36
Smart Control Algorithm for 2-DOF Helicopter Glenn Janiak Kenneth Vonckx Advisor: Dr. Suruz Miah Department of Electrical and Computer Engineering Bradley University 1501 W. Bradley Avenue Peoria, IL, 61625, USA Thursday, November 29, 2018 G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 1 / 36

Smart Control Algorithm for 2-DOF Helicoptercegt201.bradley.edu/projects/proj2019/2dofheli/2DOFProposal... · Outline 1 Introduction 2 Background Study Control Techniques Modeling

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • Smart Control Algorithm for 2-DOF Helicopter

    Glenn Janiak Kenneth Vonckx Advisor: Dr. Suruz Miah

    Department of Electrical and Computer EngineeringBradley University

    1501 W. Bradley AvenuePeoria, IL, 61625, USA

    Thursday, November 29, 2018

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 1 / 36

    http://www.bradley.edu

  • Outline

    1 Introduction

    2 Background StudyControl TechniquesModeling a 2-DOF HelicopterPrior Work

    3 Subsystem Level Functional RequirementsBlock Diagram

    4 Preliminary WorkLQR SimulationLQR via USBLQR via WirelessDemonstration

    5 Parts List

    6 Schedule for Completion

    7 Future Directions

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 2 / 36

    http://www.bradley.edu

  • Introduction

    Helicopter are important for short-distance travel

    air-sea rescuefire fightingtraffic controltourism

    Purpose of control system

    resistance to turbulenceenable use of mobile device

    Which is better?

    Fundamental (LQR)Noise Filtering (LQG)Machine Learning (ADP)

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 3 / 36

    http://www.bradley.edu

  • Introduction

    Helicopter 1

    Helicopter 2

    Helicopter N

    Proposed

    smart control

    algorithm of

    helicopters

    Mobile

    device 1

    Mobile

    device 2

    Mobile

    device N

    Wireless

    network

    Figure 1: General High-Level System Architecture

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 4 / 36

    http://www.bradley.edu

  • Introduction

    This project will:

    use a pair of 2-DOF (2-degrees-of-freedom) testing platformsimplement control algorithms on embedded systemuse mobile device for user controlencourage researchserve as an educational tool

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 5 / 36

    http://www.bradley.edu

  • Outline

    1 Introduction

    2 Background StudyControl TechniquesModeling a 2-DOF HelicopterPrior Work

    3 Subsystem Level Functional RequirementsBlock Diagram

    4 Preliminary WorkLQR SimulationLQR via USBLQR via WirelessDemonstration

    5 Parts List

    6 Schedule for Completion

    7 Future Directions

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 6 / 36

    http://www.bradley.edu

  • Background StudyControl Techniques

    Various control techniques have been proposed for 2-DOF helicopters suchas:

    Sliding mode control [1]

    Fuzzy Logic control [2] [3] [4]

    Data-driven Adaptive Optimal Output-feedback control [5]

    Decentralized discrete-time neural control [6]

    These control techniques employ advanced mathematics that are difficultto implement on embedded systems.

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 7 / 36

    http://www.bradley.edu

  • Outline

    1 Introduction

    2 Background StudyControl TechniquesModeling a 2-DOF HelicopterPrior Work

    3 Subsystem Level Functional RequirementsBlock Diagram

    4 Preliminary WorkLQR SimulationLQR via USBLQR via WirelessDemonstration

    5 Parts List

    6 Schedule for Completion

    7 Future Directions

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 8 / 36

    http://www.bradley.edu

  • Background StudyModeling a 2-DOF Helicopter

    Figure 2: Model of a 2-DOF Helicopter

    Figure 3: Quanser Aero

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 9 / 36

    http://www.bradley.edu

  • Background StudyModeling a 2-DOF Helicopter

    Characterized by fixed baseCan change 2 of 3 possible orientations...

