49
TEMF) Large Scale 3D Wakefield Si l i i h PBCI her Felder ( Simulations with PBCI magnetisch S. Schnepp , W. Ackermann, E. Arevalo, E. Gjonaj, and T. Weiland al. orie Elektro "Wake Fest 07 - ILC wakefield workshop at SLAC” 11 13 D b 2007 Schnepp et a tut für Theo 11-13 December 2007 Technische Universität Darmstadt, Fachbereich Elektrotechnik und Informationstechnik Schloßgartenstr. 8 , 64289 Darmstadt, Germany - URL: www.TEMF.de Technische Universität Darmstadt, Fachbereich Elektrotechnik und Informationstechnik Schloßgartenstr. 8 , 64289 Darmstadt, Germany - URL: www.TEMF.de S. S Insti

SLAC PBCI TEMF.ppt - ILC Agenda (Indico)

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

TEM

F) Large Scale 3D Wakefield Si l i i h PBCI

her F

elde

r ( Simulations with PBCI

mag

netis

ch S. Schnepp, W. Ackermann, E. Arevalo,E. Gjonaj, and T. Weiland

al.

orie

Ele

ktro

"Wake Fest 07 - ILC wakefield workshop at SLAC”11 13 D b 2007

Schn

epp

et a

tut f

ür T

heo 11-13 December 2007

Technische Universität Darmstadt, Fachbereich Elektrotechnik und InformationstechnikSchloßgartenstr. 8 , 64289 Darmstadt, Germany - URL: www.TEMF.de

Technische Universität Darmstadt, Fachbereich Elektrotechnik und InformationstechnikSchloßgartenstr. 8 , 64289 Darmstadt, Germany - URL: www.TEMF.de

S. S

Inst

i

Outline

•• IntroductionIntroduction

TEM

F)

•• IntroductionIntroduction

•• NumericalNumerical MethodMethod

her F

elde

r (

•• Parallelization StrategyParallelization Strategy

mag

netis

ch •• Modal Termination of Beam PipesModal Termination of Beam Pipes

•• PBCI Simulation ExamplesPBCI Simulation Examples

al.

orie

Ele

ktro

PBCI Simulation ExamplesPBCI Simulation Examples

Schn

epp

et a

tut f

ür T

heo

1

S. S

Inst

i

Introduction

1 A new generation of LINACs with ultra short electron bunches

Motivation for PBCI:TE

MF)

1. A new generation of LINACs with ultra-short electron bunches

a.a. bunch size for ILC: bunch size for ILC: 300 300 μμmm

her F

elde

r ( b.b. bunch size for LCLbunch size for LCLSS: : 20 20 μμmm

2 Geometry of tapers collimators far from rotational

mag

netis

ch 2. Geometry of tapers, collimators… far from rotational

a.a. 8 8 rectangularrectangular collimators at collimators at ILCILC--ESA in the design processESA in the design process

bb 3030 t lt l tt dd t iti i th d l t f LCLt iti i th d l t f LCLSS

al.

orie

Ele

ktro b.b. 30 30 rectangularrectangular--toto--roundround transitions in the undulator of LCLtransitions in the undulator of LCLSS

3. Many (semi-) analytical approximations become invalid

Schn

epp

et a

tut f

ür T

heo

a.a. based on rotationally symmetric geometrybased on rotationally symmetric geometry

bb low frequency assumptionslow frequency assumptions (Yokoya Stupakov)(Yokoya Stupakov)

2

S. S

Inst

i b.b. low frequency assumptionslow frequency assumptions (Yokoya, Stupakov)(Yokoya, Stupakov)

c.c. detailed physics needed for high frequency wakes (Banedetailed physics needed for high frequency wakes (Bane))

Introduction

38 1mm

beam view side view

TEM

F)

38.1mm15.05mm

2.75mm

17 65mm38 05mm

38.05mm

her F

elde

r ( 132.54mm17.65mm38.05mm

Courtesy: N. Watson, Birmingham

mag

netis

ch ILC-ESA collimator #8

al.

