18
©Siemens Power Generation 2005. All Rights Reserved Siemens Wind Power Aerodynamic Winglet Optimization Author: Søren Hjort Co-authors: Jesper Laursen, Peder Enevoldsen Siemens Wind Power Structural Dynamics, aerodynamic dept.

Siemens Wind Power - Wind Energywindpower.sandia.gov/2008BladeWorkshop/PDFs/Tues-06-Hjort.pdf · Siemens Power Generation 2005. All Rights Reserved Siemens Wind Power Aerodynamic

  • Upload
    vothien

  • View
    220

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Siemens Wind Power - Wind Energywindpower.sandia.gov/2008BladeWorkshop/PDFs/Tues-06-Hjort.pdf · Siemens Power Generation 2005. All Rights Reserved Siemens Wind Power Aerodynamic

©S

iem

ens

Pow

er G

ener

atio

n 20

05. A

ll R

ight

s R

eser

ved

Siemens Wind Power

Aerodynamic Winglet Optimization

Author: Søren Hjort

Co-authors: Jesper Laursen, Peder Enevoldsen

Siemens Wind Power

Structural Dynamics, aerodynamic dept.

Page 2: Siemens Wind Power - Wind Energywindpower.sandia.gov/2008BladeWorkshop/PDFs/Tues-06-Hjort.pdf · Siemens Power Generation 2005. All Rights Reserved Siemens Wind Power Aerodynamic

2007-05-08 Power Generation 2Siemens Wind Power

©S

iem

ens

Pow

er G

ener

atio

n 20

05. A

ll R

ight

s R

eser

ved

SANDIA BLADE WORKSHOP 2008

Presentation outline

Problem statement

Model

Validation and results

Conclusions

11/05/2008

Page 3: Siemens Wind Power - Wind Energywindpower.sandia.gov/2008BladeWorkshop/PDFs/Tues-06-Hjort.pdf · Siemens Power Generation 2005. All Rights Reserved Siemens Wind Power Aerodynamic

2007-05-08 Power Generation 3Siemens Wind Power

©S

iem

ens

Pow

er G

ener

atio

n 20

05. A

ll R

ight

s R

eser

ved

Problem statement

Today’s engineering workhorse for blade/rotor design is the Blade-Element-Momentum (BEM) method.

Straight slender blades:

BEM Very applicable in combination with well-known model add-ons (tip-loss correction, dynamic inflow, 3D-correction, stall-hysteresis …)

Arbitrary geometry slender blades:

BEM fundamentally inapplicable due to break-down of the radial independency assumption.

Examples are: Winglets, large cone angles, large edge- and/orflap-wise pre-deflection.

11/05/2008

Page 4: Siemens Wind Power - Wind Energywindpower.sandia.gov/2008BladeWorkshop/PDFs/Tues-06-Hjort.pdf · Siemens Power Generation 2005. All Rights Reserved Siemens Wind Power Aerodynamic

2007-05-08 Power Generation 4Siemens Wind Power

©S

iem

ens

Pow

er G

ener

atio

n 20

05. A

ll R

ight

s R

eser

ved

Model

Objective:

To develop a fast “engineering” induction model for arbitrarily shaped slender blades

• Mesher

• CFD Actuator Disc solver

• Vortex-line method

• Large DOF optimization

Model components:

11/05/2008

Aircraft winglet examples:

Page 5: Siemens Wind Power - Wind Energywindpower.sandia.gov/2008BladeWorkshop/PDFs/Tues-06-Hjort.pdf · Siemens Power Generation 2005. All Rights Reserved Siemens Wind Power Aerodynamic

2007-05-08 Power Generation 5Siemens Wind Power

©S

iem

ens

Pow

er G

ener

atio

n 20

05. A

ll R

ight

s R

eser

ved

The mesher

• Curvi-linear structured 2D quad mesher.

• Algorithm : Advancing front.

