Signals and Systems 03

  • Upload
    nvbond

  • View
    224

  • Download
    0

Embed Size (px)

Citation preview

  • 7/29/2019 Signals and Systems 03

    1/8

    19

    EEE303:SignalsandLinearSystems

    Convolve ( )x t with ( )h t asshownbelowwhereT=3sec.

    ( ) ( ) ( ) ( ) ( )n

    y t h t x t h t t nT

    =

    = = ( ) ( ) ( )n n

    h t t nT h t nT

    = =

    = = .

    TheresultingoutputisshowninFigure(b)above.

    PeriodicConvolution

    If

    1( )x t and

    2 ( )x t areboth

    periodic

    signals

    with

    common

    period

    0T ,

    the

    convolution

    of

    1( )x t and

    2 ( )x t does

    notconverge.Inthiscasewedefineperiodicconvolutionof 1( )x t and 2 ( )x t as,

    0

    1 2 1 20

    ( ) ( ) ( ) ( ) ( )T

    y t x t x t x x t d = = .

    FrequencyResponseFunctionofaLinearSystem

    Let, ( )j t

    x t e = .Theconvolutionintegralgivestheoutputas, ( )( ) ( ) j ty t h e d

    = .

    Or, ( ) ( ) ( )j t j jy t e h e d H j e

    = = ,

    Wherewedefine,( )( ) ( ) ( )j j H jH j h e d H j e

    = = .

    Theoutput ( )y t isthenexpressedas,( ( ))( ) ( ) j t H jy t H j e += .

    Theoutputisacomplexexponentialofthesamefrequencyasinputmultipliedbythecomplexconstant

    ( )H j .This ( )H j iscalledthefrequencyresponseofthesystem.

    Similarthingswillhappenforsin t and cos t input.Thefunctions ,sin and cosj t

    e t t arecalledEigen

    function,aswegetthesamefunctionintheoutputasintheinput.

  • 7/29/2019 Signals and Systems 03

    2/8

    20

    Example

    Theimpulseresponseofasystemisgivenas,/1( ) ( )t RCh t e u t

    RC

    = .Findtheexpressionforthefrequency

    response.Whatwillbetheoutputofthesystemwith, ( ) cos2000 cos20000x t t t = + ?

    / ( 1/ )

    0

    1 1 1/( ) ( ).

    1/

    RC j j RC RCH j e u e d e d

    RC RC j RC

    +

    = = =

    +

    Or,

    ( )

    1tan ( )

    22

    1/( )

    1/

    j RCRCH j e

    RC

    =+

    .45 84.29

    1 2( ) 0.707 ; ( ) 0.995 .j jH j e H j e = =

    o o

    Thus, ( ) 0.707cos(2000 45 ) 0.995cos(2000 84.29 )y t t t = + o o .Ans

    BlockDiagramRepresentation

    Theimpulseresponseandthedifferentialequationdescriptionsrepresentonlytheinput=outputbehaviorof

    asystem.Ontheotherhandblockdiagramrepresentationdescribesadifferentsetofinternalcomputations

    usedtodeterminethesystemoutput.

    Ablock

    diagram

    is

    an

    interconnection

    of

    elementary

    operations

    that

    act

    on

    the

    input

    signal.

    It

    is

    amore

    detailedrepresentationofthesystemas itdescribeshowthesystems internalcomputationsareordered.

    Blockdiagramrepresentationsconsistofaninterconnectionofthreeelementaryoperationsonsignals:

    1. Scalarmultiplication: ( ) ( )y t cx t= ,2. Addition: ( ) ( ) ( )y t x t w t= + ,and3. Integration: ( ) ( )ty t x d

    = .

    AnNthordersystem is representedby theequation,0 0

    ( ) ( )k kN M

    k kk kk k

    d y t d x t a b

    dt dt = == . Inorder todepict the

    system

    in

    terms

    of

    integration

    operation,

    let

    us

    assumeM N=

    ,

    1Na=

    and

    multiply

    both

    side

    of

    the

    above

    equationbyND .Afterrearrangement,

    1 2 ( 1)

    1 1 2 2 1 1 0 0( ) ( ) ( ) ( ) ( ) ( )N N

    N N N N Ny t b x t D b x a y D b x a y D b x a y D b x a y

    = + + + + + LL

    (1)

    Usingtheaboveequationwecandrawthesimulationdiagramas,

    Thisformofrealizationiscalledcanonicalrealization.Differentiatorsarenotusedtosimulateasystem,asa

    differentiatorenhancesnoise.Ontheotherhandintegratorssmoothorsuppressnoisepresentinaninput.

    cx(t) y(t)

    w(t)

    y(t)x(t)

    t

    x(t) y(t)

  • 7/29/2019 Signals and Systems 03

    3/8

    21

    Equation(1)inthepreviouspagecanbewritteninanotherformforN=2as,1 2 1 2

    2 1 0 1 0( ) ( ) ( ) ( ) ( ) ( )y t b x t b D x t b D x t a D y t a D y t = + +

    (2)

    DirectformIanddirectformIIimplementationofthesystemisshowninfigures(a)and(b)below.