    Pitch (θ)Yaw (ψ)Not Roll

    and cannot change position

    x directiony directionz direction

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 10 / 36

    http://www.bradley.edu

  • Background StudyModeling a 2-DOF Helicopter

    Motors are attached to the propellers to create thrust due to airresistance

    Main - changes pitch angleTail - changes yaw angle

    Torque due to rotation also creates a force on opposite axes

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 11 / 36

    http://www.bradley.edu

  • Background StudyModeling a 2-DOF Helicopter

    ẋ(t) = Ax(t) + Bu(t), where (1)

    A =

    0 0 1 00 0 0 1

    −KspJp 0 −DpJp

    0

    0 0 0 −DyJy

    and B =

    0 00 0KppJp

    KpyJp

    KypJy

    KyyJy

    ,

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 12 / 36

    http://www.bradley.edu

  • Background StudyModeling a 2-DOF Helicopter

    Ksp - being the stiffness of the axes

    Kpp - pitch motor thrust constant

    Kpy - thrust constant acting on the pitch angle from the yaw motor

    Kyp - thrust constant acting on the yaw angle from the pitch motor

    Kyy - yaw motor thrust constant

    Jp - moment of inertia about pitch axis

    Jy - moment of inertia about yaw axis

    Dp - viscous damping of the pitch axis

    Dy - viscous damping of the yaw axis

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 13 / 36

    http://www.bradley.edu

  • Outline

    1 Introduction

    2 Background StudyControl TechniquesModeling a 2-DOF HelicopterPrior Work

    3 Subsystem Level Functional RequirementsBlock Diagram

    4 Preliminary WorkLQR SimulationLQR via USBLQR via WirelessDemonstration

    5 Parts List

    6 Schedule for Completion

    7 Future Directions

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 14 / 36

    http://www.bradley.edu

  • Background StudyPrior Work

    extensive modeling & simulations

    implementation of two motion control algorithms (LQR & ADP)

    one helicopter

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 15 / 36

    http://www.bradley.edu

  • Outline

    1 Introduction

    2 Background StudyControl TechniquesModeling a 2-DOF HelicopterPrior Work

    3 Subsystem Level Functional RequirementsBlock Diagram

    4 Preliminary WorkLQR SimulationLQR via USBLQR via WirelessDemonstration

    5 Parts List

    6 Schedule for Completion

    7 Future Directions

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 16 / 36

    http://www.bradley.edu

  • Subsystem Level Functional RequirementsBlock Diagram

    Application

    Transport

    Link

    Internet

    Application

    Transport

    Link

    Internet

    Mobile Device Raspberry Pi

    Data

    Data

    Data

    Data

    UDP

    UDP

    UDP

    IP

    IPMAC

    Controller

    (packet sent through air)

    Data

    DataUDP

    DataUDPIP

    DataUDPIPMAC

    Figure 4: Communication Model

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 17 / 36

    http://www.bradley.edu

  • Subsystem Level Functional RequirementsBlock Diagram

    Select

    algorithm

    Actual pitch

    Desired pitch

    Desired yaw

    Actual yaw

    Pitch motor

    Yaw motor

    Pitch encoder

    Yaw encoder

    LQG

    LQR

    ADP

    Figure 5: Low Level Smart Control Diagram

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 18 / 36

    http://www.bradley.edu

  • Outline

    1 Introduction

    2 Background StudyControl TechniquesModeling a 2-DOF HelicopterPrior Work

    3 Subsystem Level Functional RequirementsBlock Diagram

    4 Preliminary WorkLQR SimulationLQR via USBLQR via WirelessDemonstration

    5 Parts List

    6 Schedule for Completion

    7 Future Directions

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 19 / 36

    http://www.bradley.edu

  • Preliminary WorkLQR Simulation

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

    Time [s]

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    Po

    sitio

    n [

    de

    g]

    Position

    θ

    ψ

    θd

    ψd

    (a)

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

    Time [s]

    -20

    -15

    -10

    -5

    0

    5

    10

    15

    20

    Inp

    ut

    Vo

    lta

    ge

    [V

    ]

    Voltages

    Vp(t) [V]

    Vy(t) [V]

    (b)