−400 −300 −200 −100 0 100 200 300 400−100

0

100

200

300

400

500

600

Axial distance [m]

radi

al d

ista

nce

[m]

256 x 224 domain

−20 −10 0 10 20

30

35

40

45

50

55

60

Axial distance [m]

radi

al d

ista

nce

[m]

256 x 224 domain (close−up)

−2 0 2 4

44

45

46

47

48

Axial distance [m]

radi

al d

ista

nce

[m]

256 x 224 domain (close−up)

11/05/2008

Page 6: Siemens Wind Power - Wind Energywindpower.sandia.gov/2008BladeWorkshop/PDFs/Tues-06-Hjort.pdf · Siemens Power Generation 2005. All Rights Reserved Siemens Wind Power Aerodynamic

2007-05-08 Power Generation 6Siemens Wind Power

©S

iem

ens

Pow

er G

ener

atio

n 20

05. A

ll R

ight

s R

eser

ved

The CFD Actuator Disc solver

Governing equations: 2D incompressible Navier-Stokes, cylindrical frameFormulation: Curvilinear finite volumeAlgorithm: SIMPLE with full multi-grid accelerationActuator disc (rotor) represented as volume forces over the disc domain.

−200 −100 0 100 200 300 4000

50

100

150

200

250

300

350

400

450

500

Velocity magnitude iso−lines [3.3 ; 11.8] m/s

−10 0 10 20

35

40

45

50

55

60

65

−1 0 1 2 3 444

44.5

45

45.5

46

46.5

47

47.5

48

11/05/2008

Page 7: Siemens Wind Power - Wind Energywindpower.sandia.gov/2008BladeWorkshop/PDFs/Tues-06-Hjort.pdf · Siemens Power Generation 2005. All Rights Reserved Siemens Wind Power Aerodynamic

2007-05-08 Power Generation 7Siemens Wind Power

©S

iem

ens

Pow

er G

ener

atio

n 20

05. A

ll R

ight

s R

eser

ved

The vortex-line method

0 50 100 150 200−50050

−100

−50

0

50

100

Tip− and root−vortex from 1 bladePropagate shed vorticity

along streamlines from the

CFD Actuator Disc solution.

11/05/2008

Page 8: Siemens Wind Power - Wind Energywindpower.sandia.gov/2008BladeWorkshop/PDFs/Tues-06-Hjort.pdf · Siemens Power Generation 2005. All Rights Reserved Siemens Wind Power Aerodynamic

2007-05-08 Power Generation 8Siemens Wind Power

©S

iem

ens

Pow

er G

ener

atio

n 20

05. A

ll R

ight

s R

eser

ved

The vortex line method

Assumption : Complete flowfield described by rotating blade induced vortex lines:

• Bound vorticity lines along the blades.• Vorticity lines shed from the blades. The shed vorticity is convected by

the flowfield computed by the actuator disc CFD solver.

Integration of flowfield along one blade (symmetry) using Biot-Savart’s law for a linear vortex filament is summed by 3 integrated/calculated quantities:

• Bound vorticity from all blades (filament integration).• Shed vorticity from all blades. Truncation at farfield 5 rotor diameters

downstream (filament integration).• Farfield residual induction from 5 D to infinity (vortex tube semi-

analytical integrals)

11/05/2008

Page 9: Siemens Wind Power - Wind Energywindpower.sandia.gov/2008BladeWorkshop/PDFs/Tues-06-Hjort.pdf · Siemens Power Generation 2005. All Rights Reserved Siemens Wind Power Aerodynamic

2007-05-08 Power Generation 9Siemens Wind Power

©S

iem

ens

Pow

er G

ener

atio

n 20

05. A

ll R

ight

s R

eser

ved

Large DOF optimization

Combined line-search / quasi-Newton bounded optimization for large systems.

“Quasi” : Hessian matrix is only computed for the diagonal elements. Off-diagonal elements are estimated => computational efficiency

11/05/2008

Page 10: Siemens Wind Power - Wind Energywindpower.sandia.gov/2008BladeWorkshop/PDFs/Tues-06-Hjort.pdf · Siemens Power Generation 2005. All Rights Reserved Siemens Wind Power Aerodynamic

2007-05-08 Power Generation 10Siemens Wind Power

©S

iem

ens

Pow

er G

ener

atio

n 20

05. A

ll R

ight

s R

eser

ved

Validation of CFD Actuator Disc solver

Err.Act.DiscXbladeRotorWind(BEM code)rpmspeed

0.3 %1945193916.0 rpm10 m/s

-0.3 %1006100913.5 rpm8 m/s

-0.2 %42342410.0 rpm6 m/s

Comparison of mechanical power [kW] from an SWT-2.3-93 :