orie

Ele

ktro

bunch length 300μm

collimator length ~1.2m

Schn

epp

et a

tut f

ür T

heo

catch-up distance ~2.4m

3

S. S

Inst

i

ILC-ESA collimator #3

Introductiontube shielding

vacuum vesselPITZ diagnostics double cross

TEM

F)

outgoing pipe step

gap

cross

bunch length 2.5mmbunch width 2 5mm

her F

elde

r (

outgoing pipe p bunch width 2.5mmstructure length 325mm

mag

netis

ch Tapered transition @PETRA III

vacuum slots

al.

orie

Ele

ktro

bunch length 1cmelliptic pipe

Schn

epp

et a

tut f

ür T

heo

taper length 50cm

4

S. S

Inst

i

Courtesy: R. Wanzenberg, DESY

IntroductionThere is an actual demand for:

TEM

F)

1. Wake field simulations in arbitrary 3D-geometry

3D3D--codescodes

her F

elde

r ( 3D3D--codescodes

2. Accurate numerical solutions for high frequency fields

mag

netis

ch

(quasi(quasi--) dispersionless codes) dispersionless codes

3 Utili i l t ti l f lt h t b h

al.

orie

Ele

ktro 3. Utilizing large computational resources for ultra-short bunches

parallelized codesparallelized codes

Schn

epp

et a

tut f

ür T

heo

4. Specialized algorithms for long accelerator structures

5

S. S

Inst

i

moving window codesmoving window codes

Introduction

Di i N di i P ll li d M i i d

An (incomplete) survey of available codesTE

MF)

Dimensions Nondispersive Parallelized Moving window

BCI / TBCI 2.5D No No Yes1980

her F

elde

r ( NOVO 2.5D Yes No No

ABCI 2.5D No No Yes

0 ye

ars

mag

netis

ch

MAFIA 2.5/3D No No Yes

GdfidL 3D No Yes Yesme

20

2002

al.

orie

Ele

ktro

Tau3P 3D No Yes No

ECHO 2.5/3D Yes No Yes

Tim

ars

Schn

epp

et a

tut f

ür T

heo

CST ParticleStudio 3D No No No5

yea

6

S. S

Inst

i PBCI 3D Yes Yes Yes

NEKCEM 3D Quasi Yes No2007

Outline

•• IntroductionIntroduction

TEM

F)

•• IntroductionIntroduction

•• NumericalNumerical MethodMethod

her F

elde

r (

•• Parallelization StrategyParallelization Strategy

mag

netis

ch •• Modal Termination of Beam PipesModal Termination of Beam Pipes

•• PBCI Simulation ExamplesPBCI Simulation Examples

al.

orie

Ele

ktro

PBCI Simulation ExamplesPBCI Simulation Examples

Schn

epp

et a

tut f

ür T

heo

7

S. S

Inst

i

Numerical MethodThe FIT discretization

TEM

F)

A A

E ds H dAt∂

∂ μ∂

⋅ = − ⋅∫ ∫∫uur rr r

ddt μ= −Ce M h

))

her F

elde

r (

A A

H ds E J dAt∂

ε∂⎛ ⎞⋅ = + ⋅⎜ ⎟∂⎝ ⎠∫ ∫∫

∫∫

ur rr rr

FIT d

dt ε= +Ch M e j)) ))

mag

netis

ch 0V

H dA

E dA dV∂

μ

ε ρ

⋅ =∫∫

∫∫ ∫∫∫

uur r

ur r

%ε =S M e q)

)

al.

orie

Ele

ktro

V V

E dA dV∂

ε ρ⋅ =∫∫ ∫∫∫ 0μ =S M h

Schn

epp

et a

tut f

ür T

heo

T =C C% semidiscrete energy conservation

Topology of FIT:

8

S. S

Inst

i

0= =SC SC% % semidiscrete charge conservation

Numerical MethodUsing the conventional leapfrog time integration

1/ 2 1/ 21 nn nT+ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞)) )

TEM

F)

1/ 2 1/ 21 1

1 1 2 1 1

nn nT

n T n

t tt t

ε ε

μ μ ε

+ −− −

+ − − −

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞Δ Δ⎜ ⎟= −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟−Δ − Δ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

e e1 M C M jM C 1 M CM Ch h 0

)) ) )

