaninitial

    foundationforpolicydesignandfurther,moredetailedresearch.

    1.1ELECTRICITYINSUBSAHARANAFRICA

    TheenergysectorinsubSaharanAfricaischaracterisedbysignificantchallengesincluding:lowenergy

    accessrates,electricitycostsashighasUSD0.50/kWh,insufficientgenerationcapacitytomeetrapidly

    risingdemand,andpoorreliabilityofsupply(WB2008).Theestimatedeconomicvalueofpoweroutagesin

    Africaamountstoasmuchas2%ofGDP,and616%inlostturnoverforenterprises(WB2009).

    In2009,around585millionpeopleinsubSaharanAfrica(about70%ofthepopulation)hadnoaccessto

    electricity(IEA2010).Thisfigureisexpectedtorisesignificantlytoabout652millionpeopleby2030.Urban

    centresinsubSaharanAfricaarecoveredbyvaryingelectricityqualitylevelsfromnationalandregional

    2 We use the term electricity infrastructure or power systems to encompass the entirety of the system, from

    generationthroughtransmissionanddistributiontocustomerservicesandassociatedoperations.

    3

    It

    remains

    the

    case

    that

    modern

    power

    system

    planning

    and

    operational

    tools

    and

    systems

    currently

    employed

    in

    theOECDalsohavemuchtoofferdevelopingcountries.

  • 8/3/2019 Smart Grid-Exploring Options

    6/32

    6

    grids,butruralcoverageisparticularlyunevenandinadequate(Parshalletal.2009) 80%ofthosewithout

    accesstoelectricityliveinruralareas(IEA2010).

    In2007,subSaharanAfricaproduced390TWhofelectricity,ofwhichSouthAfricaaloneproducedalmost

    70%(AfDB,AU,andUNECA2010)4.Forasenseofscale,with68GW,theentiregenerationcapacityofsub

    SaharanAfricaisnomorethanthatofSpain5.Inaddition,subSaharanAfricasaveragegenerationcapacity

    wasonlyabout110MWpermillioninhabitantsin2007,rangingfromlessthan15MWpermillion

    inhabitantsinGuineaBissauandTogo,to880inSouthAfrica,andupto1,110intheSeychelles(EIA2010).

    Bycomparison,thegenerationcapacityintheEuropeanUnionisabout1,650MWpermillioninhabitants,

    andintheU.S.itis3,320.

    AfricasenergyresourcesarecharacterisedbyoilandgasreservesinNorthandWestAfrica,hydroelectric

    potentialinCentralandEasternAfrica,andcoalinSouthernAfrica.HydropowerinsubSaharanAfricahas

    anenormousexploitablepotential(WEC2005):itcurrentlyaccountsfor45%ofsubSaharanAfricas

    currentelectricity

    power

    generation

    (AfDB

    2008)

    6

    ,which

    represents

    only

    afraction

    of

    the

    commercially

    exploitablepotential.Inaddition,subSaharanAfricahasabundantsolarpotential(Huldetal.2005),and

    biomassisusedextensivelyforhouseholduse,withprospectsforincreasedcommercialexploitationand

    electricityproduction(UNIDO2009).

    Expandingaccesstonationalelectricitygridsoftenconstitutesthecheapestoptionforprovidingservices.

    However,decentralizedpower,oftenbasedonrenewableenergysources,islikelytobeanimportant

    componentofanysignificantexpansioninelectricityaccess,especiallyforruralandremoteareas

    (Deichmannetal.2010).BothsystemtypescanbenefitfromaspectsofSmartGridtechnologies7.

    1.2REGIONAL

    AND

    NATIONAL

    INITIATIVES

    Thesignificantneedforacceleratedelectrificationrateshasbeenidentifiedbyregionaleconomic

    communitiesandnationalgovernments8.In2007,theAfricaEUEnergyPartnershipwaslaunched(AUCand

    EC2008;AUCandEC2007)tosupportregionalenergystrategies,policiesandtargets.Theseregional

    4RefertoNiez(2010)formoredetailsonSouthAfricaselectricitysectorandpolicies.

    5WithoutSouthAfrica,thiscapacitygoesdownto28GW,25%ofwhichiscurrentlynotavailableforgenerationdue

    to,amongstothers,agingplantsandlackofmaintenance(Eberhardetal.2008).

    6Selectedelectricitysupplyinformation:WestAfrican(ECOWAS)region:64%thermalpower,31%hydropower(GTZ

    2009a).EastAfrican(EAC)region:65%hydropower,28%thermalpower(GTZ2009b).SouthAfrica:94%thermal

    power(AfDB,AU,andUNECA2010).7Wedonotmakeajudgementon the issueofone typeassuperior toanother,but ratherconsiderhowmodern

    powersystemtoolscanbenefitbothaswellas,insomecases,facilitatetheconnectionofoneintotheother.

    8Suchas:TheForumofEnergyMinistersofAfricas(FEMA)PositionPaperonEnergyandtheMDGs(WHOandUNDP

    2009);TheSouthernAfricanDevelopmentCommunitys(SADC)ProtocolonEnergy(L.KritzingervanNiekerkandE.

    PintoMoreira 2002) and its Regional Indicative Strategic Development Plan (RISDP) (SADC 2003); The Economic

    CommunityOfWestAfricanStates (ECOWAS)EnergyProtocol (ECOWAS2003)and itsWhitePaper foraRegional

    Policy (ECOWAS 2006); The Common Market for Eastern and Southern Africas (COMESA) Energy Programme

    (COMESA 2009a); The East African Communitys (EAC) Regional Strategy on Scalingup Access toModern Energy

    Services (EAC 2009) and its Power Master Plan Study (BKS Acres 2005); The Treaty Establishing the Economic

    Communityof

    Central

    African

    States

    (ECCAS

    n.d.);

    The

    Economic

    and

    Monetary

    Community

    of

    Central

    Africas

    (CEMAC)EnergyActionplanwithenergyandelectricityaccessgoals(WHOandUNDP2009).

  • 8/3/2019 Smart Grid-Exploring Options

    7/32

    7

    ambitionsarelargelyunderpinnedbynationalelectrificationpolicies,withmorethan75%ofsubSaharan

    countrieshavingdefinedtargetsforelectricityaccess(WHOandUNDP2009).Theimportanceofregional

    andnationalelectrificationinitiativesisclearlyunderstoodatthepolicylevel.Thepriorityistotranslate

    thisunderstandingintoprovisionofelectricityservicesontheground.

    1.3REGIONALPOWERPOOLSANDREGULATORYAUTHORITIES

    Inadditiontoregionaleconomiccommunitiesandnationalgovernments,themainactorsforimplementing

    electrificationplansaretheregionalpowerpoolsandutilities.Regionalpowerpoolswereestablished

    undertheauspicesofRegionalEconomicCommunitiestocreatecompetitivemarketsandimprovedelivery

    servicestocustomers(L.MusabaandP.Naidoo2005).TheycomprisetheSouthern,West,EastandCentral

    AfricanPowerPools(theSAPP,WAPP,EAPPandCAPP,respectively),allatdifferentstagesofdevelopment

    (IEA2008a).

    TheSAPPprovidesthemostadvancedexampleofaregionalpowerpool(Gnansounouetal.2007)9insub

    SaharanAfrica:

    it

    was

    created

    in

    1995

    as

    aresult

    of

    electricity

    trading

    in

    Southern

    Africa,

    which

    began

    in

    theearly1960s(SebitosiandOkou2009;SAPP2008).ThecreationoftheWAPPfollowedin1999(ECOWAS

    1999;ECOWAS2007),withtheCAPPin2003(L.MusabaandP.Naidoo2005)andtheEAPPin2006

    (COMESA2009b)10.Aftertheregionalpowerpoolswerecreated,regionalelectricityregulatorswere

    establishedbytheSouthernAfricanDevelopmentCommunity(SADC),theEconomicCommunityofWest

    AfricanStates(ECOWAS)andtheCommonMarketforEasternandSouthernAfricaregion(COMESA)11.

    Figure1providesanoverviewofthegridextensionsforeseenbytheregionalpowerpoolsandutilities,

    withproposedprojectsshowingthescaleofopportunityforoptimizinginfrastructuredesignanddelivery.

    It

    is

    clear

    that

    sub

    Saharan

    Africas

    national

    grids

    are

    not

    well

    interconnected

    12

    .

    9EachSAPPmembercountryoperatesitsownnationalutility(Bowen,Sparrow,andYu1999).

    10BKSAcres(2005)suggeststheintegrationoftheEAPPintotheSAPPiftheZambiaTanzaniaKenyainterconnection

    istobebuild.

    11TheRegionalElectricityRegulatorsAssociationofSouthernAfrica(RERA)wasestablishedbySADCin2002to

    facilitateharmonisationandeffectivecooperation(RERA2010).In2008,ECOWASestablisheditsRegionalElectricity

    RegulationAuthority(ERERA)toregulateelectricityexchangesbetweenstates,andtosupportnationalregulatory

    entities(ERERA2009).In2009,energyregulatorsfromCOMESAcountriesformedtheRegionalAssociationofEnergy

    Regulatorsfor

    Eastern

    and

    Southern

    Africa

    (RAERESA)

    (COMESA

    2009a).

    12TypicaltransmissionvoltagesusedinAfricasgridsarementionedinESMAP(2007).

  • 8/3/2019 Smart Grid-Exploring Options

    8/32

    8

    Figure1:PowerpoolsinsubSaharanAfrica[NEPAD2008,asshownin(IEA2008a)]13

    2.ASmartGridapproachSmartGridscombinearangeofinnovativetoolsandpracticessupportedbynovelbusinessmodelsand

    regulatoryframeworkstohelpensureareliable,secureandefficientsupplyofelectricityservices.While

    thereisstrongconsensusonthisoverallobjective,theprecisescopeofthetermSmartGridsisinterpreted

    differentlyaccordingtoperspectiveandenvironment14anditcontinuestoevolve.Acommonfunctional

    andtechnicaldefinitionhasyettoemerge(Brown,Technol,andRaleigh2008).Forourpurposes,Smart

    Gridsis

    abroad

    concept

    that

    covers

    the

    entire

    electricity

    supply

    chain

    and

    is

    characterised

    by

    the

    use

    of

    technologiestointelligentlyintegratethegeneration,transmissionandconsumptionofelectricity(MEF

    2009).Thus,theelementsofSmartGridsarepartofacontinuumofpowersectortoolsandtechnologies.

    InthisSectionwedrawfromtheliteraturetohighlightspecificaspectsfromthegeneralSmartGrids

    discourseinindustrialisedcountries,someofwhichweexplorefurtherinSection3fortheirshortterm

    applicabilitytosubSaharanAfrica.

    13 Thedifficulties in accessing the original sourceof this figure are representative for theoverall time and effort

    requiredtoaccessregionaldataandinformationonthestatusofelectricityinfrastructureinAfrica.

    14For

    example,

    according

    to

    J.

    Antonoff,

    the

    U.S.

    focuses

    on

    technologies

    while

    the

    EU

    prioritises

    policies

    and

    strategies,assumingthattechnologieswillfollow(Asmus2006).

  • 8/3/2019 Smart Grid-Exploring Options

    9/32

    9

    2.1DEFININGTHETERM

    TheElectricPowerResearchInstitute(EPRI2009)definesSmartGridas,amodernizationoftheelectricity

    deliverysystemsoitmonitors,protectsandautomaticallyoptimizestheoperationofitsinterconnected

    elementsfromthecentralanddistributedgeneratorthroughthehighvoltagenetworkanddistribution

    system,to

    industrial

    users

    and

    building

    automation

    systems,

    to

    energy

    storage

    installations

    and

    to

    end

    use

    consumersandtheirdevices.Zibelman(2007)describesSmartGridsasanevolutionofconventional

    gridsinareassuchas:

    Transitioningthegridfromamostlyunidirectionalradialdistributionsystemtoamultidirectionalgrid

    Convertingfromanelectromechanicalsystemtoaprimarilydigitalone Movingtoaninteractivegridthatactivelyinvolvesendusers(oratleastimprovesdataand

    flexibilityofendusers)15

    MuchoftheliteraturefocusesonhowSmartGridscanhelpestablishatwowayflowofinformation

    betweensupplierandusertoincreasetheefficiencyofnetworkoperations(ETPSmartGrids2006;DOE

    2008;Larsen2009;ROA2009;Battaglinietal.2009;Willrich2009;Doranetal.2010).TheEuropean

    TechnologyPlatform(ETP)outlinedthenotionofSmartGrids(ETPSmartGrids2010)inasimilarmanner

    throughthefollowingelements:optimizinggridoperation,useandinfrastructure;integratinglargescale

    intermittentgeneration;informationandcommunicationtechnology;activedistributionnetworks;and

    newmarketplaces,usersandenergyefficiency.TheU.S.EnergyIndependenceandSecurityAct(2007)

    emphasised:fullcybersecurity,smarttechnologiesandappliances16,timelyconsumerinformationand

    control,andstandardsforcommunicationandinteroperability17.Itisthusclearthatwellinformedand

    robustregulationisakeyfoundationforallaspectsofSmartGrids.

    2.2TECHNOLOGIES

    WhileSmartGridsarecomposedofcomplexandintegratedsystems,theyoftenbuildonprovenadvanced

    technologies18.Relatedtechnologiescangenerallybedividedintothoselinkedtophysicalpower,data

    transportandcontrol,andapplications(Larsen2009).TheNationalEnergyTechnologyLaboratoryhas

    identifiedandgroupedmanySmartGridtechnologycomponents(NETL2007;NETL2009)19:

    15Conventionalgridsusuallyprovidedetailedcontrolattransmissionlevelandgoodcontrolatdistributionlevel,but

    mostlydonotgobeyondthattocontrolelementssuchasdistributedenergysourcesoruserappliances(Balijepalli,

    Khaparde,andGupta2009).

    16Thisreferstorealtime,automated,interactivetechnologiesthatoptimizetheoperationofappliancesformetering,

    communications, and distribution automation, aswell as peakshaving technologies such as electric vehicles and

    thermalstorageairconditioning.

    17Ina2008surveyfocusingonNorthAmerica,respondentsrankedtheimportanceofSmartGridfeaturesasfollows:

    optimisingdistributedassets,incorporatingdistributedenergysources,integratingmassivelydeployedsensorsand

    smartmeters,activeconsumerparticipation,selfhealingtechnologies,advancedtools,smartappliancesanddevices

    and,leastimportantly,islandingability theabilityofdistributedgenerationtocontinuegeneratingpowerevenwhen

    powerfromautilityisabsent(Brown,Technol,andRaleigh2008).18

    Additionally,severalpromisingtechnologiesonthehorizonmayalsoformpartoffuturegrids,including:high

    temperaturesuperconductingmaterials,advancedelectricstoragesystemssuchasflowbatteriesorflywheels,and

    powerelectronics

    devices

    for

    AC

    DC

    conversion

    (DOE

    2003).

    19AnalternativegroupingofSmartGridtechnologyareascanbefoundin(IEA2010).

  • 8/3/2019 Smart Grid-Exploring Options

    10/32

    10

    Integratedcommunications20,includingBroadbandoverPowerLine(BPL),digitalwirelesscommunicationsorhybridfibrecoax;

    Sensingandmeasurement,includingadvancedprotectionsystems,wireless,intelligentsystemsensorsforconditioninformationongridassetsandsystemstatus,andAdvancedMetering

    Infrastructure(AMI);

    Advancedcomponents,basedonfundamentalresearchanddevelopment,includingUnifiedPowerFlowControllers(UPFC),PluginHybridElectricVehiclesandDirectCurrentmicrogrids;

    Advancedcontrolmethods,toensurehighqualitysupply,includingadvancedSupervisoryControlandDataAcquisition(SCADA)systems,loadandshorttermweatherforecasting,anddistributed

    intelligentcontrolsystemsforSmartGridstobecomeselfhealing;

    Improvedinterfacesanddecisionsupport,toreducesignificantamountsofdatatoactionableinformation,includingonlinetransmissionoptimisationsoftware,enhancedGISmappingsoftware

    andsupporttoolstoincreasesituationalawareness.

    Manycountries

    are

    engaged

    in

    pilot

    projects

    to

    test

    such

    Smart

    Grid

    technologies21,

    for

    example:

    the

    island

    ofJeju,SouthKorea(Baker&McKenzieandAustrade2010;KSGI2010);Yangzhou,China(Xuetal.2010);

    Yokohama,Japan(Hosaka2010);Boulder,Colorado,U.S.(Battaglinietal.2009);theTWENTIES(EC2010)

    andEcoGridEUprojectsintheEuropeanUnion(DanishTechnologicalInstitute2009;EcoGridEU2010);

    andplannedsmartgridapplicationsforMasdarCity,UnitedArabEmirates(Masdar2010)22.

    Duetotheirstrongrelianceoncommunicationprotocols,SmartGridsneedlogical(computer)securityas

    wellasthephysicalsecurityrequiredbyconventionalgrids,whichpreviouslyconstitutedthemainsecurity

    concern(Doranetal.2010).Thiswillprovideobstaclestoallcountries,butespeciallythosewithoutstrong

    governancesystemsinplace.

    2.3COSTSANDBENEFITS

    Thescaleofinvestmentrequiredtoenhancetodaysgridstomeetthedemandsoffuturepowersystemsis

    considerable23.BasedontheIEAsNewPoliciesScenario,totalinvestmentintransmissionanddistribution

    isexpectedtoreachUSD7.0trillion(inyear2009dollars)fortheperiod20102035(IEA2009)24.According

    totheBrattleGroup(2008),theU.S.electricutilityindustryisexpectedtoinvestUSD1.52.0trillionin

    infrastructurewithinthenext20years25.Likewise,inEastAfricaalone,billionsofdollarsarerequiredfor

    supplyandtransmissioninfrastructureoverthenexttwodecades(BKSAcres2005).

    20InteroperabilityofequipmentisakeyrequirementofSmartGrids.

    21 India actively supports SmartGriddevelopments through the restructuredacceleratedpowerdevelopmentand

    reformsprogramme(RAPDRP)(Balijepalli,Khaparde,andGupta2009).

    22ForfurtherinformationonpilotprojectsandpoliciesrefertoDoranetal.(2010).ForaU.S.focusandinformation

    on dynamic pricing and pilot design principles refer to Faruqui et al. (2009). The consumer response to smart

    appliancescombinedwithpricingsignalswasassessedinaprojectdescribedinChassinD.P.(2010).

    23Forcontext,overalltotalcostsforprovidingenergyaccessinsubSaharanAfricaareestimatedtobeapproximately

    USD25billionperannum(Bazilian&Nussbaumer,etal.2010).

    24BarrierstosmartgridinvestmentsarelistedinMEF(2009).

    25For

    comparison,

    the

    total

    asset

    value

    of

    the

    electricity

    sector

    in

    the

    U.S.

    is

    estimated

    to

    exceed

    USD

    800

    billion,

    with

    30%indistributionand10%intransmissionfacilities(DOE2003).

  • 8/3/2019 Smart Grid-Exploring Options

    11/32

    11

    InOECDcountries,asignificantshareoftheseinvestmentsisexpectedtotargettheimplementationand

    deploymentofSmartGrids.However,thedetailedmonetaryimplicationsarenotyetfullyunderstood(IEA

    2010)andcannotsolelybereducedtoinfrastructureinvestments.SmartGridsredefinetherolesofpower

    sectorstakeholders.Developingtherequiredhumanandinstitutionalcapacitiestobestrespondto

    stakeholderneedsandresponsibilities26willbeessentialfortheirsuccessfulimplementation.

    SmartGridshelptodynamicallybalanceandoptimizegeneration,deliveryassetsandloads.Associatedkey

    technicalbenefitsinclude:improvedreliabilityandresilience,costeffectiveintegrationofvariable

    resourcesandloads,increasedefficiencyofsystemoperation,andoptimisedutilisationofbothgeneration

    andgridprimaryassets27.SmartGridsmaydeliverthesebenefitsatpotentiallyloweroverallcostthan

    wouldbepossibleunderbusinessasusualassumptions.Inmoredetail,someofthebenefitsinclude:

    Lossreduction:Incurrenttransmissionanddistributionsystems,lossesamounttoapproximately9%ofthe

    electricityproduced

    worldwide

    28

    (IEA

    2008b;

    IEA

    2010).

    While

    Africas

    average

    losses

    of

    11%

    are

    close

    to

    theglobalaverage(IEA2010),manycountriesinsubSaharanAfricaarecharacterizedbymuchhigher

    systemlossesofupto41%,includingnontechnicallosses(UNEnergyAfrica2008).Highertechnicallosses

    areduetolessefficientandpoorlymaintainedequipment;highernontechnicallossesareduetotheft(IEA

    2003).

    SmartGridtechnologiescanhelpminimisetechnicallossesintransmissionbyfacilitatingmoreeffective

    reactivepowercompensation29andvoltagecontrol,forexample.Theycanaddressdistributionlosses30

    throughadaptivevoltagecontrolatsubstationsandlinedropcompensationtolevelizefeedervoltages

    basedonload(EPRI2008).Nontechnicallossessuchaspowertheftcanbepartiallyaddressedwiththe

    helpof

    smart

    metering

    infrastructure

    (M.

    Scott

    2009)31,32.

    26AdescriptionoftheseneedsandresponsibilitiescanbefoundinETPSmartGrids(2006).

    27Basedlargelyonimprovedcommunicationandincreasedinteroperabilityatallgridlevels(FitzPatrickandWollman

    2010).

    28Rangesvaryfrom,forexample,5%inJapan(IEA2008b)and6% intheU.S.(EIA2010)to26%inIndia(IEA2010).

    Distribution losses usually account for the largest share of total power delivery losses (ESMAP 2007). Substation

    transformershavebeencitedasthesourceofupto40%oftotalgridlosses(SCE2010).

    29Forexample,DCtoAC currentcontrolled inverterscanboth supplyandabsorb reactivepoweronlyanddonot

    participateinresonances,ascapacitorsdo(Doranetal.2010).