    ExamplesConstructtheblockdiagramrepresentationofthesystembelow.

    Or,2 1 1 1( ) ( )D D v t Di t

    RC LC C

    + + =

    ; here,1 0 2 1 0

    1 1 1, ; 0, , 0a a b b b

    RC LC C= = = = = .

    Thecanonical

    block

    diagram

    representation

    of

    the

    system

    is

    shown

    below:

    Thesystemcanbesimulatedusingmultiplier,summerand

    integratorusingOPAMP.

    State-variableRepresentation

    The statevariable description of an LTI system consists of a series of coupled firstorder differential

    equationsthatdescribeshowthestateofthesystemevolvesandanequationthatrelatestheoutputofthe

    system to the current state variables and the input. These equations arewritten inmatrix form. State

    variableanalysistransformsanNthorderdifferentialequation intoNfirstorderdifferentialequationsofa

    setofstatevariables.

    Thestateofasystemisdefinedasaminimalsetofsignalsthatrepresentsthesystemsentirememoryof

    thepast.Givenonlythevalueofthestateatapointintime 0t ,andtheinputforthetimes 0t t wecan

  • 7/29/2019 Signals and Systems 03

    4/8

    22

    determinetheoutputforalltimes(or, 0t t ).Thestateof

    asystemisnotuniqueandtherearemanypossiblestate

    variabledescriptionscorrespondingtoasystemwitha

    giveninputoutputcharacteristic.

    Considertheelectricalcircuitshowninfigureright.Derive

    thestatevariabledescriptionforthissystemiftheinputis

    ( )x t andtheoutputisthecurrentthroughtheresistor ( )y t .Choosethestatevariablesasthevoltageacross

    eachcapacitor.

    1 1

    1

    1 1

    ( ) ( ) ( )

    1 1, ( ) ( ) ( )

    x t R y t q t

    or y t q t x t R R

    = +

    = +

    Thisequationexpressestheoutputasafunctionofthestatevariablesandtheinput.

    Let, 2 ( )i t bethecurrentthrough 2R . Weget, 2 1 22 2

    1 1( ) ( ) ( )i t q t q t

    R R= .Also, 2 2 2( ) ( )i t C q t = & .

    Thus,2 1 2

    2 2 2 2

    1 1( ) ( ) ( )q t q t q t

    C R C R= &

    Again,currentthrough 1C is, 1 1 1 2 1 22 2

    1 1( ) ( ) ( ) ( ) ( ) ( ) ( )i t C q t y t i t y t q t q t

    R R= = = +&

    Thus,

    1 2 1 2 1 1 2

    1 1 2 1 2 1 1 1 1 1 2 1 2

    1 2

    1 1 1 2 1 2 1 1

    1 1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    1 1 1 1( ) ( ) ( )

    q t y t i t y t q t q t q t x t q t q t C C R C R C R C R C R C R

    q t q t x t C R C R C R C R

    = = + = + +

    = + + +

    &

    1 1

    1 11 1 1 2 1 2

    2

    22 2 2 2

    ( ) q (t) 11 1 1

    ( )1 1

    ( )0q (t)

    q t

    C RC R C R C Rx t

    q tC R C R

    +

    = +

    &

    &

    ; Stateequation

    1

    1

    2

    ( )1

    ( ) ( )

    0 ( )

    1

    1

    q t

    Ry t x t

    q tR

    = +

    ; Outputequation

    Or,q(t) = Aq(t) + Bx(t)

    y(t) = Cq(t) + Dx(t)

    &,wherethematricesA,B,CandDdescribetheinternalstructureofthesystem.

    Here,Aiscalledthesystemmatrix,Biscalledtheinputmatrix,CiscalledtheoutputmatrixandDiscalled

    thetransmission

    matrix.

    Findthestatevariabledescriptionofthecircuitdepictedinfigurebelow.

    (Ans)

  • 7/29/2019 Signals and Systems 03

    5/8

    23

    Inblockdiagramrepresentation,thestatevariablecorrespondstotheoutputsoftheintegrators.Consider

    thefollowingexample:

    Theblockdiagramaboveindicatesthat,

    ForanNthordersystemwithminputandpoutput,thedimensionsofA,B,CandDareasfollows:

    ( ), ( ), ( ) and ( )A N N B N m C p N D p m .

    State-spacerepresentationofadifferentialequation

    Thegeneral

    form

    of

    an

    Nth

    order

    differential

    equation

    is,

    LetusdefineNstatevariables 1 1( ), ( ), , ( )Nq t q t q t L as,

    1

    2

    1

    ( ) ( )

    ( ) ( )

    ( ) ( )NN

    q t y t

    q t y t

    q t y t

    =

    =

    =

    &

    M Then,

    1 2

    2 3

    1 1 2 1

    ( ) ( )

    ( ) ( )

    ( ) ( ) ( ) ( ) ( ) ( )NN N N N

    q t q t

    q t q t

    q t y t a q t a q t a q t x t

    =

    =

    = = +

    &

    &

    M

    & L

    And,1

    ( ) ( )y t q t= .