) )

her F

elde

r (

9090

Behavior of numerical phase velocity vs. propagation angle

1c tΔ c tΔ

mag

netis

ch 12090

60

30150 0.75

1.00

12090

60

301500.75

0.50

1:3

c tz

σ Δ= ≤Δ

: 1c tz

σ Δ= =Δ

al.

orie

Ele

ktro

0180

0.50

0.25

0180

0.50

0.25z z

Schn

epp

et a

tut f

ür T

heo

330210330210

9

S. S

Inst

i

300270

240300270

240Stable but large dispersion No dispersion but unstable

Numerical Method

Implementing a dispersion-free scheme leads to this:

TEM

F)

Numerical phase velocity and amplification vs. propagation angle

her F

elde

r (

12090

60

0.75

12090

60

0.75: 1c t

zσ Δ= =

Δ

mag

netis

ch

z

30150 0.50

0.25

30150 0.50

0.25z

al.

orie

Ele

ktro

z0

330210

180 0

330210

180z

Schn

epp

et a

tut f

ür T

heo 330

300270

240

210 330

300270

240

210 Neutrally stableNo longitudinal dispersion

10

S. S

Inst

i

Outline

•• IntroductionIntroduction

TEM

F)

•• IntroductionIntroduction

•• NumericalNumerical MethodMethod

her F

elde

r (

•• Parallelization StrategyParallelization Strategy

mag

netis

ch •• Modal Termination of Beam PipesModal Termination of Beam Pipes

•• PBCI Simulation ExamplesPBCI Simulation Examples

al.

orie

Ele

ktro

PBCI Simulation ExamplesPBCI Simulation Examples

Schn

epp

et a

tut f

ür T

heo

11

S. S

Inst

i

Parallelization StrategyA balanced domain partitioning approach

TEM

F)

total computational domain

left right,2 2N NN N⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦

her F

elde

r (

intermediate subdomains

left right2 2⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦

mag

netis

ch

active subdomains

left left

right right

W NW N

=

processor #1

al.

orie

Ele

ktro

active subdomainsprocessor #1

binary tree leafs

Schn

epp

et a

tut f

ür T

heo

processor #2 processor #3

12

S. S

Inst

i

Equal loads assigned to each node:Grid Points

Node Node iW wα= ∑

Parallelization Strategy

i id i d

Example: Tapered transition for PETRA IIITE

MF)

moving grid window Domain partitioning pattern for 7 processors

her F

elde

r (

Distribution of grid points

mag

netis

ch

9.292.230

9.246.000 9.246.0009 250 000

9.300.000s

Distribution of grid points

al.

orie

Ele

ktro 9.200.000

9.211.428

9.165.600

9 119 9439 150 000

9.200.000

9.250.000

Grid

Poi

nts

Grid points

Total 64.481.201

Schn

epp

et a

tut f

ür T

heo 9.119.943

9.050.000

9.100.000

9.150.000

Num

ber o

f

Min 9.119.943

Max 9.292.230

13

S. S

Inst

i

9.000.0001 2 3 4 5 6 7

Processor Number

Dev. < 1.0%

Parallelization

20Parallel performance tests

TEM

F)

16

20

Number of grid cells1E+6Ideal speedup

Id l

her F

elde

r (

p 12

16 Ideal

mag

netis

ch

Spee

dup

8

al.

orie

Ele

ktro

41E+06 cells

Schn

epp

et a

tut f

ür T

heo

0

14

S. S

Inst

i

Number of Processors0 4 8 12 16 20

Parallelization

20Parallel performance tests

TEM

F)

16

20

Number of grid cells10E+6Ideal speedup

her F

elde

r (

p 12

16

Ideal

mag

netis

ch

Spee

dup

8

al.

orie

Ele

ktro

4 10E+06 cells

Schn

epp

et a

tut f

ür T

heo

0

15

S. S

Inst

i

Number of Processors0 4 8 12 16 20

Parallelization

20Parallel performance tests

TEM

F)