    30IncreasingtheefficiencyofEuropeandistributiontransformersby0.33%wouldhavereducedlossesbymorethan

    100TWh in2000andwould result in savingsof200TWh in2030 (IEA2003). Fora senseof scale, theelectricity

    generationofAustraliain2009was232TWh(EIA2010).

    31Thiswasreportedasoneofthereasonsfor Italys initiativetofitsmartmeters in85%of Italianhomes(M.Scott

    2009).TheItalianutilityEnelreportsannualcostsavingsofUSD750millionfromtheirinvestmentsinthesmartmeter

    technologies,whichwerecharacterizedbyapaybackperiodof technology,allowing it to recoup the infrastructure

    investmentinjustfouryears.

    32Additionally,monitoringoftransformerloadingandthirdpartyassessmentsofpotentialmisusewillhelptackle

    suchpower

    theft,

    which

    is

    often

    difficult

    to

    determine

    in

    developing

    countries

    as

    it

    can

    involve

    collusion

    with

    linesmenandmeterreaders.

  • 8/3/2019 Smart Grid-Exploring Options

    12/32

    12

    Peakdemandreduction:Activemanagementofconsumerdemandthroughsmartappliancesand

    equipmentwillreducetheneedforspinningreserve(DOE2003)andexpensiveelectricitysupplytosatisfy

    peakdemand(GridWiseAlliance2010).Thiscouldbeachievedusingdemandresponseprogrammes

    (Medina,Muller,andRoytelman2010).Areductionof1%inpeakdemandcouldresultincostreductionsof

    4%,equallingbillionsofdollarsatsystemlevel(Doranetal.2010).

    Qualityofsupply:SmartGridscansignificantlycontributetoreducingcostsofgridcongestion,power

    outagesandpowerqualitydisturbances33.Theydothisbyincreasingthereliabilityandqualityofsupplyfor

    consumerswithhighrequirements34,whileprovidinglessreliableandlowerqualitypoweratreducedcosts

    forconsumerswithlowerrequirements(IEA2010).Increasinglyefficientautomatedoperationswillalso

    helpaddressandanticipatedisruptions(GridWiseAlliance2010).

    Latentnetworkcapacity:Agreaterrolefordemand,andmoresophisticatedassetmanagementand

    operation,canhelpenablethereleaseoflatentnetworkcapacitybybuildingonadvancesinequipment

    monitoringand

    diagnostics

    as

    well

    as

    supportive

    standards

    35

    (U.K.

    House

    of

    Commons

    2010).

    Technologies

    suchaspowerflowcontrolcanhaveahugeimpactontheeffectiveutilizationofnetworkcapacityunder

    normalandcontingencyconditions.

    Inadditiontotechnicalbenefits,potentialbenefitsfortheoveralleconomyinclude:

    Climatechangemitigation:DirectandindirectbenefitsofSmartGridsofferthepotentialforyearly

    emissionreductionsof0.92.2GtCO2peryearby2050(IEA2010).Directbenefitsincludereducedlosses,

    accelerateddeploymentofenergyefficiencyprogrammesanddirectfeedbackonenergyusage.Indirect

    benefitsincludegreaterintegrationofrenewableenergyandfacilitationofelectricvehicles36.

    Jobcreation:SmartGridsshouldhelptriggernewinvestmentsandcreatenewjobs.McNamara(2009)

    estimatesthatSmartGridincentivesworthUSD16billionintheU.S.couldtriggerassociatedprojects

    amountingtoUSD64billion.Thiswouldresultinthedirectcreationofapproximately280,000positions

    andtheindirectcreationofasubstantiallylargernumberofjobs.

    ManyofthesepotentialSmartGridbenefitswouldbevalidforsubSaharanAfrica,yettheconceptand

    associatedpoliciesrequirerefinementtooptimisethecost/benefitbalanceinasustainablemanner.

    33IntheU.S.,thesecostsareestimatedtobeintherangefromUSD2580billionannually(Willrich2009).

    34Thiswouldrequireutilitiestoprioritizethereliabilityofservicesdependentupontargetgroup,suchasemergency

    services,financialinstitutions,industries,consumers,andindustry(Doranetal.2010).

    35Forexample,throughweatherrelatedoperationalsecuritystandards,whichreleaselatentnetworkcapacityunder

    specificweatherconditions(U.K.HouseofCommons2010).

    36Shifting

    demand,

    for

    example

    through

    electric

    vehicles,

    may

    in

    fact

    increase

    CO2

    emissions

    in

    systems

    where

    base

    loadismetwithmoreCO2intensivegenerationthanpeakload(Doranetal.2010).

  • 8/3/2019 Smart Grid-Exploring Options

    13/32

    13

    3.SmartandJustGridsforsubSaharanAfricaEmployingasubsetoftheadvancesinpowersystemsprovidedbySmartGridsmayenablesubSaharan

    Africancountriestoleapfrogtraditionalpowersystemstoreachmoreeffectivesolutions.Thiscould

    acceleratenationalandregionalelectrificationtimeframes,whileimprovingserviceandminimisingcosts

    andenvironmental

    impact.

    We

    introduce

    the

    term

    Just

    Grids

    to

    reflect

    the

    need

    for

    power

    systems

    to

    contributetowardsequitableandinclusiveglobaleconomicandsocialdevelopment.Giventhespecific

    needsofsubSaharanAfrica,itisobviousthataSmartGridapproachforthisregioncannotsimplybea

    copyofpracticesinindustrialisedcountries thestartingpoint,challengesandopportunitiesaretoo

    different.WeconsiderhowaredefinedSmartGridconceptmightusefullybeimplementedinsubSaharan

    Africa.

    3.1REDEFININGTHECONCEPT

    WebroadlydefinetheconceptofSmartandJustGridsforsubSaharanAfricaasonethatembracesall

    measuresin

    support

    of

    immediate

    and

    future

    integration

    of

    advanced

    two

    way

    communication,

    automationandcontroltechnologiesintolocal,nationalorregionalelectricityinfrastructure.Theconcept

    aimstooptimisegridsystemsandtheiroperation,integratehighlevelsofrenewableenergypenetration,

    andimprovethereliabilityandefficiencyofelectricitysupply.Inadditiontobeingsmart,sociallyjust37

    powersystemsarerequiredinsubSaharanAfricainordertoguaranteeaccesstomodernenergyservices

    withoutmarginalizingthepoor38.

    Inthefuture,SmartandJustGridsforsubSaharanAfricacouldprovidesimilarfunctionalitytoSmartGrids

    inindustrialisedcountriesatfulldeployment,eventhoughtheyarelikelytofollowadifferentpathwayand

    timeframe.ThediversityoftheelectrificationstatusinsubSaharanAfrica39,40

    meansthatlessonslearned

    fromotherregionsmaybedirectlyappliedincertainareas,whiletailoredsolutionswillberequiredfor

    others.Constraintssuchas:alackofgoodgovernance,limitedinvestmentcapital,largelyinadequate

    infrastructure,andagapinwelltrainedpowersectorpersonnelarelikelystiflinginnovativepracticesthat

    couldalreadybeoccurringorganically41.WhilethecostsformassivelyupgradingexistinggridstoSmart

    Gridsmaynotbejustifiable,thebusinesscasewheninvestinginnewinfrastructureissignificantlybetter,

    offeringsignificantpotentialopportunitiesforsubSaharanAfrica.Itwillthereforebeessentialtoprioritise

    37AccordingtoZajda,Majhanovich,andRust(2006),socialjusticegenerallyrefersto,anegalitariansocietythatis

    based

    on

    the

    principles

    of

    equality

    and

    solidarity,

    that

    understands

    and

    values

    human

    rights,

    and

    that

    recognizes

    the

    dignityofeveryhumanbeing.38

    Similarly,UNEP(2008)callsforajusttransitiontoasustainable,lowcarboneconomytoensurethatsocialaspects

    are equitably integrated into economic and environmental considerations, and that emerging opportunities are

    adequatelysharedamongstakeholders.

    39Widevariations in theenergysectorcanbedemonstratedbypercapitaenergyconsumption,whichvaries from

    some20kgoeinBurundito860kgoeinZimbabwe,correlatingwellwithrespectiveGNPpercapita(Karekezi2002).

    40ThisdiversityiscomparabletoIndia,whichmayofferasignificantpotentialtolearnfromitsSmartGrid

    developments.RefertoBalijepalli,Khaparde,andGupta(2009)andBalijepallietal.(2010)forafocusonIndias

    relatedendeavours.41

    Forexample,theelectrificationofNewYorkstartedwithThomasEdisonsefforttodevelopasuccessfulbusiness,

    coveringthe

    complete

    system

    of

    electric

    generation,

    distribution

    and

    appliances

    (the

    light

    bulb)

    (Brooks,

    Milford,

    and

    Schumacher2004;ConEdison2010).

  • 8/3/2019 Smart Grid-Exploring Options

    14/32

    14

    specificsmartsolutionsbasedonclearlydefinedfunctionalitiesthathelpreducecosts,promoteeconomic

    growthandimprovelongtermsustainability.

    WenextcharacterisetheapproachtorealisingaSmartandJustGridsystemintoseveralelementsand

    attempttoconceiveoftheirapplicationinsubSaharanAfrica.

    Smartpolicies:Simplifyingrequirementsforruralelectrificationschemes,definingcommongroundrules

    forintegratingtechnologiesandbusinesspractices,balancingcostrecoverymechanismsforutilities,

    identifyingbetterwaystosupporteffectivedemandsidemanagement,anddevelopingnewpoliciesto

    supporttheintegrationofdistributedgeneration.Allsuchpolicieswouldneedtobeunderpinnedbywell

    definedperformancegoalsandtransparentmetricstoensureeffectivemonitoringofanticipatedbenefits.

    FocusforsubSaharanAfrica:LeveraginginternationalSmartGridframeworks,legislation,

    regulationandstandards,andadjustingthemtothesubSaharanAfricancontext42willbeessential.

    Newpolicies

    may

    need

    to

    diverge

    from

    international

    precedent,

    in

    order

    to

    prioritize

    access

    to

    affordableelectricityservicesforthepoor,respondtorapiddemandgrowthandurbanisation,and

    reducetheftofelectricityandutilityassets.Suchpoliciesshouldenableaccessthroughflexible,no

    regretelectrificationstrategiesthataccommodateexpansionsofstandalonesystems,miniand

    nationalgrids,andthatsupporttheirintegration43.

    Smartplanning:Adjustingthegridtolocalcircumstancesanddevelopingdesignprinciplesthatensurean

    effectiveinteroperabilityofexistingandnewgrids,leadingtoevensmarternetworksovertime.

    FocusforsubSaharanAfrica:Abalancedapproachbetweenregionalgridintegration,nationalgrid

    enhancementsand

    decentralised

    mini

    grids

    is

    required.

    While

    smart

    mini

    grids,

    such

    as

    those

    describedin(KatiraeiandIravani2006),mayprovideashorttermsolutiontoruralelectrification

    needs,theirfutureintegrationintonationalandregionalgridsandviceversaneedstobean

    integralconsiderationofpowersystemplanning44.

    Smartsystemsandoperations:Guaranteeingthesecurityandqualityofsupplythroughsmartautomation

    andcontrolarrangements,buildingonloadmanagementandintegrationofdistributedenergysources,for

    mini,nationalandregionalgrids,asshowninRuizet al.(2009).