    Inmatrix

    form

    the

    above

    two

    equations

    can

    be

    expressed

    as,

  • 7/29/2019 Signals and Systems 03

    6/8

    24

    Where,

    Solutionofstateequations

    Letusdeterminethesolutionofthestateequation, ; 0q(t) = Aq(t) + Bx(t) x(0) = x& .

    Rewritingtheequation, =q(t) Aq(t) Bx(t)&

    Multiplyingbothsidesbyt

    e A

    weget, [ ] [ ]t t td

    e e edt

    = =A A Aq(t) Aq(t) q(t) Bx(t)&

    Integratingbothsidesbetweenthelimits 0 andt,weget

    0 0

    ttte e d

    = A A

    q(t) Bx( )

    Or,0

    0t

    te e d =

    A Aq(t) q( ) Bx( ) or,

    ( )

    00 0

    tt t t t e e d e e t

    = + = + A A A A

    q(t) q( ) Bx( ) q( ) Bx( )

    Iftheinitialstateisknownat 0t t= ,theaboveequationbecomes,

    0

    0

    ( ) ( )

    0

    tt t t

    te t e d

    = +

    A Aq(t) q( ) Bx( ) .

    ThematrixfunctionteA isknownasthestatetransitionmatrixofthesystem.

    Theoutputequationisgivenby,

    0

    ( )0t

    t t

    te e d = + +

    A Ay(t) C q( ) C Bx( ) Dx(t) .

    Thezerostateresponseofthesystemis(when 0=q(0) ),t te t e t = + = + A Ay(t) C B x( ) Dx(t) C B x( ) D(t) x(t)

    Or, [ ]te= + = Ay(t) C B D(t) x(t) h(t) x(t)

    Thematrix

    h(t) is

    known

    as

    impulse

    response

    matrix.

    Evaluationof teA

    Let,Abean ( )N N matrixand I bean ( )N N identitymatrix.TheEigenvalues , 1,2, ,i i N = L ofA

    aretherootsoftheNthorderpolynomial, det[ ] 0 =A I .

    Evaluationofthestatetransitionmatrixt

    eA isbasedontheCayleyHamiltontheorem.ThistheoremstatesthatthematrixAsatisfiesitsowncharacteristicequation,i.e.,

    If,1

    1 1 0( ) 0N N

    NQ a a a

    = + + + + =L

    Then,1

    1 1 0( ) 0N NNQ a a a

    = + + + + =A A A A IL

    1

    1 1 0

    N N

    Na a a

    = A A A IL (1)

    Now,

    2 2

    2! 2!

    N Nt t t

    e t= + + + + +AA A

    I A L L

    Applyingequation(1),teA maybeexpressedas,

    2 1

    0 1 2 1

    t N

    Ne

    = + + + +A

    I A A AL (2)

    Ifall i saredistinctwemaywrite,2 1

    0 1 2 1itN

    i i N ie

    + + + + =L fromwherewecanfound s

    as,

    We canalso calculateteA using Laplace

    transform.

  • 7/29/2019 Signals and Systems 03

    7/8

    25

    Example

    Findastatespacerepresentationofthesystemasshowninfigurebelow.

    The system is of order 3.We assume three state variables 1 2 3( ), ( ) and ( )q t q t q t . From figure abovewe

    obtain,

    (Ans)

    Example

    Finda statespace representationof thecircuit shown in figurebelowassuming that theoutputsare the

    currentsflowingin 1 2andR R .

    Wechoose

    the

    state

    variables

    1( ) ( )Lq t i t = and2 ( ) ( )Cq t v t = . Let,

    1 1( ) ( )x t v t= and2 2( ) ( )x t v t= . Also,

    1 1( ) ( )y t i t= and 2 2( ) ( )y t i t= .

    ApplyingKVLtothetwoloopsweget,

  • 7/29/2019 Signals and Systems 03

    8/8

    26

    Rearrangingandwritinginmatrixformweget,

    (Ans)

    Example: Find teA for0 1

    6 5

    =

    A usingCayleyHamiltontheorem.

    ThecharacteristicpolynomialofAis,

    21

    ( ) 5 6 ( 2)( 3)6 5

    q

    = = = + + = + +

    +I A .

    ThustheEigenvaluesofAare, 1 2 = and 2 3 = .

    Hencewehave,0 1

    0 1

    1 0 16 5

    te

    = + =

    AI A ,wheresareobtainedas,

    2

    0 1

    3

    0 1

    2

    3

    t

    t

    e

    e

    =

    = solvingweget,

    2 3

    03 2t te e = and 2 31

    t te e = .

    (Ans)