18
1 PSPM 1 SESSION 2019/2020 SM015/1 14 OCTOBER 2019 KOLEJ MATRIKULASI KEDAH Authored by: KANG KOOI WEI SM015/1 PSPM 1 2019/2020

SM015/1 PSPM 1 2019/2020...2 PSPM 1 SESSION 2019/2020 SM015/1 2 Questions SECTION A [45 marks] This section consists of 5 questions. Answer all questions. 1. √Given the complex numbers

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • 1

    PSPM 1 SESSION 2019/2020 SM015/1

    1

    14 OCTOBER 2019

    KOLEJ MATRIKULASI KEDAH

    Authored by: KANG KOOI WEI

    SM015/1

    PSPM 1

    2019/2020

  • 2

    PSPM 1 SESSION 2019/2020 SM015/1

    2

    Questions SECTION A [45 marks]

    This section consists of 5 questions. Answer all questions.

    1. Given the complex numbers 𝑧1 = βˆ’π‘– and 𝑧2 = 2 + π‘–βˆš3.

    a. Express 𝑧12 and 𝑧2Μ… in the form π‘Ž + 𝑏𝑖, where π‘Ž, 𝑏 ∈ β„›. [2 marks]

    b. From part 1(a), find π‘Š =𝑧12+𝑧2Μ…Μ… Μ…

    𝑧1. Hence, find |π‘Š| and argument π‘Š. [7 marks]

    2. Solve the following:

    a. 3(52π‘₯) + 251

    2π‘₯+1 = 200 [5 marks]

    b. π‘₯ + 4 ≀ π‘₯2 + π‘₯ < 12 [5 marks]

    3. The sum of the first 𝑛 terms of a sequence is given by 𝑆𝑛 = 2 + 3βˆ’4𝑛.

    a. Find the value of constant c such that the 𝑛-th term is 𝑐3βˆ’4𝑛. [3 marks] b. Show that the3 sequence is a geometric series. [4 marks] c. Find the sum of the infinite series, π‘†βˆž. [2 marks]

    4. Given matrix 𝐴 = [2 3 0βˆ’5 0 40 2 1

    ].

    a. Find the determinant of matrix 𝐴 by expanding the first row. [2 marks] b. Calculate the adjoin of matrix 𝐴. Hence, find π΄βˆ’1. [5 marks]

    c. Solve the equation 𝐴𝑋 = 𝐡, where 𝐡 = [122], by using the answer obtained

    in part 4(b).

    [2 marks] 5. Given 𝑓(π‘₯) =

    1

    1+1

    1+1π‘₯

    .

    a. Simplify 𝑓(π‘₯) and evaluate 𝑓 (1

    2). [4 marks]

    b. The domain of 𝑓(π‘₯) is a set of real number except three numbers.

    Determine the numbers.

    [4 marks]

  • 3

    PSPM 1 SESSION 2019/2020 SM015/1

    3

    SECTION B [25 marks]

    1. Solve the following: a. π‘™π‘œπ‘”22π‘₯ = 2 π‘™π‘œπ‘”4(π‘₯ + 4)

    [6 marks]

    b. 2 |π‘₯βˆ’3

    2π‘₯βˆ’1| β‰₯ 1 [7 marks]

    2. Given a function 𝑓(π‘₯) = ln (2π‘₯ + 1) a. State the domain and range of 𝑓(π‘₯). [2 marks] b. Find the inverse function of 𝑓(π‘₯) and state its domain and range. Hence, find

    the value of π‘₯ for which π‘“βˆ’1(π‘₯) = 0.

    [7 marks]

    c. Sketch the graph of 𝑓(π‘₯) and π‘“βˆ’1(π‘₯) on the same coordinate axes. [3 marks]

    END OF QUESTION PAPER

  • 4

    PSPM 1 SESSION 2019/2020 SM015/1

    4

    Question A1 1. Given the complex numbers 𝑧1 = βˆ’π‘– and 𝑧2 = 2 + π‘–βˆš3.

    a. Express 𝑧12 and 𝑧2Μ… in the form π‘Ž + 𝑏𝑖, where π‘Ž, 𝑏 ∈ β„›.

    b. From part 1(a), find π‘Š =𝑧12+𝑧2Μ…Μ… Μ…

    𝑧1. Hence, find |π‘Š| and argument π‘Š.