    FocusforsubSaharanAfrica:Countryandlocallyappropriatesupplyqualitystandardswillneedto

    bederived.Thesemayinitiallybelessstringentthancurrentpracticesinindustrialisedcountries

    andmayvarybyclassofservice.Increasingthegridsloadfactorthroughdemandside

    42RefertoSchwartz(2010)forfurtherinformationonpolicysupportrequiredtodeliverSmartGridbenefits.

    43Forexample,inremoteareasphotovoltaic(PV)panelscanprovidealimitedand,thusattimes,limitingquantumof

    electricityforcustomers.Atpresent,suchcustomersareconsideredelectrified.Inthecaseofmini ornationalgrid

    extensionswithbetterpowerquality,suchcustomersmayeithernotbetargetedorthephotovoltaicsystemleft

    unused,ascurrentsystemsareoftennotdesignedtointegratesuchhomecircuitsorlocalgrids.44Forexample, theTresAmigas SuperStation inNewMexico,USA,will serve to improve grid reliabilityand solve

    voltageand

    stability

    issues

    by

    linking

    the

    three

    primary

    U.S.

    electricity

    transmission

    grids

    through

    high

    voltage

    direct

    currentconvertertechnology(Alstom2010).

  • 8/3/2019 Smart Grid-Exploring Options

    15/32

    15

    managementmayalsosignificantlyhelpreducecosts,especiallyforruralelectrificationschemes

    (Matly2010).

    Smarttechnologies:Deployingprovensmarttechnologies,optimisinginteroperabilitywithemerging

    technologies,anddevelopingfuturesolutionstobestaddresselectrificationneeds(Massoudand

    Wollenberg2005;Youetal.2002).

    FocusforsubSaharanAfrica:Thetechnologydeploymentpathwillvarywidelyatregionaland

    countrylevelsduetodiverseneedsandgoalsofdifferentsocietiesandmarkets.Definingthese

    technologypathwaysandmarketsandverifyingthemthroughpilotprojectswillbeimportantfirst

    steps.

    Smartpeople:Buildingstakeholdercapacity45tofacilitatethetransitiontoSmartGrids,tooperatethe

    grids,andtoattractandactivelyengagetheprivatesectorandconsumerssothatasmanypeopleas

    possibleprofit

    from

    the

    transition.

    FocusforsubSaharanAfrica:EducatingconsumersinsubSaharanAfricaaboutefficientelectricity

    usewhilstmovingtowardsSmartGridswillbeessential,especiallyforthosewhopreviouslyhadno

    access.Trainingtoolsandmaterialsaboutstateoftheartpowersystemswillalsoneedtobe

    widelydisseminated.Specificattentionneedstobepaidtothetrainingofoffgridcommunitiesso

    theycanmanageandmaintainminigridsystemsinasustainablefashion.

    Responsibilityforensuringthatgridsaresmartandjustfallsmainlyongovernmentsandutilitiesasapublic

    good.ThefollowingJustGridcharacteristicsareespeciallyrelevanttosubSaharanAfrica:

    Justaccess:Ensuringuniversalaccesstoelectricityby:

    Encouragingelectricitytobetappedofffromlargergridextensionprojectstolocalcustomersenroute.Connectionsforlargeconsumersareoftentheprimarydriverforgridextensions.Such

    extensionsmayofferagreatopportunitytoconnecttheunderservedatthesametime;

    Usinggridtechnologiesthatcancopewithfluctuatingsupplyanddemandinruralareasandthusincreasesupplyqualityofsupply,forexamplebybuildingonstrategicloadcontroland

    managementinsteadofconventionalloadshedding;

    Focusingonacceleratedaccesstokeyelectricityservicesratherthanjustonaccesstoelectricity.Doing

    this

    in

    a

    smart

    way

    may

    help

    governments

    deliver

    on

    their

    development

    agendas

    more

    effectivelyandatlowercost;

    Expandingservicedeliveryunderresourceconstraintsbyincreasingtheefficiencyofelectricitysupplyanduse;

    Creatingadditionalrevenuesforutilitiesthroughhigherpaymentdiscipline,whichwouldalsoencouragethemtoextendservicestonewcustomers.

    Justbillingandsubsidies:Creatingflexibletariffstructuresandpaymentschemestoensureaffordableand

    sustainableaccesstoelectricityservices46,by:

    45This

    includes

    policy

    makers,

    government

    agencies,

    regulators,

    electricity

    network

    and

    service

    companies,

    traders,

    generators,financeinstitutions,technologyproviders,researchersandusers.

  • 8/3/2019 Smart Grid-Exploring Options

    16/32

    16

    RealisingthepotentialofSmartGridstohelplowerprices47ofelectricityservicesbyoptimizingtheutilizationofgridassets,segmentingelectricitymarketsaccordingtoreliabilityandquality

    requirements,minimisingtechnicalandnontechnicallossesbypromotingsmartandefficient

    appliances,andincreasingcosteffectiveintegrationofrenewableenergyinremoteareas48;

    Providingadditionalsupportprogrammestoidentifyandfosterproductiveusesofelectricitytohelpensurethatlowincomeconsumerscanpay;

    Allowingfortargetedsubsidiesthroughintegratedsmartbillingtosupportbasicservicessuchasfoodrefrigeration,asopposedtoluxuryservices,liketelevision.

    ThereisclearlyavastarrayofSmartGridelementsavailabletosupportourredefinedconcept.Theyare

    notallimmediatelyrelevant,however,andsomeareeithernotdevelopedenoughortooexpensivetobe

    usefullydeployedinthesubSaharanAfricancontextintheshort tomediumterm49.Incorporating

    promisingelementsoffutureSmartandJustGridsinsubSaharanAfricawillrequiremorethanimproved

    functionality,ashasbeenobservedwiththeadoptionofotherdisruptiveinnovations(Christensenand

    Raynor2003).

    A

    commercially

    successful

    business

    model

    including

    pricing,

    cost

    structure

    and

    sales

    process

    iskeyforasuccessfultransition(Anthony2004).

    3.2OPPORTUNITIESFORLEAPFROGGING

    TheopportunityforSmartandJustGridstoleapfrog50traditionalpowersystemsmaymeanthattheycan

    offerevenmoreexcitingopportunitiestodevelopingcountriesthantoindustrialisedones.Whilesome

    componentsofSmartGridsareagoodbasisforleapfroggingintheshortterm,otherswillbeessentialfor

    settingthepreconditionsrequiredtodayforenablingatransitiontosmarternetworksasthetechnologies

    matureinthefuture51.Avoidingtechnologylockinwillbecrucial,astheeconomiclifetimeofelectric

    powerequipment

    can

    be

    longer

    than

    50

    years

    (DOE

    2003;

    ESMAP

    2007).

    Thus,

    the

    faster

    the

    transition

    to

    therequiredenablingenvironments,thebetter.

    46Refer toKammen (inpress) forenergypricingpolicies forconsumersandproducersaimingat thepromotionof

    renewableenergyandenergyefficiency.

    47ThefuturepriceperkWhofelectricitycannotbepredictedwithhighcertaintybecauseelectricitygenerationrelies

    on various commodities traded on international markets. Smart Grids, however, can provide tools to enable

    consumerstomanageelectricityservicenetcosts.

    48 This is especially truewhen diesel power generators are used: renewable energy provides a costcompetitive

    alternative,asfueltransportcoststoprovidedieseltoremotelocationsinAfricaaresignificantlyhigherthaninmost

    industrialisedcountries(TeravaninthornandRaballand2009).CostsfordieselpowergenerationcanrangefromUSD

    0.35perkWhinAfricatomorethanUSD1perkWhforPacificislandsandremotecontinentallocations(UNIDO2010).

    Theuseof locally available renewable resources increases supply securityboth inphysical terms and in termsof

    pricing.Thisisespeciallyimportantforsupportinggrowthofelectricitydependentsmallandmediumenterprisesand

    industrialcustomers.

    49Wedohoweverunderlinetheimportanceofavoidingtechnologylockin,toensurethatconditionssettodaywill

    allowupgradingtofutureelementswhentheopportunityarises.50

    AdefinitionoftechnologyleapfroggingcanbefoundinDavisonetal.(2000).Examplesofleapfroggingin

    developingcountriesinthefieldofenergyarementionedinGoldemberg(1998).51

    For

    example,

    latest

    conductor

    technology

    and

    controls

    could

    be

    used

    for

    current

    greenfield

    developments

    to

    ensure

    longtermflexibilityforintegratingenergysources(IEA2010).

  • 8/3/2019 Smart Grid-Exploring Options

    17/32

    17

    3.2.1THEICTPRECEDENT

    Intheshortterm,weexpectleapfroggingtooccurmainlyforthecomponentsbasedoninformationand

    communicationtechnologies(ICT),whichformanintegralpartofmanySmartGridsystems.Africahas

    alreadyhadsomeexcellentexperiencesinleapfroggingtomoreefficientICTsolutions.Althoughnota

    perfectanalogy,

    the

    information

    revolution

    52

    of

    the

    mid

    1990s

    in

    sub

    Saharan

    Africa

    linked

    to

    the

    use

    of

    mobilephonesofferssomeusefullessons,becauseitgavepeopleaccesstomodernformsof

    communicationwithoutdetouringviaextensiveconventionaltelephonenetworks.

    Africabecametheworldsfastestgrowingcellphonemarket(LaFraniere2005)withgrowthratesinthe

    orderof300%perannumincountrieslikeKenyaandCameroon(SebitosiandOkou2009).Within10years,

    thenumberofmobilephonesubscriptionsinsubSaharanAfricashotupfromoneper100peopleto33in

    2008(WB2010).Theactualnumberofusersisexpectedtobemuchhigherstill,duetopeoplesharingtheir

    mobilephones,especiallyinpoorcommunities53(JamesandVersteeg2007;N.Scottetal.2004).

    Onereason

    for

    the

    mobile

    sectors

    great

    success

    was

    the

    failure

    of

    conventional

    telecommunication

    systemstomeetconsumerdemand,bothintermsofnumberofconnectionsandquality(WilsonIIIand

    Wong2003).ThisconstitutesaparalleltothefailureofcurrentelectricitynetworksinsubSaharanAfricato

    meettheneedsofmillionsofAfricans.Anotherreasonfortherapiddiffusionofmobilephoneswasthe

    lackofredtapeinvolvedinregisteringfortheprepaidservicesthatareusedby90%ofmobilesubscribers

    insubSaharanAfrica(JamesandVersteeg2007)54.Prepaidsubscriptionsaddressespeciallytheneedsof

    peoplewithlowerorirregularincomes,asnobankaccount,mailaddress,orfixedmonthlyfeearerequired

    (Gillwald2005).SmartandJustGridscouldtakeadvantageofICTinfrastructuretoimplementsimilar

    paymentschemes.

    Inadditiontotechnologicalreasonsforleapfrogging,marketmodelsthataccompaniedthemobilephone

    revolutionsuchassharingphonesmayserveasaprecedentforSmartGrids.Othersuccessfactors,which

    maynottranslateasseamlesslytoSmartGrids,weretherelativelylowinitialinvestmentsandthequick

    installationofredeployableassets,makingassetslessdependentoninstitutionalframeworksandinvestor

    protection(Andonova2006).