16

20

Number of grid cells50E+6Ideal speedup

her F

elde

r (

p 12

16

Ideal

mag

netis

ch

Spee

dup

8

al.

orie

Ele

ktro

4 50E+06 cells

Schn

epp

et a

tut f

ür T

heo

0

16

S. S

Inst

i

Number of Processors0 4 8 12 16 20

Parallelization

20Parallel performance tests

TEM

F)

16

20

Number of grid cells100E+6Ideal speedup

her F

elde

r (

p 12

16

Ideal

mag

netis

ch

Spee

dup

8

al.

orie

Ele

ktro

4 100E+06 cells

Schn

epp

et a

tut f

ür T

heo

0

17

S. S

Inst

i

Number of Processors0 4 8 12 16 20

Parallelization

20Parallel performance tests

TEM

F)

16

20

Number of grid cells200E+6Ideal speedup

her F

elde

r (

p 12

16

Ideal

mag

netis

ch

Spee

dup

8

al.

orie

Ele

ktro

4 200E+06 cells

Schn

epp

et a

tut f

ür T

heo

0

18

S. S

Inst

i

Number of Processors0 4 8 12 16 20

Parallelization Strategy

20Parallel performance tests

TEM

F)

16

18

2010e5 Grid points10e6 Grid points50e6 Grid points10e7 Grid points

her F

elde

r (

up

12

14

16 10e7 Grid points20e7 Grid pointsIdeal

mag

netis

ch

Spe

edu

8

10

al.

orie

Ele

ktro

2

4

6

Schn

epp

et a

tut f

ür T

heo

Number of Processors0 2 4 6 8 10 12 14 16 18 20

0

2

19

S. S

Inst

i Number of Processors

TEMF Cluster: 20 INTEL CPUs @ 3.4GHz, 8GB RAM, 1Gbit/s Ethernet Network

Parallelization Strategy

1 2Parallel performance tests

TEM

F)

1

1,2

her F

elde

r (

cy

0,8

mag

netis

ch

Effi

cien

c

0 4

0,6

al.

orie

Ele

ktro

0,2

0,410e5 Grid points10e6 Grid points50e6 Grid points10e7 Grid points20e7 Grid points

Schn

epp

et a

tut f

ür T

heo

Number of processors0 2 4 6 8 10 12 14 16 18 20

0

20e7 Grid pointsIdeal

20

S. S

Inst

i Number of processors

TEMF Cluster: 20 INTEL CPUs @ 3.4GHz, 8GB RAM, 1Gbit/s Ethernet Network

Outline

•• IntroductionIntroduction

TEM

F)

•• IntroductionIntroduction

•• NumericalNumerical MethodMethod

her F

elde

r (

•• Parallelization StrategyParallelization Strategy

mag

netis

ch •• Modal Termination of Beam PipesModal Termination of Beam Pipes

•• PBCI Simulation ExamplesPBCI Simulation Examples

al.

orie

Ele

ktro

PBCI Simulation ExamplesPBCI Simulation Examples

Schn

epp

et a

tut f

ür T

heo

21

S. S

Inst

i

Modal Termination of Pipesy Indirect integration schemes

TEM

F)

z2C

0C 1C0z =

her F

elde

r (

1 z s∞ +

direct indirect

1 1z s s+∫ ∫

mag

netis

ch 1( ) ( , )z zz sW s dz E z t

Q c−∞

+= − =∫0 2

1 1( , ) (0, )TMz y

C C

z s sdz E z t dyG tQ c Q c

+= − = − =∫ ∫

al.

orie

Ele

ktro 1. Indirect integration of potential for 2D-structures (Weiland 1983,

Napoly 1993)

Schn

epp

et a

tut f

ür T

heo

2. Generalization for 3D-structures (A. Henke and W. Bruns, EPAC’06, July 2006, Edinburgh, UK)

22

S. S

Inst

i

( ) ( )TM TM TM TM TMx y zx y y x zG e E cB e E cB e E= + + − +

ur r r rirrotational

Modal Termination of Pipes0y 0z = Modal approach

TEM

F) z0C 1C

her F

elde

r (

1( ) ( , )z zz sW s dz E z t

∞ += − =∫1 1( , ) ( , ) ( )n

z z nz sdz E z t e x y W s+= − = − ∑∫

direct modal

mag

netis

ch

( ) ( , )z zQ c−∞∫

0

( , ) ( , ) ( )z z nnC

yQ c Q∑∫

( )( , , , ( ) / ) ( ) ( , ) n

z siik zn cdz E x y z t z s c dz d C e x y e eωωω ω

∞ ∞ ∞ +−⎡ ⎤= + = =⎢ ⎥∑∫ ∫ ∫

al.

orie

Ele

ktro

( )( / )1( , ) ( )n i c s

z ne x y d C e ωω ω∞

−=∑ ∫

0 0

( , , , ( ) / ) ( ) ( , )z n zn

dz E x y z t z s c dz d C e x y e eω ω−∞

+ ⎢ ⎥⎣ ⎦

∑∫ ∫ ∫spectral coefficient ofn-th (TM) mode

Schn

epp

et a

tut f

ür T

heo ( ),

( , ) ( )/ ( )z n

n z n

yi c kω ω−∞ −∑ ∫

n-th (TM) mode contribution

- ~ 1982 Robert Siemann

23

S. S

Inst

i 1982 Robert Siemann- “Indirect methods for wake potential integration”, I. Zagorodnov, PRSTAB 9 ‘06- “Eigenmode expansion method in the indirect calculation of wake potential in 3D structures”,

X. Dong, E. Gjonaj, ICAP’06

Modal Termination of Pipes1. Time domain integration in the inhomogeneous sections:

01 z s+∫

TEM

F)

1 ( , )zz sdz E z t

Q c−∞

+− =∫

her F

elde

r ( 2. Modal analysis at z = 0: ( , ,0, ) (0, ), ( , )n nz z zE x y t E t e x y⇒

3 Compute spectral coefficients (FFT): (0 ) ( )nE t C ω⇒

mag

netis

ch 3. Compute spectral coefficients (FFT): (0, ) ( )z nE t C ω⇒

4. Compute wake potential contribution per mode (IFFT):

al.

orie

Ele

ktro

p p p ( )

( ),

( ) ( )/ ( )

nn

z n

C W si c k

ωω ω

⇒−

Schn

epp

et a

tut f

ür T

heo ( ),

5. Compute wake potential transition in the outgoing pipe:1 1∞

24

S. S

Inst

i

0

1 1( , ) ( , ) ( )nz z n

n

z sdz E z t e x y W sQ c Q

∞ +− = = − ∑∫

Modal Termination of PipesUsing FD reconstruction in long intermediate pipes

diagnostics cross

TEM

F)

bunch

injector section

diagnostics cross

her F

elde

r (

bunch

mag

netis

ch full Time Domain

-20 -10 0 10 20

1mm step

al.

orie

Ele

ktro

bunch

Ez / [kV /m]

Schn

epp

et a

tut f

ür T

heo bunch

I t

25

S. S

Inst

i

lowest eigenmode5 eigenmodes10 eigenmodes15 eigenmodes20 eigenmodesFD analysis reconstructionIn an accurate

simulation ~300 modes

Outline

•• IntroductionIntroduction

TEM

F)

•• IntroductionIntroduction

•• NumericalNumerical MethodMethod

her F

elde

r (

•• Parallelization StrategyParallelization Strategy

mag

netis

ch •• Modal Termination of Beam PipesModal Termination of Beam Pipes

•• PBCI SimulationPBCI Simulation ExamplesExamples

al.

orie

Ele

ktro

PBCI Simulation PBCI Simulation ExamplesExamples

Schn

epp

et a

tut f

ür T

heo

26

S. S

Inst

i

ILC-ESA collimatorILC-ESA collimator #8 bunch size 300μm

no. of grid points ~450M

TEM

F)

60σ / Δz = 2 5

Convergence vs. grid step no. of processors 24simulation time 85hrs

her F

elde

r (

20

40σ / Δz = 2.5σ / Δz = 5σ / Δz = 10σ / Δz = 15 Moving window:

3 mm length

mag

netis

ch

V /

pC]

-20

0

g

al.

orie

Ele

ktro

Wz /

[V

60

-40

20

Schn

epp

et a

tut f

ür T

heo

-80

-60

27

S. S

Inst

i

s / σ-4 -3 -2 -1 0 1 2 3 4

-100

ILC-ESA collimatorILC-ESA collimator #8 38.05

38.1 mm15.05 mm

2.75 mm

bunch

TEM

F)

Direct potential (z = 150mm)

Direct and transition wakes

5m

m

132.54 mm17.65 mm

her F

elde

r (

10

30 Direct potential (z = 150mm)Transition potentialSteady state potential

mag

netis

ch

V /

pC] -10

al.

orie

Ele

ktro

Wz /

[V

-50

-30

Schn

epp

et a

tut f

ür T

heo

-70

28

S. S

Inst

i

s / σ-4 -3 -2 -1 0 1 2 3 4

-90

TESLA / HOM couplerTESLA 9-cell cavity

TEM

F) bunch

her F

elde

r (m

agne

tisch -15 -10 -5 0 5 10 15

Ez / [kV /m]

al.

orie

Ele

ktro bunch length 1mm

bunch charge 1nC

Schn

epp

et a

tut f

ür T

heo cavity length 1.5m

no. of grid points ~760Mno of processor

29

S. S

Inst

i no. of processorcores 408

simulation time ~40hrs

TESLA / HOM couplerTESLA 9-cell cavity

TEM

F) Longitudinal wake potential

5 PBCI

her F

elde

r (

0

5 PBCI ECHO2D

mag

netis

ch 0

V / p

C)

al.

orie

Ele

ktro -5

Wz /

(V

Schn

epp

et a

tut f

ür T

heo -10

30

S. S

Inst

i

-5 -4 -3 -2 -1 0 1 2 3 4 5-15

s / σ

TESLA / HOM couplerHOM / HOM-RF coupler (present DESY design)

TEM

F) Upstream couplerHOM

Downstream couplerRF + HOM

her F

elde

r (m

agne

tisch

al.

orie

Ele

ktro

Beam view

Schn

epp

et a

tut f

ür T

heo

Courtesy: I. Zagorodnov

31

S. S

Inst

i

TESLA / HOM coupler

0 01

0

DD

Upstream couplerTE

MF)

-0.02

-0.01C

HO

3DC

HO

3D

her F

elde

r (

-0.03 ECEC

mag

netis

ch

-0.5 0 0.5-0.04

0.1

0.01

Wx

al.

orie

Ele

ktro

0.0

(V /

pC)

-0 01

0.00

C /

mm

)

Wy

CI

CI

Schn

epp

et a

tut f

ür T

heo

-0.2

-0.1

Wz /

(Points / σ

2 5 10

-0.02

-0.01

Wt /

(V /

pC

PBC

PBC

32

S. S

Inst

i

-5 -4 -3 -2 -1 0 1 2 3 4 5-0.3

s / σ

15 20

-5 -4 -3 -2 -1 0 1 2 3 4 5

-0.03

s / σ

TESLA / HOM coupler

-0.005

0

DD

Downstream couplerTE

MF) -0.01

-0 015 CH

O3D

CH

O3D

her F

elde

r (

0.015

-0.02

ECEC

mag

netis

ch

0.010

Wx0.2

-0.5 0 0.5

al.

orie

Ele

ktro

-0 005

0.000

0.005

pC /

mm

)

Wy

-0 2

0.0

V /

pC)

CI

CI

Schn

epp

et a

tut f

ür T

heo

-0.015

-0.010

-0.005

Wt /

(V /

-0.4

-0.2 W

z / (V

PBC

PBC

33

S. S

Inst

i

-5 -4 -3 -2 -1 0 1 2 3 4 5

-0.020

s / σ

-5 -4 -3 -2 -1 0 1 2 3 4 5

-0.6

s / σ

TESLA / HOM coupler

0 0

TEM

F) -0.01-0.005

-0.01 O3D

O3D

her F

elde

r (

-0.03

-0.02-0.015

-0.02 ECH

OEC

HO

mag

netis

ch

-0.5 0 0.5-0.04

-0.5 0 0.5

al.

orie

Ele

ktro

0.000

0.005

0.010

mm

)

Wx Wy

0.00

0.01

mm

)

Wx Wy

Schn

epp

et a

tut f

ür T

heo

-0.015

-0.010

-0.005

Wt /

(V /

pC /

-0.02

-0.01

Wt /

(V /

pC /

m

PBC

IPB

CI

34

S. S

Inst

i

-5 -4 -3 -2 -1 0 1 2 3 4 5

-0.020

s / σ -5 -4 -3 -2 -1 0 1 2 3 4 5

-0.03

s / σ

TESLA / HOM coupler

TEM

F)

x

y

x

y

x

y

x

yold

her F

elde

r (

π

mag

netis

ch

al.

orie

Ele

ktro

yyyy

new

Schn

epp

et a

tut f

ür T

heo

xxxxnew

35

S. S

Inst

i

I. Zagorodnov, M. Dohlus

TESLA / HOM couplerTE

MF)

x

y

x

y

x

y

x

y+ x

y

x

y

x

y

x

y

+

her F

elde

r (

kV(0,0)nCxW ⎡ ⎤⎢ ⎥⎣ ⎦

kV(0,0)nCyW ⎡ ⎤⎢ ⎥⎣ ⎦

mag

netis

ch

0

0.01

0 01

0

0.01

newnew

al.

orie

Ele

ktro

-0.02

-0.01

0 03

-0.02

-0.01

ldold

Schn

epp

et a

tut f

ür T

heo

0 5 0 0 5-0.04

-0.03

-0 05

-0.04

-0.03old

36

S. S

Inst

i -0.5 0 0.5 -0.5 0 0.50.05

[cm]s [cm]sI. Zagorodnov, M. Dohlus

TESLA / HOM couplerPresent DESY Design

TEM

F)he

r Fel

der (

Transverse wake potential

mag

netis

ch

0.05

0.10 Wx Wy

m)

al.

orie

Ele

ktro

-0.05

0.00

(V /

pC /

m

Schn

epp

et a

tut f

ür T

heo

Beam view-0.15

-0.10Wt /

Preliminary

37

S. S

Inst

i

-5 -4 -3 -2 -1 0 1 2 3 4 5

0.15

s / σ

TESLA / HOM coupler

0 05

0.10 Wx Wy

TE

MF) +

-0.05

0.00

0.05

(V /

pC /

mm

)

her F

elde

r (

-0.15

-0.10Wt /

(

mag

netis

ch

0.01 0.01

-5 -4 -3 -2 -1 0 1 2 3 4 5s / σ≠

al.

orie

Ele

ktro

-0.01

0

-0.01

0Wx,sum =Wx,up + Wx,down

Wy,sum =Wy,up + Wy,down+

Schn

epp

et a

tut f

ür T

heo

0 03

-0.02-0.03

-0.02

Assumption of linearityt lid

38

S. S

Inst

i

-0.5 0 0.5-0.04

-0.03

-0.5 0 0.5-0.05

-0.04not valid

TESLA / HOM couplerProposed DESY Design (Dohlus, Zagorodnov)

TEM

F)he

r Fel

der (

Transverse wake potential0 20

mag

netis

ch

0 10

0.15

0.20 Wx Wy

m)

al.

orie

Ele

ktro

0.00

0.05

0.10

(V /

pC /

mm

Schn

epp

et a

tut f

ür T

heo

Beam view-0.10

-0.05Wt /

(

P li i

39

S. S

Inst

i

(symmetrical coupler positioning)-5 -4 -3 -2 -1 0 1 2 3 4 5

-0.15

s / σ

Preliminary

TESLA / HOM coupler

0.15

0.20 Wx (proposed) WyWx (present)

TEM

F)

0.05

0.10

Wx (present) Wy

pC /

mm

)

her F

elde

r (

-0.05

0.00

Wt /

(V /

p

mag

netis

ch proposed

-0.15

-0.10

Preliminary

al.