    Figure 6: LQR Simulation (a) Position and (b) Voltage w/ Constant Signal

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 20 / 36

    http://www.bradley.edu

  • Preliminary WorkLQR Simulation

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

    Time [s]

    -100

    -50

    0

    50

    Err

    or

    [de

    g]

    Error

    eθ [deg]eψ [deg]eθ̇[deg/s]

    eψ̇[deg/s]

    Figure 7: LQR Simulation Error w/ Constant Signal

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 21 / 36

    http://www.bradley.edu

  • Outline

    1 Introduction

    2 Background StudyControl TechniquesModeling a 2-DOF HelicopterPrior Work

    3 Subsystem Level Functional RequirementsBlock Diagram

    4 Preliminary WorkLQR SimulationLQR via USBLQR via WirelessDemonstration

    5 Parts List

    6 Schedule for Completion

    7 Future Directions

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 22 / 36

    http://www.bradley.edu

  • Preliminary WorkLQR via USB

    0 5 10 15 20 25 30

    Time [s]

    -15

    -10

    -5

    0

    5

    10

    15

    Pitch

    [D

    eg

    ]

    Pitch Encoder

    (a)

    0 5 10 15 20 25 30

    Time [s]

    -20

    -15

    -10

    -5

    0

    5

    10

    15

    20

    Vo

    lta

    ge

    [V

    ]

    Pitch Voltage

    (b)

    Figure 8: LQR Pitch Position (a) and Voltage (b) on PC with Square Wave Input

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 23 / 36

    http://www.bradley.edu

  • Preliminary WorkLQR via USB

    0 5 10 15 20 25 30

    Time [s]

    -80

    -60

    -40

    -20

    0

    20

    40

    60

    Ya

    w [

    De

    g]

    Yaw Encoder

    (a)

    0 5 10 15 20 25 30

    Time [s]

    -20

    -15

    -10

    -5

    0

    5

    10

    15

    20

    Vo

    lta

    ge

    [V

    ]

    Yaw Voltage

    (b)

    Figure 9: LQR Yaw Position (a) and Voltage (b) on PC with Square Wave Input

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 24 / 36

    http://www.bradley.edu

  • Outline

    1 Introduction

    2 Background StudyControl TechniquesModeling a 2-DOF HelicopterPrior Work

    3 Subsystem Level Functional RequirementsBlock Diagram

    4 Preliminary WorkLQR SimulationLQR via USBLQR via WirelessDemonstration

    5 Parts List

    6 Schedule for Completion

    7 Future Directions

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 25 / 36

    http://www.bradley.edu

  • Preliminary WorkLQR via Wireless

    0 5 10 15 20 25 30

    Time [s]

    -60

    -40

    -20

    0

    20

    40

    60

    Po

    sitio

    n [

    de

    g]

    (a)

    0 5 10 15 20 25 30

    Time [s]

    -20

    -15

    -10

    -5

    0

    5

    10

    15

    20

    Vo

    lta

    ge

    [V

    ](b)

    Figure 10: Performance in following user’s command (a) tracking pitchangle, and (b) pitch motor input voltage

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 26 / 36

    http://www.bradley.edu

  • Preliminary WorkLQR via Wireless

    0 5 10 15 20 25 30

    Time [s]

    -150

    -100

    -50

    0

    50

    100

    150

    Po

    sitio

    n [

    de

    g]

    (a)

    0 5 10 15 20 25 30

    Time [s]

    -20

    -15

    -10

    -5

    0

    5

    10

    15

    20

    Vo

    lta

    ge

    [V

    ](b)

    Figure 11: Performance in following user’s command (a) tracking yawangle, and (b) yaw motor input voltage.