    3.3EFFECTSONENERGYPLANNING

    TheconceptofSmartandJustGridsneedstobewellintegratedintonationalandregionalenergy

    planning55inordertotakeadvantageofthepossibleopportunitiesfortechnologicalleapfrogging.

    Traditionalelectricityplanningtookdemandgrowthasagivenandonlyconsideredsupplysideoptions

    52WilsonIIIandWong(2003)definedtheinformationrevolutionasaninstitutionalandpolicyrevolution,highlighting

    theimportanceofprivatesectorparticipation,foreigninvestment,competitionanddecentralisation.

    53Grameenphonehas6millionsubscriptionsinBangladesh,3%ofwhichareforvillagephones,whicharesharedby

    alargenumberofusers,andaccountforonethirdofthetraffic(TheEconomist2006).

    54Access rates aremuchhigher than subscription rates, reaching almost 100% for some countries. Thispotential

    access isnotdirectlybeneficial for the largemajorityof theAfricanpeople,who still cannotafford topay for the

    services(JamesandVersteeg2007).

    55Munasinghe(1988)providesframeworkstoguidesubSaharanAfricasgridplanning.Gridplanningrequirements

    arementioned

    in

    Willrich

    (2009).

    An

    ideal

    objective

    function

    is

    defined

    in

    Bonbright,

    Danielsen,

    and

    Kamerschen

    (1988)andBowen,Sparrow,andYu(1999).

  • 8/3/2019 Smart Grid-Exploring Options

    18/32

    18

    (Graeber,SpaldingFecher,andGonah2005)56.Thistraditionalpredictandprovide(Strbac2010)

    approach57predictingelectricityrequirementsanddesigningthepowersystemsaccordinglyisadopted

    insubSaharanmodelssuchastheSAPPexpansionplan(Bowen,Sparrow,andYu1999)andtheEast

    AfricanPowerMasterPlanStudy(BKSAcres2005).

    Developmentisnolongerconsideredtobesolelylinkedtosteadyenergydemandgrowth(COMESA

    2009a).Duetosustainabilityconsiderations,energyplanningincreasinglyconsidersdemandsideoptions

    (ShresthaandMarpaung2006),socialandenvironmentalaspects,andassociatedcosts(WB2008;COMESA

    2009a).Thecomplexnatureofmodernelectricityplanningrequiresanapproachthatsatisfiestheseoften

    conflictinggoals(Swicher,Jannuzzi,andRedlinger1997)aspartofintegratedresourceplanning(IRP)(D'Sa

    2005)58.

    WithaSmartGridapproach,planningincreasesincomplexityasthegridevolvesintoanactivelayer

    betweensupplyanddemand.Planningforsmartgridsbecomesanintricateexerciseduetouncertainties

    aboutoff

    grid

    and

    distributed

    energy

    generation

    connections,

    as

    well

    as

    uncertainties

    about

    demand

    growth(MEF2009)59.Inadditiontooptimizingelectricitysystemsfromatechnicalperspective,JustGrids

    needtobeoptimizedfromadevelopmentperspective.Ensuringservicesformarginalizedandrural

    communitieswilloftennotbethemostcosteffectivesolution,sonewconstraints(ordifferentobjective

    functions)needtobeaddedtotraditionalleastcostoptimisationmodels.

    Therequiredexpansionandadaptationofthetraditionalapproachtoenergyplanningneedstoincludea

    moreactiverolefordemand,linkageswithstorage,andtheintegrationofminigridsintoplansforgrid

    expansion.AnexampleofthisthoughlimitedispresentedinHowellsetal.(2005)60.Inaddition,

    modernenergyplanningneedstobalancesustainabledevelopmentplanscarefullywithregionalenergy

    integrationand

    national

    and

    local

    Smart

    Grids.

    The

    importance

    of

    complex

    multi

    criteria

    decision

    making

    willconsequentlycontinuetoincrease(MEF2009;Hobbs2000).

    56Infact,ruralelectrificationinindustrialisedcountriesbasicallyhappenedthroughpubliclysupportedlocalinitiatives

    and

    independently

    of

    national

    or

    regional

    planning

    (Matly

    2010).

    57 Several supportive modelling tools, which (to varying degrees) allow for the exploration of demand side

    management, are used for this type of analysis (Swicher, Jannuzzi, and Redlinger 1997).WASP, amongst others,

    constitutesamodelthatisfrequentlyappliedinAfrica(ADICA2001;Covarrubias1979).ToolssuchasMESSAGE(IAEA

    2009)andMARKAL(Alfstad2005)arederivedfromtheHfeleManneapproach(HfeleandManne1975)andoften

    usedtomodelamultiregionalapproach.

    58DSadefinesintegratedresourceplanning(IRP)forthepowersectorasanapproachthroughwhichtheestimated

    requirementforelectricityservices ismetwitha leastcostcombinationofsupplyandenduseefficiencymeasures,

    whileincorporatingconcernssuchasequity,environmentalprotection,reliabilityandothercountryspecificgoals.

    59Accordingly,advancedsystemlevelmodellingforSmartGridshasbeenidentifiedasoneoftheSmartGridresearch,

    developmentanddemonstrationpriorities,accordingtotheIEA(2010).

    60Howells

    uses

    atool

    based

    on

    MESSAGE,

    which,

    together

    with

    WASP

    and

    several

    other

    tools

    (IAEA

    2009;

    HOMER

    2010;ETSAP2010)servestoexaminetheexpansionofaccesstoenergyservices.

  • 8/3/2019 Smart Grid-Exploring Options

    19/32

    19

    3.4EFFECTSONREGULATIONANDDESIGNPRACTICES

    Presentregulationoftenrewardsutilitiesfordeliveringnetworkprimaryassetsratherthanimproving

    performancethroughmoresophisticatedmanagementandadvancednetworktechnologies61.Thus,

    regulationcanhinderSmartGriddevelopmentsthatdonotfocusoninvestmentsinnetworkassets.

    MostcurrentnetworkdesignandoperationpracticescentreonthehistoricdeterministicN1approach

    thatwasdevelopedinthelate1950s(Willis2004).Thishasbroadlyhelpeddeliversecureandreliable

    electricityservices,alongsidevariousothertraditionallyappliedredundancymeasures.Theseapproaches

    can,however,imposemajorbarriersforinnovationinnetworkoperationandimplementationof

    technicallyeffectiveandeconomicallyefficientsolutionsthatenhancetheutilizationofgridassets.Yet,the

    existingnetworkanditsstandardsarecommonlytakenasgrantedinresearchwork,thusconstrainingthe

    applicabilityofdivergingapproaches(KhatorandLeung1997).

    WhilethenaturallawsoftransmissionanddistributiondescribedinWillis(2004)stillapply,thefuture

    gridsrequired

    in

    sub

    Saharan

    Africa

    may

    offer

    fertile

    ground

    for

    aradical

    departure

    from

    such

    traditional

    regulation,griddesignandoperationpractices,becauseofthesignificantinfrastructurebuilding

    requirementsintheregion.Forexample,Divan(2007)demonstratessignificantlyhighernetworkcapacity

    whilemeetingN1contingencyconstraintsusingeconomicaldistributedpowerflowcontroldevices.Even

    higherutilisationisrealizediftheN1constraintisdropped.Arelaxationofpowerqualityandreliability

    standardsbasedontheadvancesofSmartGridsmaythereforeenablesubSaharanAfricatoprofitfrom

    theassociatedsignificantcostsavingspotential62.

    Futurenetworkregulationanddesignisthereforerequiredtofacilitatetheimplementationofthe

    economically

    best

    solutions.

    This

    will

    occur

    by

    balancing

    asset

    and

    performance

    based

    options

    63

    ,

    particularlythosethatinvolveresponsivedemand,generationandadvancednetworkmanagement

    techniques64.InsubSaharanAfrica,novelregulatoryregimeswillalsoneedtoincentiviseinnovativeways

    ofenhancingaccesstothegrid.

    3.5EFFECTSONOVERALLMARKETDESIGN

    Innovationisrequirednotonlyintechnologiesandregulation,butalsoinmarketmodels.Information

    systemsinfrastructurewillhelpfacilitateashifttodistributedcontrol,withdemandresponsebecominga

    keyresourcefordeliveringnetworkflexibilityandcontrol.Thiswillrequiresignificantchangesinelectricity

    marketdesignprinciples,withamoveawayfromtraditionalsinglesidedcompetitioninlargescale

    generation.

    61 In subSaharan Africa, laws governing the power sector and at times oversophisticated standards sometimes

    originatebackfromcolonialtimes(Matly2010).

    62Suchanapproachcouldbesupportedbyarangeofadvancedtechnologiessuchasdynamiclinerating,coordinated

    specialprotectionschemes,coordinatedcorrectivepowerflowandvoltagecontroltechniques(potentiallysupported

    bywideareamonitoring,protectionandcontroltechnologies),andapplicationofadvanceddecisionmakingtools.63

    Balijepalli, Khaparde, and Gupta (2009) underline the need for open, performancebased standards to ensure

    modularity

    and

    interoperability.

    64AnoverviewofhowstandardscansupportorhamperSmartGridsdevelopmentsisprovidedinEPRI(2009).

  • 8/3/2019 Smart Grid-Exploring Options

    20/32

    20

    Ultimately,acosteffectivesystemrequiresallplayerstointeractcompetitively,optimisingdemandand

    supply(Strbac,Ramsay,andMoreno2009).Thiswouldrequireacompetitive,usercentreddistributed

    energymarketplacebasedonrealtimepricesdesignedtointegratewholesaleandretailenergymarkets.

    Whilesuchmarketsarestillmostlyconceptual,intime,itwillbeimportanttounderstandandintegrate

    demandintosystemdesignandoperationforsubSaharanAfrica,supportedbyusercentricmarket

    models.Thisapproachwillbecriticalforenhancingaccesstoelectricityservices,especiallygiventhe

    magnitudeoftheeconomicvalueofassociatedbenefitssuchasenhancedassetutilizationandimproved

    operationalefficiency.

    3.6TRANSMISSIONANDDISTRIBUTIONSYSTEMS

    Crucialbenefitsofelectricitygridsresultfromadiversificationofbothdemandandsupply. National

    distributionnetworksofseveralthousandhouseholdsareusuallylargeenoughtoprofitfromdemand

    diversityandassociatedsignificantsavingsinsupplycapacityrequirements(Strbac,Jenkins,andGreen

    2006)65.

    Largertransmissionnetworksarerequiredtoprofitfromdiversificationofsupply(BazilianandRoques

    2008)byexploitingregionalenergyresourcesandinfrastructure66.Transmissionexpansionscan

    significantlyenhancetheabilityofthesystemtominimisefluctuationsindemandandsupply,increasethe

    availabilityofbackupcapacity(ECF2010),andminimisetherequiredspinningreserve.Thisisespecially

    truewhenaccommodatingincreasedlevelsofintermittentrenewablegeneration.

    CriticalvoiceslikeSebitosi&Okou(2009)howeverregardgrandinfrastructureplanstolinkuptheAfrican

    continents

    power

    grids

    as

    obsolete

    in

    the

    age

    of

    Smart

    Grids.

    Some

    aspects

    of

    this

    view

    are

    mirrored

    in

    the

    U.S.byCavanagh(2008)67andFoxPenner(2005)68,whoemphasisetheimportanceoffocusingonregional

    andsubregionalgrids.However,asanexample,highcapacitytransmissioncorridorsarestillexpectedto

    formthebackboneoftheU.S.gridin2030(DOE2003).

    Sebitosi&Okou(2009)furthersuspectthatsupergridswouldlargelyservetoextractuntappednatural

    resourcesfromthelessdevelopedtothemoreindustrializedmembers.Anexampletheycitecomprises

    highvoltagedirectcurrent(HVDC)linestointegraterenewableenergyfromNorthAfricancountriesinto

    theEuropeanpowersystem(Battaglinietal.2009;DESERTECFoundation2009).Suchplansseemtobethe

    mainfocusofcurrentdiscussionsonmoderngridinvestmentsinAfrica.Itremainstobeseentowhat

    extentthe

    underserved

    in

    Africa

    will

    profit

    from

    such

    initiatives.

    65Thecapacityofanelectricitysystemsupplyingseveralthousandhouseholdsisonlyabout10%ofthetotalcapacity

    thatwouldberequiredifeachindividualhouseholdweretobeselfsufficientandprovideitsowngenerationcapacity.

    Afurtherincreaseinthenumberofhouseholdshoweveronlyresultsinminimalsavings.66

    FortheSouthernAfricanregion,Graeber(2005)identifiedsavingsof$24billionover20years,equaling5%oftotal

    system costs,when optimizing generation and transmission investments at a regional level. 60% of this savings

    potentialcanbeattributedtoloweroperationalcosts.

    67CavanaghrecommendsthatestablishingasingleinterconnectednationalgridintheU.S.shouldbelessofagoal

    thenupgradingthecurrentthreegiantregionalgrids.

    68Fox

    Penner

    suggests

    subdividing

    regional

    grids

    into

    smaller

    grids

    building

    on

    direct

    current

    lines

    to

    avoid

    cascading

    failures.

  • 8/3/2019 Smart Grid-Exploring Options

    21/32

    21

    4.NeartermconsiderationsInlinewithfindingsfromtheETPSmartGrids(2006),implementationofSmartGridsforsubSaharanAfrica

    will,interalia,require:atoolboxofproventechnicalsolutions,harmonisedregulatoryandcommercial

    frameworks,sharedtechnicalstandardsandprotocols,andsupportiveICTsystems.Thesuccessful

    interfacingof

    new

    and

    old

    designs

    will

    be

    especially

    important

    in

    view

    of

    future

    proofing

    current

    grid

    infrastructureprojectsinacosteffectiveway,toensurecompatibilitywithfutureplanstoupgradecurrent

    systemstoSmartGrids.Mostimportantly,SmartGridsrequirethedevelopmentofhumancapacityto

    implementandmanagethecomplextechnologiesinvolvedandtheenablingenvironmentstoovercome

    barriers69,triggerrequiredinvestments,andultimatelydemonstratethebenefitsofSmartandJustGrids.

    AccordingtotheIEA(2010),technicalcapacityhastobedevelopedfromarelativelylowlevelindeveloping

    countries,lendingfurtherprioritisationtocapacitybuildinginitiatives.

    4.1APPLYINGTHECONCEPT

    Particularelements

    of

    Smart

    and

    Just

    Grids

    will

    offer

    tangible

    and

    direct

    benefits

    in

    the

    short

    term.

    Their

    applicationwillservetotestandenhancetheconceptinthesubSaharancontext,andhelpusunderstand

    howtoexpanditsscopeinthefuture.Theseelementsinclude:

    Transmissionandsubstationdesign:Especiallyforlongertransmissionlines,thescaleoftechnicallosses

    canbecomeconsiderable70.SmartGridscanhelpreducesuchlosses,forexamplebyimprovedpowerlines

    andtransformers,aswellasimplementingregularmaintenanceschemes(Niez2010).Widearea

    monitoringandcontrol71cansupporttheaccurateinformationrequiredforrealtimedecisionmakingto

    respondbettertodisturbanceswithinthesystem(SCE2010).Thiswillenhanceutilizationofprimarygrid

    infrastructureandcontributetoamoreefficientsystemoperation.Someoftherequiredadvanced

    transmissiontechnologies72maytargetthemoredevelopedexistinggridsinsubSaharanAfrica,andmay

    bedisproportionateinareaswithlimitedgridcoverage.

    Distributionsystemdesign:Distributionautomationtechnologiescanhelpimprovepowersystemsby

    extendingintelligentcontrol(SCE2010).Forexample,smartsensorsandflexibleandintelligentswitches

    andinterruptersatcriticalpointsondistributioncircuitswillminimizetheextentofoutagesandincrease

    thespeedofrestoration,whilekeepingcostincreasesataminimum.Smartdistributiontechnologies

    allowingforincreasedlevelsofdistributedgenerationwillbeespeciallyimportantforaddressingrural

    electrificationneedsandminimiseconnectioncosts.Theplanninganddesignofthesenetworkswillrequire

    69BarriersfordevelopingSmartGridsinSouthAfricacanbefoundinBipath(2010).Challenges,driversandpriorities

    indevelopingcountriesarementionedinBhargava(2010).

    70Forasenseofscale,SebitosiandOkou(2009)notethat,theestimatedamountofpowerthat is lostduringthe

    delivery of 2000MW from Cahora Bassa through the 1500 km line to South Africa is nearly equal to the entire

    consumptioncapacityofMozambique,thehostgeneratingcountry.

    71Thisrepresentsashiftfromtheapplicationoftraditional localbasedcontrol inexistingpowersystems.However,

    gridcontrolanddesigntechniquesthatincorporatesuchcoordinatedcontrolareyettobeestablished.

    72Inadditiontosynchrophasors,wideareamonitoringandcontrolcanbuildonintelligentelectronicdevicessuchas

    protectiverelays,programmablecontrollersandstandalonedigitalfaultrecorders.Examplesofapplicationsinclude

    coordinated VoltAmpere Reactive (VAR) control solutions (Yuan et al. 2010) and adaptive system islanding and

    resynchronisation(SCE

    2010).

    Further,

    deploying

    low

    sag,

    high

    temperature

    conductors

    and

    dynamic

    line

    rating

    can

    significantlyincreasetheelectriccurrentcarryingcapacity.

  • 8/3/2019 Smart Grid-Exploring Options

    22/32

    22

    fullhorizonplanning,i.e.a20yearplusperiod.Thedevelopmentofthesegridswillbeatypicalbutexisting

    workondistributionplanningmayprovideacanvasfromwhichtowork(FletcherandStrunz2007).

    Nontechnicallossesindevelopingcountriescanoftenbeattributedtouncollecteddebt,tamperedmeters

    andinconsistenciesinbillingduetocorruptmeterreadersorillegalconnections(Niez2010;Zheng2007).

    Powertheftoftencontributessignificantlytooverallsystemlossesindevelopingcountries73,reducingthe

    economicperformanceofutilities.Highvoltagedistributionlinescanhelppreventillegalconnectionsand

    improvepowerqualityandreliability(Niez2010).Smartmeteringinfrastructurewithanindependent

    transformerloadingbasedvalidationprocesscanhelpreducetheftfurther.Additionally,meterbased

    tariffsincentiviseanefficientuseofelectricity,whichcanresultinconsiderableloadreduction74.

    Smartmini andmicrogrids:Mini,andespeciallymicro,gridswithhighsharesofrenewableenergyare

    generallycomplextoimplement,primarilybecauseoffluctuatinggenerationandalowloadfactor75.The

    taskofmaintainingadequatepowerqualitybecomesachallenge,forexampleduetospikesassociated

    withthe

    starting

    current

    of

    motor

    loads

    (Makarand,

    Mukul,

    and

    Banerjee

    2010)

    or

    the

    need

    to

    provide

    someformofbackuppower.Smartcomponentscanhelpcushionsucheffectsandbetterbalancethe

    overallsystem,throughintegratingnewdemandsidemanagementoptions.Costsofsuchsystemsmaybe

    furthercutthroughtheimplementationof(DC)microgrids,especiallywhencombinedwithphotovoltaic

    generation.WhilelossescanbereducedthroughsavinglayersofDC/ACpowerconversion,themore

    expensiveprotectivedevicesrequiredforfaultmanagementandcontrol,suchascoordinatedpower

    converters,addcomplexityandoutweighsomeofthepotentialsavings.

    Demandsidemanagement:Demandsidemanagementoptionsforlarge76consumerloads,likeload

    controlswitchesatindustrialorinstitutionalfacilities,cancontributetooptimisingthequalityofenergy

    servicesand

    reducing

    load

    shedding77.

    This

    usually

    affects

    the

    poorest

    electricity

    consumers

    the

    most.

    Radiocontrolledinterruptibleinstitutionalwaterheatersorwaterpumpingsystemsconstitutejusttwo

    examplesforsuchloadcontrol.Atthehouseholdlevel,smartappliancescouldalsocontribute.For

    example,smartrefrigeratorsthatholdenoughthermalstoragetowithstandinterruptionsoravoidpower

    useduringpeakloadscouldbedeployed.SmartGridswouldfurtherallowtheprioritisationofconsumer

    loadsaccordingtopublicimportance,guaranteeingahighersecurityofsupplyforbuildingssuchas

    hospitalsratherthanforenterprisesorhouseholds78.AsshowninJazayerietal.(2005),dueconsideration

    73 Inaddition topureelectricity theft,cable theftmayconstituteasignificantproblem. Invariousmunicipalities in

    SouthAfrica,

    all

    day

    street

    lighting

    is

    used

    as

    an

    early

    warning

    system,

    despite

    generation

    constraints

    (Niez

    2010).

    74InaminigridinNicaragua,theabandonmentofaflatratetariffaftertheinstallationofmetershelpedreducethe

    overallelectricity loadby28%byencouragingamoreconscioususeofelectricity,enablingtheminigridtooperate

    forlonger(CasillasandKammen).

    75Energyconservationsupplycurvesformeasuresregardinggeneration,meteringandenergyefficiencymeasuresare

    providedinCasillasandKammen(inpress)foraminigridinNicaragua.

    76Largecomparedwiththetotalcapacityofthegrid.

    77 In the Indiancontext,demandsidemanagementhasalsobeenproposed toensureahigherqualityofelectricity

    supplyforcustomerswhoregularlypaytheirbills,andlessgoodqualityforthosewhodonot(Zheng2007).

    78

    This

    represents

    a

    shift

    from

    traditional

    preventive

    control

    philosophy

    to

    corrective,

    just

    in

    time,

    control

    approach.

    Benefitsincludeenhancedutilizationofgridassetsandimprovedefficiency.Supportivenewtechniquesandtoolsfor

    systemoperationanddesignneed tobedevelopedandapplied.Forexample,at industrialand institutional levels,

  • 8/3/2019 Smart Grid-Exploring Options

    23/32

    23

    ofpriceandsystemsecurityisessential.Aspartofsuchloadmanagement,aJustGridcouldensurereliable

    andlowcostaccessforthepoorduringoffpeakhours,foractivitiessuchascooking,whilecurtailedaccess

    wouldbeprovidedduringtimesofhigherdemand79.Thiscouldalsoencouragepeopletoadoptenergy

    efficientpracticesforpeaktimes,eitherbecauseofhighertariffsordependencyonbatteries80.

    Localchargingstations:Whileruralelectrificationisapriorityinmanycountries,itcannotbeentirely

    equatedwithelectricityaccessforthepoor,asmillionsofpeoplelivenearthegridbutcannotafforda

    connection(Meier2001;WB1995).Forthesepeople,chargingstationsensureaminimumlevelofaccess

    toelectricityservices,forexample,forcharginglanternsorbatteriestopowertheirradioorTV.Elaborating

    asuccessfulbusinessmodel81forbatterychargingservicesatthesestationsmayfurthercontributeto

    increasedpowerqualityandreliabilityinminigrids,bycompensatingpowerflowandvoltagefluctuations.

    Chargingstationscouldfurtherminimiseoreliminatetherunningofbackupdieselgeneratorsandspawn

    localbusinessesandjobs82.Anotherpossibilitywouldbetheintroductionofelectricbicyclesfortaxi

    services;thesecouldbechargedatstationsduringoffpeakhours,combiningincomegenerationwith

    demandside

    management

    83

    .

    Billingschemes:AsmanySmartGridcomponentsbuildonICT,theymightprofitfrompiggybackingon

    futuretelecomserviceexpansions,suchastheprovisionofelectricityconsumptioninformationviamobile

    phones.Chargingprepaidconsumptioncredits84viamobilephonesusingscratchcardsorcomparable

    devicesmayhelpaddressthespecificneedsofthepoorandreduceadministrativecostsrelatedtometer

    readingsandbilling85.Abasictimeofusepricingschemeathouseholdlevelmayeasilybeintroducedin

    subSaharanAfricatohelpbalancedemand86.Conceivably,tariffsmayevenbedelineatedbyserviceto

    allowfortargetedsubsidies.Forenergyintensiveindustries,realtimepricingmaybeconsidered.In

    addition,onbillfinancing87ofenergyefficientappliances88maybeanimportanttooltohelpconsumers

    overcomehigh

    upfront

    costs.

    underfrequency protective relays for heating, cooling and motor loads can provide significant support for grid

    operation.

    79Suchdemandwouldcomefromloadsthatrequirehigherreliability,suchasindustrialandcommercialusage.

    80Thishasbeenobservedwithwatersupplyschemes,wherecommunitiesadjusttheirbehaviourtoaccessacritical

    buteconomicalresource.Peoplecarryoutwaterintensivefunctionssuchascleaningclothesduringhoursofsupply,

    andreserveactivitiesthatneedlesswater,suchascooking,fortimeswithnosupply.

    81Thismodelwouldneedtocoverthelogisticsofbatteryownership,managementandcharging.

    82

    For

    example,

    charging

    services,

    mills

    for

    grinding

    grain,

    IT

    services

    or

    community

    meeting

    places.

    83Due tostrongpolicysupport,Chinahas four timesmoreelectricbicycles thancarson its roads,with21million

    bicyclesboughtin2008alone,atpricestypicallybelowUSD300(Ramzy2009).Bycontrollingtheirchargingtimethey

    couldbecomeoneelementofaSmartGrid.

    84Botswanaandother countrieswerealreadyusingprepaidmeters in the1980s (McDonald2009).Refer toNiez

    (2010) for information on the introduction of prepaid electricitymeters under SouthAfricas IntegratedNational

    ElectrificationProgramme.

    85Forcustomerswithatelecomcontract,theelectricitybillmayaswellbechargedtothemonthlytelephonebill.

    86 As already outlined as a demand sidemanagement option, thismay include special schemeswhere lowcost

    electricityisprovidedatoffpeakhourstoensureaffordableaccessforthepoor,butwithlowerreliabilityduringthe

    rest

    of

    the

    day.

    Loads

    requiring

    higher

    reliability

    would

    need

    to

    pay

    a

    higher

    tariff

    for

    this

    privilege.

    87Referto(Kammen)forfurtherinformationononbillfinancing.

  • 8/3/2019 Smart Grid-Exploring Options

    24/32

    24

    Informationsystemsarchitecture:Smartdatamanagementtoolswillhelputilitiesdistilrelevant

    informationinamanageableandunderstandableformat.Diagnosticsoftwarewillfurtherhelpmonitorthe

    healthofgridassets,predictproblemsinpowerdistribution,andinitiatecorrectiveaction.Therequired

    architecturemustensureinteroperabilityandenableasmoothtransitionfromexistingtofuturepower

    systems(SCE2010).Specialattentiontosecurityissueswillberequiredincountrieswithlimitedrobust

    governanceregimes.Userfriendlyinterfaces,suchascellphonebillingandtransparentmetering,willbe

    equallyimportanttoengagecustomerssuccessfully.

    4.2ENSURINGCOORDINATEDACTION

    RegardlessofwhichspecificaspectsofSmartandJustGridsforsubSaharanAfricaarepursued,

    internationalcooperationwillbeessential89.Suchcooperationwouldfurtherbenefitfromtheclose

    involvementoforganisationssuchasexistingSmartGridalliancesinindustrialisedcountries(e.g.ETPSmart

    Grids,GridWiseAlliance)andnascentbodiesliketheInternationalSmartGridActionNetworkortheGlobal

    SmartGrid

    Federation,

    both

    announced

    at

    the

    First

    Clean

    Energy

    Ministerial

    (2010).

    SouthSouth

    CooperationshouldformanintegralelementoftherequiredinternationalactionasmanysubSaharan

    Africancountriesfacesimilarchallengestothedevelopingandemergingeconomiesofcountriessuchas

    India90.

    Morespecifically,SmartandJustGridsforsubSaharanAfricacanprofitfrominternationalcooperationin

    thefollowingareas:

    Analysisofpotentialandroadmaps:IdentifysubSaharanAfricaspotentialtoprofitfromSmartandJust

    Grids,

    including

    an

    assessment

    of

    associated

    costs

    and

    benefits.

    Develop

    a

    road

    map

    up

    to

    2030

    including

    identificationoftechnologysolutionsthatcanberapidlyandcosteffectivelydeployedintheshortterm.

    ThisroadmapcouldbealignedwithsimilareffortsbytheIEA.

    Countryassessments:Provideinternationalsupportforpreliminaryassessmentofthepowersectorsand

    theirneeds,focusingonpolicy,regulatory,legal,institutionalandcommercialframeworks,energyplanning

    tools,transmissionanddistributionsystemdesign,operationalmodalities,technologiesandtechnical

    standards.Basedonthisassessment,developcountryspecificbusinessanddevelopmentcasesforSmart

    andJustGrids,withclearlydefinedtechnologytransferroutes.Prioritiseinvestmentsinspecificsmart

    elementswithclearlydefinedmechanismsforreturnoninvestment91.

    Powersystemdesign:Developanddeployinternationallysupportedopensourceorwidelyavailable

    modellingtoolsandcapacitiesforpowersystemdesignandoperation.Adjustpowersystemdesigntothe

    88 Inaminigrid inNicaragua, the introductionofcompact fluorescent lightshelped tocutdemandby17%,which

    meanttheminigridcouldoperateforlonger(CasillasandKammen).

    89 According to Bipath (2010), international cooperation for SmartGrids is expected to focus on standardisation,

    cybersecurityandinteroperability.

    90Balijepalli,Khaparde,andGupta(2009)reportthedetailedrequirementsandneedsforSmartGridsinIndia.

    91While

    we

    emphasise

    the

    importance

    of

    business

    case

    development,

    it

    needs

    to

    be

    recognised

    that

    many

    historical

    infrastructureprojectswerebasedonhomegrownnationbuildinginitiatives.

  • 8/3/2019 Smart Grid-Exploring Options

    25/32

    25

    specificcontext:simpleplanningtoolscanaddressurgentelectrificationneedsin,forexample,post

    conflictareas;moresophisticatedtoolsarerequiredtoupgradeextensiveexistingpowersystemstoSmart

    andJustGrids.Itiscriticallyimportantthatthearchitecturedevelopedenablesfuturesystemupgrades

    withoutaddingsignificantcostsduringearlyimplementationstages.

    Pilotprojects:Implementjointpilotprojectsbasedonidentifiedfasttracksolutions.Asthedeploymentof

    smartelectricitysystemsredefinestherolesofstakeholders,thesepilotprojectswillhelpunderstand

    stakeholderbehaviorwithintheseredefinedrolesandtestthemarketsbeforeengaginginmassive

    rollouts.Remoteruralelectrificationschemeswithhigherpenetrationratesofrenewableenergysources

    wouldserveasaparticularlygoodstartingpointfortestingtheconceptofSmartandJust(mini)Grids.

    Enablingenvironments:Helppromotesupportivepolicy,regulatory,institutional,legalandcommercial

    frameworks,includingtherequiredcodesandstandards.SubSaharanAfricaespeciallycanprofitfrom

    ongoingeffortsinindustrialisedcountriestoadjustrelatednetworkstandards.Additionally,legislation

    precedentscan

    be

    employed

    to

    help

    reduce

    electricity

    theft

    92

    .Further,

    international

    design

    competitions

    supportedbyfinancialrewardcouldsupportbusinesscasedevelopmentbyhelpingtohighlightchallenges

    anddevelopinnovativesolutions.

    Capacitybuildinginitiatives:Basedonskillsassessments,trainkeystakeholderssuchasMinistriesin

    chargeofenergyissues,powerpoolrepresentatives,energyregulatorsandnationalsystemoperatorson

    theSmartandJustGridconcept.DevelopingtheassetmanagementcapacitiesofAfricanutilitiesand

    energyentrepreneurstomaintaintechnicalsystemsandequipmentwillbevitalforensuringthe

    sustainabledeploymentofSmartandJustGrids.Concertedinternationaleffortstodevelopcentresof

    competencyinpowerengineeringforselectedsubSaharanAfricancountrieswillhelpbuildupthe

    requiredregional

    and

    national

    expertise.

    Forasuccessfultransitiontowardssmartandjustenergysystems,suchinternationalcooperationwillneed

    tobecomplementedbycloseengagementwithregionalandnationalstakeholders,frompolicyand

    institutionallevelstogenerators,consumers,powerequipmentmanufacturersandICTproviders.While

    SmartandJustGridsrequirestrongpubliccommitment,includingfunding,theprivatesectorasthemain

    engineofeconomicgrowthhasanessentialroleinsupportingrelatedinitiativesinsubSaharanAfrica.

    Creatingreliableinvestmentenvironmentswillhelptoengageallkeyplayerseffectively.

    5.ConclusionSubSaharanAfricaischaracterisedbysignificantelectricityrelatedchallengesintermsofresources,

    infrastructure,costandsustainability.Anumberofregionalandnationalenergystrategies,policiesand

    targetsaimtoaddressthesechallengesandaccelerateelectrificationrates,althoughtheyhaveyetto

    translateintosignificantimplementationmeasures.Findingwaystoenhancefuturepowersystems

    representsakeytaskforgovernments,regionalpowerpoolsandutilities.Someapproachesmayenable

    92Chinasmajor reformof the ruralpowermanagement system in1988, combinedwith ruralgridenhancements,

    helpedreducelossesinlowvoltagegridsby3045%andconsequentlyloweredelectricityprices.RefertoNiez(2010)

    forfurther

    information.

    For

    another

    example,

    refer

    to

    Indias

    2003

    Electricity

    Act,

    which

    heavily

    penalizes

    electricity

    theft(Niez2010).

  • 8/3/2019 Smart Grid-Exploring Options

    26/32

    26

    subSaharanAfricatoleapfrogtraditionalpowersystemspracticesandmovetoSmartGridelementsinthe

    shortterm.Otherswillrequirepreconditionstobeestablishedinordertoavoidtechnologylockinand

    ensurecompatibilitywithnewconceptsandtechnologiesinthefuture.

    WehavedescribedanaugmentationoftheconceptofSmartGridandpresentedabroaddefinitionof

    SmartandJustGridsforsubSaharanAfrica,embracingtheneedtoguaranteeinclusiveaccesstomodern

    energyserviceswithoutmarginalizingthepoor.Thisrefinedconceptwillneedtobecarefullyintegrated

    intonationalandregionalenergyplanning,regulationandmarkets,inordertobalancethecostsand

    benefitsofregionalgridintegrationwiththoseofnationalandlocalSmartGrids.

    WehavefurtheridentifiedsomeelementsofSmartandJustGridsthatoffertangibleanddirectbenefitsin

    theshortterm.ExploringtheconceptofSmartandJustGridsbyimplementingtheseelementsand

    suggestedareasforinternationalcooperationwillbeessentialforrealisingsignificantfuturebenefits.

    Thesewillgowellbeyondimprovedvoltageandfrequencycontrol.

    Fromaneconomicperspective,reliableenergysupplythroughSmartandJustGridswillhelpfoster

    economicgrowth.Fromanenvironmentalperspective,SmartGridswillsupportandaccelerateacost

    effectivetransitiontolowcarboneconomiesbyloweringgreenhousegasemissions.Finallyandmost

    importantly,fromasocietalperspective,accesstoelectricityisaprerequisitetowardsdevelopmentasitis

    linkedtomanyaspectsofthedevelopmentagenda,includingaccesstobetterhealthservices,education

    andsecurity.

    ThemassiveelectricityinfrastructurerequirementsinsubSaharanAfricaofferauniqueopportunityto

    learnfromgriddevelopmentsinindustrialisedcountriesandmoveforwardwithoutnecessarilyrepeating

    allprevious

    development

    stages.

    We

    should

    take

    advantage

    of

    this

    significant

    opportunity

    to

    ensure

    that

    subSaharanAfricasfuturegridisdesignedinawaythatisbothsmartandjust.

    Acknowledgements

    Wewouldliketoacknowledgethesupportof:LawrenceMusaba(SAPP),SperoMensah(AREVA),Giuseppe

    DeSimone,ClaudiaLinkeHeep,AloisMhlanga,PradeepMonga,PatrickNussbaumerandMarina

    Ploutakhina(UNIDO),FatihBirol(IEA),GuidoBartels(IBM),IainMacGillandHughOuthred(UNSW),Carol

    Brooks(UM),JohnShine,FergalMcnamaraandPadraigMcManus(ESB),EamonRyanandSaraWhite

    (DCENR),MarkOMalley(UCD),S.A.Khapardeh(IIT,Bombay),MichaelLiebreich(BNEF),andDanKammen

    (WorldBank).

    *************

  • 8/3/2019 Smart Grid-Exploring Options

    27/32

    27

    References

    ADICA.2001.IntroductiontotheWASPIVModel.

    http://www.iaea.org/Publications/Magazines/Bulletin/Bull212_3/212_304985564.pdf.

    AfDB.2008.ProposalsforaCleanEnergyInvestmentFrameworkforAfrica:RoleoftheAfricanDevelopmentBank

    Group.African

    Development

    Bank

    Group.

    AfDB,AU,andUNECA.2010.AfricanStatisticalYearbook.AfricanDevelopmentBankGroup,AfricanUnion,United

    NationsEconomicCommissionforAfrica.

    AGECC.2010.EnergyforaSustainableFuture SummaryReportandRecommendations.NewYork:TheSecretary

    General'sAdvisoryGrouponEnergyandClimateChange.

    Alfstad,T.2005.DevelopmentofaleastcostenergysupplymodelfortheSADCregion.

    Alstom.2010.PressRelease:AlstomGridselectedtoprovideHVDCconverterassetsforTresAmigasSuperStation.

    http://www.tresamigasllc.com/docs/PR_AlstomGrid_Tres%20Amigas.pdf.

    Andonova,V.2006.Mobilephones,theInternetandtheinstitutionalenvironment.TelecommunicationsPolicy30,no.

    1:2945.

    Anthony,S.2004.TheRealSourceofDisruption.Innosight Innovators'InsightsIssue.

    http://www.innosight.com/innovation_resources/insight.html?id=484.

    Asmus,Peter.2006.InchingOurWaytoaSmarterPowerGrid.TheElectricityJournal19,no.4:5255.

    doi:10.1016/j.tej.2006.04.002.

    AUC,andEC.2008.AUCECjointstatementonAfricaEUEnergypartnershipimplementation.AfricanUnion

    CommissionandEuropeanCommission.

    .2007.FirstActionPlan(20082010)fortheImplementationoftheAfricaEUStrategicPartnership.African

    UnionCommissionandEuropeanCommission.

    Baker&McKenzie,andAustrade.2010.CleanandRenewableEnergyMarketOpportunitiesinKoreaandAustralia.

    Balijepalli,V.S.K.M.,S.A.Khaparde,andR.P.Gupta.2009.TowardsIndianSmartGrids.InTENCON20092009IEEE

    Region10Conference,17.

    Balijepalli,V.

    S.

    K.

    M.,

    S.

    A.

    Khaparde,

    R.

    P.

    Gupta,

    and

    Y.

    Pradeep.

    2010.

    SmartGrid

    initiatives

    and

    power

    market

    in

    India.InPowerandEnergySocietyGeneralMeeting,2010IEEE,17.

    Battaglini,A.,J.Lilliestam,A.Haas,andA.Patt.2009.DevelopmentofSuperSmartGridsforamoreefficient

    utilisation ofelectricityfromrenewablesources.JournalofCleanerProduction17,no.10:911918.

    Bazilian,M.,P.Nussbaumer,M.Levi,M.Howells,andK.Yumkella.2010.UnderstandingtheScaleofInvestmentfor

    UniversalEnergyAccess.GeopoliticsofEnergy32,no.10:1940.

    Bazilian,M.,A.Sagar,R.Detchon,andK.Yumkella.2010.Moreheatandlight.EnergyPolicy.

    Bazilian,M.,F.Roques.2008.AnalyticalMethodsforEnergyDiversityandSecurity.ElsevierScience.London.

    Bhargava,A.2010.SmartGridDevelopment DevelopingCountries'PerspectivepresentedattheKoreanSmartGrid

    Week,Korea.http://www.iea.org/work/2010/smart_grids_korea/kim.pdf.

    Bipath,M.2010.TheRelevanceofSmartGridstoSouthAfricapresentedattheKoreanSmartGridWeek,Korea.

    http://www.iea.org/work/2010/smart_grids_korea/kim.pdf.

    BKSAcres.2005.EastAfricanPowerMasterPlanStudy FinalPhaseIIReport.EastAfricanCommunity.

    Bonbright,J.,A.Danielsen,andD.Kamerschen.1988.PrinciplesofPublicUtilityRates.SecondEdition.Arlington,

    Virginia:PublicUtilitiesReports,Inc.

    Bowen,B.H.,F.T.Sparrow,andZ.Yu.1999.ModelingelectricitytradepolicyforthetwelvenationsoftheSouthern

    AfricanPowerPool(SAPP).UtilitiesPolicy8,no.3:183197.

    Brooks,C.,L.Milford,andA.Schumacher.2004.GlobalCleanEnergyMarkets TheStrategicRoleofPublicInvestment

    andInnovation.Montpelier,VT,USA:CleanEnergyGroup.

    Brown,R.E,Q.Technol,andN.C.Raleigh.2008.ImpactofSmartGridondistributionsystemdesign.In2008IEEE

    PowerandEnergySocietyGeneralMeetingConversionandDeliveryofElectricalEnergyinthe21stCentury,

    14.

    Casillas,C.E.,andD.M.Kammen.Thedeliveryoflowcost,lowcarbonruralenergyservices.EnergyPolicy(inpress).

  • 8/3/2019 Smart Grid-Exploring Options

    28/32

    28

    Cavanagh,Ralph.2008.ElectricityGrids,EnergyEfficiencyandRenewableEnergy:AnIntegratedAgenda.The

    ElectricityJournal22,no.1:98101.doi:10.1016/j.tej.2008.12.002.

    Chassin,D.P.2010.WhatCantheSmartGridDoforYou?AndWhatCanYouDofortheSmartGrid?TheElectricity

    Journal.

    Christensen,C.M,andM.ERaynor.2003.Theinnovator'ssolution:Creatingandsustainingsuccessfulgrowth.

    HarvardBusiness

    Press.

    CleanEnergyMinisterial.2010.FactSheet:InternationalSmartGridActionNetwork.

    COMESA.2009a.COMESAIntegratedEnergyPlanningStrategy.CommonMarketforEasternandSouthernAfrica.

    .2009b.COMESAEnergyProgramme.CommonMarketforEasternandSouthernAfrica.

    ConEdison.2010.ABriefHistoryofConEdison electricity.http://www.coned.com/history/electricity.asp.

    Covarrubias,A.J.1979.ExpansionPlanningforElectricPowerSystems.IAEABulletin21,no.2:5564.

    DanishTechnologicalInstitute.2009.EcoGrid.dkPhaseISummaryReport StepstowardsaDanishPowerSystemwith

    50%WindEnergy.

    Davison,R.,D.Vogel,R.Harris,andN.Jones.2000.Technologyleapfroggingindevelopingcountriesaninevitable

    luxury.ElectronicJournalofInformationSystemsinDevelopingCountries1,no.5:110.

    Deichmann,U.,C.Meisner,S.Murray,andD.Wheeler.2010.TheEconomicsofRenewableEnergyExpansioninRural

    SubSaharanAfrica.WorldBankPolicyResearchWorkingPaper,no.5193.

    DESERTECFoundation.2009.Cleanpowerfromdeserts:theDESERTECconceptforenergy,waterandclimatesecurity.

    WhiteBook 4thEdition.Bonn.

    Divan,D.,andH.Johal.2007.DistributedFACTSANewConceptforRealizingGridPowerFlowControl.Power

    Electronics,IEEETransactionson22,no.6:22532260.

    DOE.2008.TheSmartGrid:AnIntroduction.U.S.DepartmentofEnergy.

    DOE,US.2003.Grid2030:ANationalVisionForElectricity'sSecond100Years.DepartmentofEnergy.

    Doran,K.,F.Barnes,P.Pasrich,andeds.2010.SmartGridDeploymentinColorado:Challeng