orie

Ele

ktro

0.01 0.01

-5 -4 -3 -2 -1 0 1 2 3 4 5s / σ

Schn

epp

et a

tut f

ür T

heo

-0.02

-0.01

0

-0.02

-0.01

0proposed

40

S. S

Inst

i

present-0.5 0 0.5

-0.04

-0.03

-0.5 0 0.5-0.05

-0.04

-0.03kV(0,0)nCxW ⎡ ⎤⎢ ⎥⎣ ⎦

kV(0,0)nCyW ⎡ ⎤⎢ ⎥⎣ ⎦

present

PETRA IIITapered Transition PETRA III

TEM

F)he

r Fel

der (

mag

netis

chal

.or

ie E

lekt

roSc

hnep

pet

atu

t für

The

o

No convergence with MAFIAdue to memory limitations and dispersion

41

S. S

Inst

i

Complex geometry

“Wake Computations for Undulator Vacuum Chambers of PETRA III”, R. Wanzenberg, PAC’07

PITZ PhotoinjectorLow-Emittance Injector Development DESY/Zeuthen

TEM

F)he

r Fel

der (

mag

netis

chal

.or

ie E

lekt

roSc

hnep

pet

atu

t für

The

o

42

S. S

Inst

i

PITZ PhotoinjectorOptimization studies performed

TEM

F)he

r Fel

der (

mag

netis

chal

.or

ie E

lekt

roSc

hnep

pet

atu

t für

The

o

43

S. S

Inst

i

PITZ Photoinjector

l it di l

TEM

F)

longitudinalcurrent profile

her F

elde

r (m

agne

tisch

al.

orie

Ele

ktro

Schn

epp

et a

tut f

ür T

heo

longitudinalwake potential

44

S. S

Inst

i

PITZ PhotoinjectorTE

MF)

her F

elde

r (m

agne

tisch

al.

orie

Ele

ktro

Schn

epp

et a

tut f

ür T

heo

45

S. S

Inst

i

PITZ Photoinjector

0 10

0.152 mm1. mm0. mm

- 1. mm2 mm

TEM

F)

0.05

0.10V�pCmmD

- 2. mm- 3. mm- 4. mm- 5. mm- 6. mm- 7. mm- 8. mm- 9. mm

her F

elde

r (

0 05

0.00LHoriz@V 9. mm

- 10. mm- 11. mm

mag

netis

ch

- 0.10

- 0.05

WxHsL

al.

orie

Ele

ktro

- 15 - 10 - 5 0 5 10 15- 0.15

s @mmD

Schn

epp

et a

tut f

ür T

heo

46

S. S

Inst

i

PITZ Photoinjector

0.08

TEM

F)

0 04

0.06

her F

elde

r (

0.02

0.04

V�pCmmL

mag

netis

ch

- 0.02

0.00k xHV

al.

orie

Ele

ktro

- 10 - 8 - 6 - 4 - 2 0 2

- 0.04

Schn

epp

et a

tut f

ür T

heo - 10 - 8 - 6 - 4 - 2 0 2

DxHmmLA minimum of the transverse kick was found at 8mm distance.

47

S. S

Inst

i

TEM

F) Large Scale 3D Wakefield Si l i i h PBCI

her F

elde

r ( Simulations with PBCI

mag

netis

ch S. Schnepp, W. Ackermann, E. Arevalo,E. Gjonaj, and T. Weiland

al.

orie

Ele

ktro

"Wake Fest 07 - ILC wakefield workshop at SLAC”11 13 D b 2007

Schn

epp

et a

tut f

ür T

heo 11-13 December 2007

Technische Universität Darmstadt, Fachbereich Elektrotechnik und InformationstechnikSchloßgartenstr. 8 , 64289 Darmstadt, Germany - URL: www.TEMF.de

Technische Universität Darmstadt, Fachbereich Elektrotechnik und InformationstechnikSchloßgartenstr. 8 , 64289 Darmstadt, Germany - URL: www.TEMF.de

S. S

Inst

i