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 27 / 36

    http://www.bradley.edu

  • Outline

    1 Introduction

    2 Background StudyControl TechniquesModeling a 2-DOF HelicopterPrior Work

    3 Subsystem Level Functional RequirementsBlock Diagram

    4 Preliminary WorkLQR SimulationLQR via USBLQR via WirelessDemonstration

    5 Parts List

    6 Schedule for Completion

    7 Future Directions

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 28 / 36

    http://www.bradley.edu

  • Demonstration

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 29 / 36

    http://www.bradley.edu

  • Parts List

    HardwareTwo Quanser Aeros

    Q-flex2 Embedded Panel

    Two Single Board Computers (Raspberry Pi 3 Model B)Android Smart-phone or Tablet(Note that Apple devices could also be used, however modifications areneeded)

    SoftwareMATLAB & Simulink

    Raspberry Pi Support PackageAndroid Support Package

    Quanser Real-Time Control (QUARC)

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 30 / 36

    http://www.bradley.edu

  • DeliverablesSchedule for Completion

    2018

    Sep Oct Nov Dec

    66%Research100%Last Years Work

    100%LQG

    0%ADP

    66%Simulation100%LQR

    100%LQG

    0%ADP

    50%Implementation100%LQR USB

    100%LQR Raspberry Pi

    100%LQR Android

    0%LQG USB

    0%LQG Raspberry Pi

    0%LQG Android

    Figure 12: Gantt chart for Fall 2018

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 31 / 36

    http://www.bradley.edu

  • DeliverablesSchedule for Completion

    2019

    Jan Feb Mar Apr May

    0%Implementation0%ADP USB

    0%ADP Raspberry Pi

    0%ADP Android

    0%Testing

    Figure 13: Gantt Chart for Spring 2019

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 32 / 36

    http://www.bradley.edu

  • Future Directions

    Two more motion control algorithms (LQG & ADP)

    Test plan

    Implmentation on 6-DOF Helicopter

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 33 / 36

    http://www.bradley.edu

  • Summary

    Embedded implementation of control algorithms

    Mobile interface

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 34 / 36

    http://www.bradley.edu

  • For Further Reading I

    [1] S. I. K. Q. Ahmed, A.I.Bhatti, “2-sliding mode based robust controlfor 2-dof helicopter,” 11th International Workshop on VariableStructure Systems, June 2010.

    [2] W. Chang, J. Moon, and H. Lee, “Fuzzy model-based output-trackingcontrol for 2 degree-of-freedom helicopter,” Journal of ElectricalEngineering Technology, vol. 12.00, no. 1, pp. 1921–1928, 2017,quanser product(s): 2 DOF Helicopter. [Online]. Available:http://www.jeet.or.kr/LTKPSWeb/uploadfiles/be/201705/290520170957344003750.pdf

    [3] E. Kayacan and M. Khanesar, “Recurrent interval type-2 fuzzy controlof 2-dof helicopter with finite time training algorithm,” inIFAC-PapersOnLine, July 2016, pp. 293–299.

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 35 / 36

    http://www.bradley.eduhttp://www.jeet.or.kr/LTKPSWeb/uploadfiles/be/201705/290520170957344003750.pdfhttp://www.jeet.or.kr/LTKPSWeb/uploadfiles/be/201705/290520170957344003750.pdf

  • For Further Reading II

    [4] H. B.-P. P. Mndez-Monroy, “Fuzzy control with estimated variablesampling period for non-linear networked control systems: 2-dofhelicopter as case study,” Transactions of the Institute ofMeasurement, vol. no. 7, October 2012.

    [5] W. Gao and Z.-P. Jiang, “Data-driven adaptive optimaloutput-feedback control of a 2-dof helicopter,” in American ControlConference, Boston Marriott Copley Place, Boston, MA, USA, July2016.

    [6] M. Hernandez-Gonzalez, A. Alanis, and E. Hernandez-Vargas,“Decentralized discrete-time neural control for a quanser 2-dofhelicopter,” Applied Soft Computing, 2012.

    G. Janiak, K. Vonckx (Bradley University) 2-DOF Helicopter (Proposal) November 29, 2018 36 / 36

    http://www.bradley.edu

    IntroductionBackground StudyControl TechniquesModeling a 2-DOF HelicopterPrior Work

    Subsystem Level Functional RequirementsBlock Diagram

    Preliminary WorkLQR SimulationLQR via USBLQR via WirelessDemonstration

    Parts ListSchedule for CompletionFuture Directions

    fd@rm@0: