55
Spectral Analysis of Linear Operators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matem´ atica Instituto de Ciˆ encias Matem´ aticas and de Computa¸ ao Universidade de S˜ ao Paulo April 01, 2019 Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

  • Upload
    others

  • View
    19

  • Download
    0

Embed Size (px)

Citation preview

Page 1: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

SMA 5878 Functional Analysis II

Alexandre Nolasco de Carvalho

Departamento de MatematicaInstituto de Ciencias Matematicas and de Computacao

Universidade de Sao Paulo

April 01, 2019

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 2: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

Dissipative operators and numerical range

DefinitionLet X be a Banach space over K. The duality map J : X → 2X

is

a multivalued function defined by

J(x) = {x∗ ∈ X ∗ : Re〈x , x∗〉 = ‖x‖2, ‖x∗‖ = ‖x‖}.

From the Hanh-Banach Theorem we have that J(x) 6= ∅.

A linear operator A : D(A) ⊂ X → X is dissipative if for each

x ∈ D(A) there exists x∗ ∈ J(x) such that Re 〈Ax , x∗〉 ≤ 0.

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 3: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

ExerciseShow that, if X ∗ is uniformly convex and x ∈ X, then J(x) is aunitary subset of X ∗.

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 4: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

LemmaThe linear operator A is dissipative if and only if

‖(λ− A)x‖ ≥ λ‖x‖ (1)

for all x ∈ D(A) and λ > 0.

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 5: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

Proof: If A is dissipative, λ > 0, x ∈ D(A), x∗ ∈ J(x) andRe〈Ax , x∗〉 ≤ 0,

‖λx − Ax‖‖x‖ ≥ |〈λx − Ax , x∗〉| ≥ Re〈λx − Ax , x∗〉 ≥ λ‖x‖2

and (1) follows.

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 6: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

Conversely, given x ∈ D(A) suppose that (1) holds for all λ > 0.

If y∗λ ∈ J((λ− A)x) and g∗λ = y∗λ/‖y

∗λ‖ we have that

λ‖x‖≤‖λx − Ax‖=〈λx−Ax , g∗λ〉=λRe〈x , g∗

λ〉−Re〈Ax , g∗λ〉

≤ λ‖x‖ − Re〈Ax , g∗λ〉

(2)

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 7: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

Since the unit ball of X ∗ is compact in the weak∗-topology wehave that there exists g∗ ∈ X ∗ with ‖g∗‖ ≤ 1 such that g∗ is alimit point of the sequence {g∗

n} [there is a sub-net (see Apendix)of {g∗

n} that converges to g∗].

From (2) it follows that Re〈Ax , g∗〉 ≤ 0 and Re〈x , g∗〉 ≥ ‖x‖. ButRe〈x , g∗〉 ≤ |〈x , g∗〉| ≤ ‖x‖ and therefore Re〈x , g∗〉 = ‖x‖.

Taking x∗ = ‖x‖g∗ we have that x∗ ∈ J(x) and Re〈Ax , x∗〉 ≤ 0.Thus, for all x ∈ D(A) there exists x∗ ∈ J(x) such thatRe〈Ax , x∗〉 ≤ 0 and A e dissipative.

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 8: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

Theorem (G. Lumer)

Suppose that A is a linear operator in a Banach space X . If A is

dissipative and R(λ0 − A) = X for some λ0 > 0, then A is closed,

ρ(A) ⊃ (0,∞) and

‖λ(λ− A)−1‖L(X ) ≤ 1,∀λ > 0.

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 9: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

Proof: If λ > 0 and x ∈ D(A), from Lemma 1 we have that

‖(λ− A)x‖ ≥ λ‖x‖.

Now R(λ0 − A) = X , ‖(λ0 − A)x‖ ≥ λ0‖x‖ for x ∈ D(A), so λ0 isin ρ(A) and A is closed. Let Λ = ρ(A) ∩ (0,∞).

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 10: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

Λ is an open subset of (0,∞) for ρ(A) is open, let us prove that Λis a closed subset of (0,∞) to conclude that Λ = (0,∞).

Suppose that {λn}∞n=1 ⊂ Λ, λn → λ > 0, if n is sufficiently large

we have that |λn − λ| ≤ λ/3 then, for all n sufficiently large,‖(λ−λn)(λn−A)−1‖≤|λn−λ|λ−1

n ≤1/2 and I+(λ−λn)(λn−A)−1

is in isomorphism of X .

Thenλ− A =

{I + (λ− λn)(λn − A)−1

}(λn − A) (3)

takes D(A) over X and λ ∈ ρ(A), as desired.

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 11: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

Corollary

Let A be a closed and densely defined linear operator. If both A

and A∗ are dissipative, then ρ(A) ⊃ (0,∞) and

‖λ(λ− A)−1‖ ≤ 1,∀λ > 0.

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 12: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

Proof: From Theorem (G. Lummer) it is enough to prove thatR(I − A) = X .

SinceA is dissipative and closed,R(I −A) is a closed subspace ofX .

Let x∗ ∈ X ∗ be such that 〈(I − A)x , x∗〉 = 0 for all x ∈ D(A).This implies that x∗ ∈ D(A∗) and (I ∗ − A∗)x∗ = 0.

Since A∗ is also dissipative it follows from the previous lemma thatx∗ = 0. Consequently R(I −A) is dense in X and since R(I −A) isclosed, R(I − A) = X .

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 13: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

In several examples, the technique used to obtain estimates for theresolvent of a given operator and the localisation of its spectrum isthe localisation of the numerical range (defined next).

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 14: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

If A is a linear operator in a complex Banach space X its numericalrange W (A) is the set

W (A) :={〈Ax , x∗〉 :x ∈D(A), x∗∈X ∗, ‖x‖=‖x∗‖= 〈x , x∗〉=1}. (4)

When X is a Hilbert space

W (A) = {〈Ax , x〉 : x ∈ D(A), ‖x‖ = 1}.

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 15: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

Theorem (Numerical Range)

Let A : D(A) ⊂ X → X be a closed densely defined operator and

W (A) be the numerical range of A.

1. If λ /∈ W (A) then λ− A is injective, has closed image and

satisfies

‖(λ− A)x‖ ≥ d(λ,W (A))‖x‖. (5)

where d(λ,W (A)) is the distance of λ to W (A). Besidesthat, if λ ∈ ρ(A),

‖(λ− A)−1‖L(X ) ≤1

d(λ,W (A)). (6)

2. If Σ is open and connected in C\W (A) and ρ(A) ∩Σ 6= ∅,

then ρ(A) ⊃ Σ and (6) is satisfied for all λ ∈ Σ.

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 16: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

Proof: Let λ /∈ W (A). If x ∈ D(A), ‖x‖ = 1, x∗ ∈ X ∗, ‖x∗‖ = 1and 〈x , x∗〉 = 1 then,

0<d(λ,W (A))≤|λ−〈Ax , x∗〉|= |〈λx −Ax , x∗〉|≤‖λx −Ax‖ (7)

and therefore λ− A is one-to-one, has closed image and satisfies(5). If, besides that, λ ∈ ρ(A) then, (7) implies (6).

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 17: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

It remains to show that, if Σ intersects ρ(A) then, ρ(A) ⊃ Σ. Tothat end consider the nonempty set ρ(A) ∩Σ.

This set is clearly open in Σ.

But it is also closed since, if λn ∈ ρ(A) ∩ Σ and λn → λ ∈ Σ then,for sufficiently large n, |λ− λn| < d(λn,W (A)).

From this and (6) it follows that |λ− λn| ‖(λn − A)−1‖ < 1, for nsufficiently large. Consequently,λ∈ρ(A) and ρ(A)∩Σ is closed in Σ.

It follows that ρ(A) ∩Σ = Σ that is ρ(A) ⊃ Σ, as desired.

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 18: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

Example

Let H be a Hilbert space over K and A : D(A) ⊂ H → H be a

self-adjoint operator. It follows that A is closed and densely

defined. If A is bounded above; that is, 〈Au, u〉 ≤ a〈u, u〉 for some

a ∈ R, then C\(−∞, a] ⊂ ρ(A), and

‖(λ− A)−1‖L(X ) ≤M

|λ− a|,

for some constant M ≥ 1, depending only on ϕ, for allλ ∈ Σa,ϕ = {λ ∈ C : |arg(λ− a)| < ϕ}, ϕ < π.

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 19: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

Proof: We start localising the numerical range of A. First notethat

W (A) = {〈Ax , x〉 : x ∈ D(A), ‖x‖ = 1} ⊂ (−∞, a].

Also, A− a = A∗ − a is dissipative and therefore, from a previousresult, ρ(A− a) ⊃ (0,∞).

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 20: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

From Theorem (Numerical Range) we have thatC\(−∞, a] ⊂ ρ(A) and that

‖(λ− A)−1‖ ≤1

d(λ,W (A))≤

1

d(λ, (−∞, a]).

Besides that, if λ ∈ Σa,ϕ, we have that

1

d(λ, (−∞, a])≤

1

sinϕ

1

|λ− a|

and the result follows.

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 21: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

ExerciseLet X be a Banach space such that X ∗ is uniformly convex and

A : D(A) ⊂ X → X be a closed, densely defined and dissipative

linear operator. If R(I − A) = X, show that

ρ(A) ⊃ {λ ∈ C : Reλ > 0} and that

‖(λ− A)−1‖L(X ) ≤1

Reλ, for all λ ∈ Σ0,π

2.

Is the hypothesis that X ∗ be uniformly convex necessary?

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 22: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

Proposition

Let H be a Hilbert space over K with inner product 〈·, ·〉 andA ∈ L(H) be a self-adjoint operator. If

m = infu∈H‖u‖=1

〈Au, u〉, M = supu∈H‖u‖=1

〈Au, u〉,

then, {m,M} ⊂ σ(A) ⊂ [m,M].

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 23: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

Proof: From the definition of M we have that〈Au, u〉 ≤ M‖u‖2, ∀u ∈ H. From this it follows that, if λ > M

then,〈λu − Au, u〉 ≥ (λ−M)

︸ ︷︷ ︸

>0

‖u‖2. (8)

With that, it is easy to see that a(v , u) = 〈v , λu − Au〉 is asymmetric (a(u, v) = a(v , u) for all u, v ∈ H), continous andcoercive sesquilinear form.

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 24: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

It follows from Lax-Milgram theorem that

〈v , λu − Au〉 = 〈v , f 〉, ∀v ∈ H,

has a unique solution uf for each f ∈ H. It is easy to see that thissolution satisfies

(λ− A)uf = f .

From this it follows that (λ− A) is bijective and (M,∞) ⊂ ρ(A).

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 25: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

Let us show that M∈σ(A). Note that a(u, v)=(Mu−Au, v) is acontinuous, symmetric sesquilinear form and a(u, u) ≥ 0, ∀u ∈ H.Hence

|a(u, v)| ≤ a(u, u)1/2a(v , v)1/2, for all u, v ∈ H,

that is, the Cauchy-Schwarz inequality holds.

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 26: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

It follows that

|(Mu − Au, v)| ≤ (Mu − Au, u)1/2(Mv − Av , v)1/2, ∀u, v ∈ H

≤ C (Mu − Au, u)1/2 ‖v‖

and that

‖Mu − Au‖ ≤ C (Mu − Au, u)1/2, ∀u ∈ H.

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 27: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

Let {un} be a sequence of vectors such that ‖un‖ = 1,〈Aun, un〉 → M. It follows that ‖Mun − Aun‖ → 0. If M ∈ ρ(A)

un = (MI − A)−1(Mun − Aun) → 0

which is in contradiction with ‖un‖ = 1, ∀n ∈ N. It follows thatM ∈ σ(A).

From the above result applied to −A we obtain that(−∞,m) ⊂ ρ(A) and m ∈ σ(A). The proof that σ(A) ⊂ R hasbeen given in Example 1

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 28: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

It follows directly from Proposition 1 (if A ∈ L(H) is self-adjoint,‖A‖ = sup{〈Au, u〉 : u ∈ H, ‖u‖H = 1}) that

Corollary

Let H be a Hilbert space and A ∈ L(H) be a self-adjoint operator

with σ(A) = {0}, then A = 0.

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 29: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

Operational calculus in L(X )

Let X be a Banach space over C and A ∈ L(X ). We have alreadyseen that σ(A) is closed, non-empty and bounded.

In fact,

σ(A)⊂{λ ∈ C : |λ|≤ rσ(A)}

and

rσ= infn≥1

‖An‖1n

L(X )≤‖A‖L(X ).

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 30: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

Let γ : [0, 2π] → C be the curve given by γ(t) = re it , t ∈ [0, 2π],with r > rσ(A). We know that, for |λ| > rσ(A),

(λ− A)−1 =∞∑

n=0

λ−n−1An,

and, for j ∈ N,

Aj =1

2πi

γλj (λ− A)−1dλ. (9)

Observe that, the curve γ can be chosen to be any closedrectifiable curve which is homotopic to the above curve in ρ(A).

Emphasise the case j = 0.

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 31: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

So, if p : C → C is a polynomial,

p(A) =1

2πi

γp(λ)(λ− A)−1dλ.

ExerciseLet X be a complex Banach space and A ∈ L(X ). Show that, if

r > ‖A‖L(X ) and γr (t) = re2πit , t ∈ [0, 1] then,

∞∑

n=0

An

n!=

1

2πi

γr

eλ(λ− A)−1dλ.

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 32: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

DefinitionIf X is a Banach space over C and A ∈ L(X ). The class of analytic

functions f : D(f ) ⊂ C → C such that D(f ) is a Cauchy domain

that contains σ(A) is denoted by U(A). For f ∈ U(A) we define

f (A) =1

2πi

+∂Df (λ)(λ− A)−1dλ (10)

where D is a bounded Cauchy domain such that σ(A) ⊂ D and

D ⊂ D(f ).

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 33: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

ExerciseLet X be a Banach space over C and A ∈ L(X ). Show that, if

f , g ∈ U(A) and f , g coincide in an open set that contains σ(A)then, f (A) = g(A).

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 34: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

It is clear that, if f , g ∈ U(A) and α ∈ C, we have that f + g , fgand αf are in em U(A). Besides that, it is easy to see that

f (A) + g(A) = (f + g)(A) and αf (A) = (αf )(A).

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 35: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

Let us show that f (A) ◦ g(A)=(fg)(A). Let D1 and D2 be Cauchydomains such that σ(A) ⊂ D1 ⊂ D1 ⊂ D2 ⊂ D(f ) ∩ D(g). Withthis notation we have that

f (A) =1

2πi

+∂D1

f (λ)(λ− A)−1dλ,

g(A) =1

2πi

+∂D2

g(µ)(µ − A)−1dµ.

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 36: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

Hence

f (A) ◦ g(A) =1

(2πi)2

+∂D1

+∂D2

f (λ)g(µ) (λ−A)−1(µ−A)−1 dµ dλ

=1

(2πi)2

+∂D1

+∂D2

f (λ)g(µ)1

µ− λ[(λ− A)−1−(µ− A)−1] dµ dλ

=1

2πi

+∂D1

f (λ)g(λ)(λ − A)−1 dλ = (fg)(A).

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 37: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

ExerciseLet X be a Banach space over C, B ∈ L(X ) with ‖B‖L(X ) < 1and A = I + B. Show that, if 1 > r > ‖B‖L(X ), α > 0 and

γr (t) = 1 + re2πit , t ∈ [0, 1], then

A−α =∞∑

n=0

(α+ n − 1

n

)

(−1)nBn =1

2πi

γr

λ−α(λ− A)−1dλ.

where

(α+ n− 1

n

)

:=Γ(α+ n)

n! Γ(α)=

α(α + 1) · · · (α+ n − 1)

n!.

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 38: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

Show that A−α−β = A−αA−β for all α, β ∈ (0,∞). In particular,

A−1 =∞∑

n=0

(−1)nBn =1

2πi

γr

λ−1(λ− A)−1dλ and

A−2 =

∞∑

n=0

(n + 1)(−1)nBn =1

2πi

γr

λ−2(λ− A)−1dλ.

Study the positive powers of A.

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 39: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

TheoremLet X be a Banach space over C and A ∈ L(X ). If f ∈ U(A) issuch that f (λ) 6= 0 for all λ ∈ σ(A), then f (A) one-to-one and

onto X with inverse g(A) where g is any function in U(A) thatcoincides with 1

fin an open set that contains σ(A).

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 40: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

Proof: If g = 1fin an open set that contains σ(A) then, g ∈ U(A)

and f (λ)g(λ) = 1 in an open set that contains σ(A). Hence

f (A)g(A) = g(A)f (A) = (fg)(A) = I .

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 41: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

Operational calculus for closed operators

Let X be a Banach space over C and A : D(A) ⊂ X → X a closedlinear operator with non-empty resolvent ρ(A).

Denote by U∞(A) the set of all analytic functions f with domainscontaining the union of σ(A) with the exterior of a compact setand that satisfying limλ→∞ f (λ) = f (∞).

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 42: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

ExerciseLet R > 0, A(0,R ,∞) = (B

C

R(0))c and f : A(0,R ,∞) → C a

bounded analytic function. Show that the limit below exists 1

limλ→∞

f (λ).

1Suggestion: Show that 0 is a removable singularity of the analytic functiong : B 1

R(0)\{0} → C defined by g(λ) = f ( 1

λ).

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 43: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

We define in U∞(A) the equivalence relation R by (f , g) ∈ R if fand g are equal in an open set that contains σ(A) and the exteriorof a ball. We write f ∼ g to denote that (f , g) ∈ R.

ExerciseShow that the relation R ⊂ U∞ × U∞ is an equivalence relation.

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 44: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

Observe that, if D is an unbounded Cauchy domain withD ⊃ A(0, r ,∞) and f : D(f ) ⊂ C → C is a function in U∞(A)with D(f ) ⊃ D, entao

f (ξ) =1

2πi

γr

f (λ)

λ− ξdλ+

1

2πi

∂D+

f (λ)

λ− ξdλ (11)

where r > 0 is such that Br (0) ⊃ Dc , ξ is a point of D with|ξ| < r and γr (t) = re2πit , t ∈ [0, 1].

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 45: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

Hence, making r → ∞ in (11) and using that limλ→∞

f (λ) = f (∞),

we obtain

f (ξ) = f (∞) +1

2πi

∂D+

f (λ)

λ− ξdλ (12)

for all ξ in D.

Using the same reasoning, if ξ is exterior to D, then

0 = f (∞) +1

2πi

∂D+

f (λ)

λ− ξdλ (13)

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 46: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

When f ∈ U∞(A), we define

f (A) = f (∞)I +1

2πi

+∂Df (λ)(λ− A)−1dλ, (14)

where D is an unbounded Cauchy domain such thatσ(A) ⊂ D ⊂ D ⊂ D(f ). Note that f (A) ∈ L(X ) even when A isnot a bounded operator.

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 47: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

ExerciseLet X be a Banach space over C and A : D(A) ⊂ X → X a closed

operator with non-empty resolvent.

a) Show that, if f , g ∈ U∞(A) and f ∼ g then, f (A) = g(A).

b) Show that, if f (λ) = 1 for all λ ∈ C then, f (A) = I .

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 48: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

Let X be a Banach space over C and A : D(A) ⊂ X → X a closedoperator with non-empty resolvent. Se f , g ∈ U∞(A), show thatf (A) ◦ g(A) = (fg)(A).

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 49: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

As before, let D1 and D2 Cauchy domains such thatσ(A) ⊂ D1 ⊂ D1 ⊂ D2 ⊂ D(f ) ∩ D(g). With this notation wehave that

f (A) = f (∞)I +1

2πi

+∂D1

f (λ)(λ − A)−1dλ

and

g(A) = g(∞)I +1

2πi

+∂D2

g(µ)(µ − A)−1dµ.

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 50: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

Using (12) and (11), if λ ∈ ∂D1 and µ ∈ ∂D2, we have that

g(λ) = g(∞) +1

2πi

+∂D2

g(µ)

µ− λdµ

and

0 = f (∞) +1

2πi

+∂D1

f (λ)

λ− µdλ.

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 51: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

Consequently,

f (A) ◦ g(A) = f (∞)g(∞)I

+1

(2πi)2

+∂D1

+∂D2

f (λ)g(µ) (λ − A)−1(µ− A)−1 dµ dλ

+g(∞)

2πi

+∂D1

f (λ) (λ − A)−1dλ+f (∞)

2πi

+∂D1

g(µ) (µ − A)−1dµ

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 52: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

= f (∞)g(∞)I

+1

(2πi)2

+∂D1

+∂D2

f (λ)g(µ)(λ−A)−1−(µ−A)−1

µ− λdµ dλ

+g(∞)

2πi

+∂D1

f (λ) (λ − A)−1dλ+f (∞)

2πi

+∂D1

g(µ) (µ − A)−1dµ

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 53: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

= f (∞)g(∞)I +1

2πi

+∂D1

f (λ)(λ − A)−1

(1

2πi

+∂D2

g(µ)

µ− λdµ

)

+1

2πi

+∂D2

g(µ)(µ − A)−1

(1

2πi

+∂D1

f (λ)

λ− µdλ

)

+g(∞)

2πi

+∂D1

f (λ) (λ − A)−1dλ+f (∞)

2πi

+∂D1

g(µ) (µ − A)−1dµ

= f (∞)g(∞)I +1

2πi

+∂D1

f (λ)g(λ)(λ − A)−1 dλ = (fg)(A).

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 54: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

Proceeding exactly as in Theorem 3 we have that the followingresult holds.

TheoremLet X be a Banach space over C and A : D(A) ⊂ X → X be a

closed operator with non-empty resolvent. If f ∈ U∞(A) is suchthat f (λ) 6= 0 for all λ ∈ σ(A) ∪ {∞} then, f (A) is one-to-one and

onto X with inverse g(A) where g is any function of U∞(A) withg ∼ 1

f.

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II

Page 55: SMA 5878 Functional Analysis II - icmc.usp.br · Spectral AnalysisofLinearOperators SMA 5878 Functional Analysis II Alexandre Nolasco de Carvalho Departamento de Matematica Instituto

Spectral Analysis of Linear Operators

Dissipative operators and numerical range

Operational calculus

Operational calculus for closed operators

ExerciseLet X be a Banach space over C and A ∈ L(X ). Show that, if

f ∈ U(A) ∩ U∞(A) then, (10) and (14) give rise to the same

operator f (A).

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Functional Analysis II