    SOLUTION

    a) π’›πŸ = βˆ’π’Š

    π’›πŸ = 𝟐 + π’ŠβˆšπŸ‘

    π’›πŸπŸ = (βˆ’π’Š)𝟐

    = βˆ’πŸ + πŸŽπ’Š

    π’›πŸΜ…Μ… Μ… = 𝟐 βˆ’ π’ŠβˆšπŸ‘

    b) 𝑾 =π’›πŸπŸ+π’›πŸΜ…Μ… Μ…

    π’›πŸ

    =(βˆ’πŸ)+(πŸβˆ’π’ŠβˆšπŸ‘)

    (βˆ’π’Š)

    =πŸβˆ’π’ŠβˆšπŸ‘

    (βˆ’π’Š)

    =(πŸβˆ’π’ŠβˆšπŸ‘)(π’Š)

    (βˆ’π’Š)(π’Š)

    =π’Šβˆ’π’ŠπŸβˆšπŸ‘

    βˆ’π’ŠπŸ

    =π’Š+βˆšπŸ‘

    𝟏

    = βˆšπŸ‘ + π’Š

    |𝑾| = βˆšβˆšπŸ‘πŸ+ 𝟏𝟐

  • 5

    PSPM 1 SESSION 2019/2020 SM015/1

    5

    = βˆšπŸ‘ + 𝟏

    = 𝟐

    π‘¨π’“π’ˆ 𝑾 = π’•π’‚π’βˆ’πŸ (𝟏

    βˆšπŸ‘)

    =𝝅

    πŸ”

  • 6

    PSPM 1 SESSION 2019/2020 SM015/1

    6

    Question A2 2. Solve the following:

    a. 3(52π‘₯) + 251

    2π‘₯+1 = 200

    b. π‘₯ + 4 ≀ π‘₯2 + π‘₯ < 12

    SOLUTION

    a) 3(52π‘₯) + 251

    2π‘₯+1 = 200

    πŸ‘(πŸ“π’™)𝟐 + (πŸ“πŸ)𝟏

    πŸπ’™+𝟏 = 𝟐𝟎𝟎

    πŸ‘(πŸ“π’™)𝟐 + (πŸ“)𝒙+𝟐 = 𝟐𝟎𝟎

    πŸ‘(πŸ“π’™)𝟐 + (πŸ“)𝒙(πŸ“πŸ) = 𝟐𝟎𝟎

    πŸ‘(πŸ“π’™)𝟐 + πŸπŸ“(πŸ“)𝒙 = 𝟐𝟎𝟎

    𝑳𝒆𝒕 π’š = πŸ“π’™

    πŸ‘π’šπŸ + πŸπŸ“π’š βˆ’ 𝟐𝟎𝟎 = 𝟎

    (πŸ‘π’š + πŸ’πŸŽ)(π’š βˆ’ πŸ“) = 𝟎

    π’š = βˆ’πŸ’πŸŽ

    πŸ‘ 𝒐𝒓 π’š = πŸ“

    πŸ“π’™ = βˆ’πŸ’πŸŽ

    πŸ“ (ignored)

    πŸ“π’™ = πŸ“

    𝒙 = 𝟏

    b) π‘₯ + 4 ≀ π‘₯2 + π‘₯ < 12

    π’™πŸ + 𝒙 β‰₯ 𝒙 + πŸ’

    π’™πŸ + 𝒙 βˆ’ 𝒙 βˆ’ πŸ’ β‰₯ 𝟎

    π’™πŸ βˆ’ πŸ’ β‰₯ 𝟎

    (𝒙 + 𝟐)(𝒙 βˆ’ 𝟐) β‰₯ 𝟎

    𝒙 = βˆ’πŸ 𝒐𝒓 𝒙 = 𝟐

    And

    π’™πŸ + 𝒙 < 𝟏𝟐

    π’™πŸ + 𝒙 βˆ’ 𝟏𝟐 < 𝟎

    (𝒙 + πŸ’)(𝒙 βˆ’ πŸ‘) < 𝟎

    𝒙 = βˆ’πŸ’ 𝒐𝒓 𝒙 = πŸ‘

  • 7

    PSPM 1 SESSION 2019/2020 SM015/1

    7

    (βˆ’βˆž,βˆ’πŸ) (βˆ’πŸ, 𝟐) (𝟐,∞)

    𝒙 + 𝟐 - + +

    𝒙 βˆ’ 𝟐 - - +

    β—‹+ - β—‹+

    (βˆ’βˆž,βˆ’πŸ] βˆͺ [𝟐,∞)

    And

    (βˆ’βˆž,βˆ’πŸ’) (βˆ’πŸ’, πŸ‘) (πŸ‘,∞)

    𝒙 + πŸ’ - + +

    𝒙 βˆ’ πŸ‘ - - +

    + β—‹- +

    (βˆ’πŸ’, πŸ‘)

    (βˆ’πŸ’,βˆ’πŸ] βˆͺ [𝟐, πŸ‘)

    βˆ’πŸ’ βˆ’πŸ 𝟐 πŸ‘

  • 8

    PSPM 1 SESSION 2019/2020 SM015/1

    8

    Question A3 3. The sum of the first 𝑛 terms of a sequence is given by 𝑆𝑛 = 2 + 3

    βˆ’4𝑛.

    a. Find the value of constant c such that the 𝑛-th term is 𝑐3βˆ’4𝑛.

    b. Show that the sequence is a geometric series.

    c. Find the sum of the infinite series, π‘†βˆž.

    SOLUTION

    a) 𝑆𝑛 = 2 + 3βˆ’4𝑛

    𝑻𝒏 = 𝑺𝒏 βˆ’ π‘Ίπ’βˆ’πŸ

    π’„πŸ‘βˆ’πŸ’π’ = (𝟐 + πŸ‘βˆ’πŸ’π’) βˆ’ (𝟐 + πŸ‘βˆ’πŸ’(π’βˆ’πŸ))

    π’„πŸ‘βˆ’πŸ’π’ = 𝟐 + πŸ‘βˆ’πŸ’π’ βˆ’ 𝟐 βˆ’ πŸ‘βˆ’πŸ’π’+πŸ’

    π’„πŸ‘βˆ’πŸ’π’ = πŸ‘βˆ’πŸ’π’ βˆ’ πŸ‘βˆ’πŸ’π’πŸ‘πŸ’

    π’„πŸ‘βˆ’πŸ’π’ = πŸ‘βˆ’πŸ’π’ βˆ’ πŸ–πŸ(πŸ‘βˆ’πŸ’π’)

    π’„πŸ‘βˆ’πŸ’π’ = πŸ‘βˆ’πŸ’π’(𝟏 βˆ’ πŸ–πŸ)

    π’„πŸ‘βˆ’πŸ’π’ = βˆ’πŸ–πŸŽ(πŸ‘βˆ’πŸ’π’)

    𝒄 = βˆ’πŸ–πŸŽ

    b) 𝑻𝒏 = βˆ’πŸ–πŸŽ(πŸ‘βˆ’πŸ’π’)

    𝑻𝒏

    π‘»π’βˆ’πŸ=

    βˆ’πŸ–πŸŽ(πŸ‘βˆ’πŸ’π’)

    βˆ’πŸ–πŸŽ[πŸ‘βˆ’πŸ’(π’βˆ’πŸ)]

    𝑻𝒏

    π‘»π’βˆ’πŸ=

    (πŸ‘βˆ’πŸ’π’)

    [πŸ‘βˆ’πŸ’π’+πŸ’]

    𝑻𝒏

    π‘»π’βˆ’πŸ= πŸ‘βˆ’πŸ’π’+πŸ’π’βˆ’πŸ’

    𝑻𝒏

    π‘»π’βˆ’πŸ= πŸ‘βˆ’πŸ’

  • 9

    PSPM 1 SESSION 2019/2020 SM015/1

    9

    𝑻𝒏

    π‘»π’βˆ’πŸ=

    𝟏

    πŸ–πŸ

    π‘Ίπ’Šπ’π’„π’† 𝑻𝒏

    π‘»π’βˆ’πŸ π’Šπ’” 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕, 𝒕𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 π’Šπ’” π’ˆπ’†π’π’Žπ’†π’•π’“π’š

    c) 𝑻𝒏 = βˆ’πŸ–πŸŽ(πŸ‘βˆ’πŸ’π’)

    𝒂 = π‘»πŸ = βˆ’πŸ–πŸŽ(πŸ‘βˆ’πŸ’(𝟏)) = βˆ’

    πŸ–πŸŽ

    πŸ–πŸ

    𝒓 =𝟏

    πŸ–πŸ

    π‘Ίβˆž =𝒂

    πŸβˆ’π’“

    =(βˆ’

    πŸ–πŸŽ

    πŸ–πŸ)

    πŸβˆ’(𝟏

    πŸ–πŸ)

    =(βˆ’

    πŸ–πŸŽ

    πŸ–πŸ)

    (πŸ–πŸŽ

    πŸ–πŸ)

    = βˆ’πŸ

  • 10

    PSPM 1 SESSION 2019/2020 SM015/1

    10

    Question A4

    4. Given matrix 𝐴 = [2 3 0βˆ’5 0 40 2 1

    ].

    a. Find the determinant of matrix 𝐴 by expanding the first row.

    b. Calculate the adjoin of matrix 𝐴. Hence, find π΄βˆ’1.

    c. Solve the equation 𝐴𝑋 = 𝐡, where 𝐡 = [122], by using the answer obtained in

    part 4(b).

    SOLUTION

    a) 𝐴 = [2 3 0βˆ’5 0 40 2 1

    ]

    |𝑨| = (𝟐) |𝟎 πŸ’πŸ 𝟏

    | βˆ’ (πŸ‘) |βˆ’πŸ“ πŸ’πŸŽ 𝟏

    | + (𝟎) |βˆ’πŸ“ 𝟎𝟎 𝟐

    |

    = (𝟐)(𝟎 βˆ’ πŸ–) βˆ’ (πŸ‘)(βˆ’πŸ“ βˆ’ 𝟎) + (𝟎)|βˆ’πŸπŸŽ βˆ’ 𝟎|

    = βˆ’πŸπŸ” + πŸπŸ“ + 𝟎

    = βˆ’πŸ

    b) Adjoin of matrix 𝐴

    π‘ͺ𝒐𝒇𝒂𝒄𝒕𝒐𝒓, π‘ͺ =

    (

    + |𝟎 πŸ’πŸ 𝟏

    | βˆ’ |βˆ’πŸ“ πŸ’πŸŽ 𝟏

    | + |βˆ’πŸ“ 𝟎𝟎 𝟐

    |

    βˆ’ |πŸ‘ 𝟎𝟐 𝟏

    | + |𝟐 𝟎𝟎 𝟏

    | βˆ’ |𝟐 πŸ‘πŸŽ 𝟐

    |

    + |πŸ‘ 𝟎𝟎 πŸ’

    | βˆ’ |𝟐 πŸŽβˆ’πŸ“ πŸ’

    | + |𝟐 πŸ‘βˆ’πŸ“ 𝟎

    |)

    = (+(𝟎 βˆ’ πŸ–) βˆ’(βˆ’πŸ“ βˆ’ 𝟎) +(βˆ’πŸπŸŽ βˆ’ 𝟎)

    βˆ’(πŸ‘ βˆ’ 𝟎) +(𝟐 βˆ’ 𝟎) βˆ’(πŸ’ βˆ’ 𝟎)

    +(𝟏𝟐 βˆ’ 𝟎) βˆ’(πŸ– βˆ’ 𝟎) +(𝟎 + πŸπŸ“))

  • 11

    PSPM 1 SESSION 2019/2020 SM015/1

    11

    = (βˆ’πŸ– πŸ“ βˆ’πŸπŸŽβˆ’πŸ‘ 𝟐 βˆ’πŸ’πŸπŸ βˆ’πŸ– πŸπŸ“

    )

    π‘¨π’…π’‹π’π’Šπ’ 𝑨 = π‘ͺ𝑻

    = (βˆ’πŸ– βˆ’πŸ‘ πŸπŸπŸ“ 𝟐 βˆ’πŸ–βˆ’πŸπŸŽ βˆ’πŸ’ πŸπŸ“

    )

    π‘¨βˆ’πŸ =𝟏

    |𝑨|𝑨𝒅𝒋 𝑨

    =𝟏

    βˆ’πŸ(βˆ’πŸ– βˆ’πŸ‘ πŸπŸπŸ“ 𝟐 βˆ’πŸ–βˆ’πŸπŸŽ βˆ’πŸ’ πŸπŸ“

    )

    = (πŸ– πŸ‘ βˆ’πŸπŸβˆ’πŸ“ βˆ’πŸ πŸ–πŸπŸŽ πŸ’ βˆ’πŸπŸ“

    )

    c) 𝐴𝑋 = 𝐡

    𝑿 = π‘¨βˆ’πŸπ‘©

    [𝟐 πŸ‘ πŸŽβˆ’πŸ“ 𝟎 πŸ’πŸŽ 𝟐 𝟏

    ] [π’™π’šπ’›] = [

    𝟏𝟐𝟐]

    [π’™π’šπ’›] = (

    πŸ– πŸ‘ βˆ’πŸπŸβˆ’πŸ“ βˆ’πŸ πŸ–πŸπŸŽ πŸ’ βˆ’πŸπŸ“

    ) [𝟏𝟐𝟐]

    = (πŸ– + πŸ” βˆ’ πŸπŸ’βˆ’πŸ“ βˆ’ πŸ’ + πŸπŸ”πŸπŸŽ + πŸ– βˆ’ πŸ‘πŸŽ

    )

  • 12

    PSPM 1 SESSION 2019/2020 SM015/1

    12

    = (βˆ’πŸπŸŽπŸ•βˆ’πŸπŸ

    )

    ∴ 𝒙 = βˆ’πŸπŸŽ, π’š = πŸ•, 𝒛 = βˆ’πŸπŸ

  • 13

    PSPM 1 SESSION 2019/2020 SM015/1

    13

    Question A5 5. Given 𝑓(π‘₯) =

    1

    1+1

    1+1π‘₯

    .

    a. Simplify 𝑓(π‘₯) and evaluate 𝑓 (1

    2).

    b. The domain of 𝑓(π‘₯) is a set of real number except three numbers. Determine

    the numbers.

    SOLUTION

    a) 𝑓(π‘₯) =1

    1+1

    1+1π‘₯

    =𝟏

    𝟏+πŸπ’™+πŸπ’™

    =𝟏

    𝟏+𝒙

    𝒙+𝟏

    =𝟏

    𝒙+𝟏+𝒙

    𝒙+𝟏

    =𝒙+𝟏

    πŸπ’™+𝟏

    𝒇 (𝟏

    𝟐) =

    (𝟏

    𝟐)+𝟏

    𝟐(𝟏

    𝟐)+𝟏

    =(πŸ‘

    𝟐)

    𝟐

    =πŸ‘

    πŸ’

    b) 𝑓(π‘₯) =1

    1+1

    1+1π‘₯

  • 14

    PSPM 1 SESSION 2019/2020 SM015/1

    14

    1

    π‘₯β‰  0 π‘₯ β‰  0

    1 +1

    π‘₯β‰  0 π‘₯ β‰  βˆ’1

    1 +1

    1+1

    π‘₯

    β‰  0 2π‘₯ + 1 β‰  0 π‘₯ β‰  βˆ’1

    2

    ∴ π‘₯ β‰  0; π‘₯ β‰  βˆ’1; π‘₯ β‰  βˆ’1

    2

  • 15

    PSPM 1 SESSION 2019/2020 SM015/1

    15

    Question B1 1. Solve the following:

    a. π‘™π‘œπ‘”22π‘₯ = 2 π‘™π‘œπ‘”4(π‘₯ + 4)

    b. 2 |

    π‘₯βˆ’3

    2π‘₯βˆ’1| β‰₯ 1

    SOLUTION

    a) π‘™π‘œπ‘”22π‘₯ = 2 π‘™π‘œπ‘”4(π‘₯ + 4)

    π’π’π’ˆπŸπŸπ’™ = πŸπ’π’π’ˆπŸ(𝒙+πŸ’)

    π’π’π’ˆπŸπŸ’

    π’π’π’ˆπŸπŸπ’™ = πŸπ’π’π’ˆπŸ(𝒙+πŸ’)

    π’π’π’ˆπŸπŸπŸ

    π’π’π’ˆπŸπŸπ’™ = πŸπ’π’π’ˆπŸ(𝒙+πŸ’)

    πŸπ’π’π’ˆπŸπŸ

    π’π’π’ˆπŸπŸπ’™ = πŸπ’π’π’ˆπŸ(𝒙+πŸ’)

    𝟐(𝟏)

    π’π’π’ˆπŸπŸπ’™ = π’π’π’ˆπŸ(𝒙 + πŸ’)

    πŸπ’™ = 𝒙 + πŸ’

    𝒙 = πŸ’

    b) 2 |π‘₯βˆ’3

    2π‘₯βˆ’1| β‰₯ 1

    |π’™βˆ’πŸ‘

    πŸπ’™βˆ’πŸ| β‰₯

    𝟏

    𝟐

    π’™βˆ’πŸ‘

    πŸπ’™βˆ’πŸβ‰₯𝟏

    𝟐

    π’™βˆ’πŸ‘

    πŸπ’™βˆ’πŸβˆ’πŸ

    𝟐β‰₯ 𝟎

    𝟐(π’™βˆ’πŸ‘)βˆ’(πŸπ’™βˆ’πŸ)

    𝟐(πŸπ’™βˆ’πŸ)β‰₯ 𝟎

    πŸπ’™βˆ’πŸ”βˆ’πŸπ’™+𝟏

    πŸ’π’™βˆ’πŸ β‰₯ 𝟎

    OR

    π’™βˆ’πŸ‘

    πŸπ’™βˆ’πŸβ‰€ βˆ’

    𝟏

    𝟐

    π’™βˆ’πŸ‘

    πŸπ’™βˆ’πŸ+𝟏

    πŸβ‰€ 𝟎

    𝟐(π’™βˆ’πŸ‘)+(πŸπ’™βˆ’πŸ)

    𝟐(πŸπ’™βˆ’πŸ)≀ 𝟎

    πŸπ’™βˆ’πŸ”+πŸπ’™βˆ’πŸ

    πŸ’π’™βˆ’πŸβ‰€ 𝟎

  • 16

    PSPM 1 SESSION 2019/2020 SM015/1

    16

    βˆ’πŸ“

    πŸ’π’™βˆ’πŸ β‰₯ 𝟎

    πŸ’π’™ βˆ’ 𝟐 < 𝟎

    𝒙 <𝟐

    πŸ’

    𝒙 <𝟏

    𝟐

    (βˆ’βˆž,𝟏

    𝟐)

    OR

    πŸ’π’™βˆ’πŸ•

    πŸ’π’™βˆ’πŸβ‰€ 𝟎

    𝒙 =πŸ•

    πŸ’; 𝒙 =

    𝟏

    𝟐

    (βˆ’βˆž,𝟏

    𝟐) (

    𝟏

    𝟐,πŸ•

    πŸ’) (

    πŸ•

    πŸ’,∞)

    πŸ’π’™

    βˆ’ πŸ• - - +

    πŸ’π’™

    βˆ’ 𝟐 - + +

    + β—‹- +

    (𝟏

    𝟐,πŸ•

    πŸ’]

    (βˆ’βˆž,𝟏

    𝟐) βˆͺ (

    𝟏

    𝟐,πŸ•

    πŸ’]

    𝟏

    𝟐

    πŸ•

    πŸ’

  • 17

    PSPM 1 SESSION 2019/2020 SM015/1

    17

    Question B2 2. Given a function 𝑓(π‘₯) = ln (2π‘₯ + 1)

    a. State the domain and range of 𝑓(π‘₯).

    b. Find the inverse function of 𝑓(π‘₯) and state its domain and range. Hence, find

    the value of π‘₯ for which π‘“βˆ’1(π‘₯) = 0.

    c. Sketch the graph of 𝑓(π‘₯) and π‘“βˆ’1(π‘₯) on the same coordinate axes.

    SOLUTION

    a) 𝑓(π‘₯) = ln (2π‘₯ + 1)

    π‘«π’π’Žπ’‚π’Šπ’: 𝑫𝒇: πŸπ’™ + 𝟏 > 𝟎

    𝒙 > βˆ’πŸ

    𝟐

    𝑫𝒇: (βˆ’πŸ

    𝟐, ∞)

    π‘Ήπ’‚π’π’ˆπ’†: 𝑹𝒇 = (βˆ’βˆž,∞)

    b) 𝑓(π‘₯) = ln (2π‘₯ + 1)

    𝒇[π’‡βˆ’πŸ(𝒙)] = 𝒙

    π₯𝐧[πŸπ’‡βˆ’πŸ(𝒙) + 𝟏] = 𝒙

    πŸπ’‡βˆ’πŸ(𝒙) + 𝟏 = 𝒆𝒙

    πŸπ’‡βˆ’πŸ(𝒙) = 𝒆𝒙 βˆ’ 𝟏

    π’‡βˆ’πŸ(𝒙) =π’†π’™βˆ’πŸ

    𝟐

    π‘«π’π’Žπ’‚π’Šπ’: π‘Ήπ’‡βˆ’πŸ = 𝑹𝒇 = (βˆ’βˆž,∞)

    π‘Ήπ’‚π’π’ˆπ’†:

    π‘Ήπ’‡βˆ’πŸ = 𝑫𝒇 = (βˆ’πŸ

    𝟐, ∞)

  • 18

    PSPM 1 SESSION 2019/2020 SM015/1

    18

    π’‡βˆ’πŸ(𝒙) = 𝟎

    π’†π’™βˆ’πŸ

    𝟐= 𝟎

    𝒆𝒙 βˆ’ 𝟏 = 𝟎

    𝒆𝒙 = 𝟏

    𝒙 = 𝒍𝒏 𝟏

    𝒙 = 𝟎

    c)