11/05/2008

Page 11: Siemens Wind Power - Wind Energywindpower.sandia.gov/2008BladeWorkshop/PDFs/Tues-06-Hjort.pdf · Siemens Power Generation 2005. All Rights Reserved Siemens Wind Power Aerodynamic

2007-05-08 Power Generation 11Siemens Wind Power

©S

iem

ens

Pow

er G

ener

atio

n 20

05. A

ll R

ight

s R

eser

ved

Validation of the Vortex-line method

SWT-2.3-93Field measurements from an SWT-2.3-93 at Høvsøre National Test Site, Denmark

Rotor computation of an SWT-2.3-93:

Solver: Ansys CFX

Equations: steady RANS

Formulation: Finite volume

Turb. Model: SST

Mesh: Block hexahedra

Size: ~4 mio. elements

11/05/2008

Page 12: Siemens Wind Power - Wind Energywindpower.sandia.gov/2008BladeWorkshop/PDFs/Tues-06-Hjort.pdf · Siemens Power Generation 2005. All Rights Reserved Siemens Wind Power Aerodynamic

2007-05-08 Power Generation 12Siemens Wind Power

©S

iem

ens

Pow

er G

ener

atio

n 20

05. A

ll R

ight

s R

eser

ved

Validation of the Vortex-line method

Vortex lineANSYS-CFXFieldRotorWind

/ Ellipsysmeasurementrpmspeed

18971853/1853189416.0 rpm10 m/s

982950/94598613.5 rpm8 m/s

413396/39240010.0 rpm6 m/s

Comparison of mechanical power [kW] from an SWT-2.3-93, measured or computed by 3 different methods :

11/05/2008

Page 13: Siemens Wind Power - Wind Energywindpower.sandia.gov/2008BladeWorkshop/PDFs/Tues-06-Hjort.pdf · Siemens Power Generation 2005. All Rights Reserved Siemens Wind Power Aerodynamic

2007-05-08 Power Generation 13Siemens Wind Power

©S

iem

ens

Pow

er G

ener

atio

n 20

05. A

ll R

ight

s R

eser

ved

Results : Testcase 1

Straight blade optimization

Chord : Optimizable, entire span : 33 DOFs

Edge-deflection : Fixed zero : 0 DOFs

Flap-deflection : Fixed zero : 0 DOFs

No. blades : 3

Const. lift coeff. : 1.0

Const. drag coeff. : 0.01

Chord constraint : 3.5 m

Tip radius : 46.2

Free wind : 10 m/s

Rotational velocity : 16 rpm

10 20 30 400

1

2

3

4BEM − optimized chord distribution

10 15 20 25 30 35 40 450

0.1

0.2

0.3

0.4

0.5

0.6

rotor radius [m]

mec

h. c

p

Act.Disc. : Cp = 0.5169Act.Disc. no drag: Cp = 0.5610BEM no drag: Cp = 0.5581Betz limit: Cp = 0.5926

11/05/2008

Page 14: Siemens Wind Power - Wind Energywindpower.sandia.gov/2008BladeWorkshop/PDFs/Tues-06-Hjort.pdf · Siemens Power Generation 2005. All Rights Reserved Siemens Wind Power Aerodynamic

2007-05-08 Power Generation 14Siemens Wind Power

©S

iem

ens

Pow

er G

ener

atio

n 20

05. A

ll R

ight

s R

eser

ved

Results : Testcase 2

Edgewise winglet optimization

Chord : Fixed from testcase 1 : 0 DOFs

Edge-deflection : Optimizable, outer 2.5m : 16 DOFs

Flap-deflection : Fixed zero : 0 DOFs

No. blades : 3

Const. lift coeff. : 1.0

Const. drag coeff. : 0.01

Chord constraint : 3.5 m

Tip radius : 46.2

Free wind : 10 m/s

Rotational velocity : 16 rpm

Cp gain: 1.1 %

41 42 43 44 45 46 47

−3

−2

−1

0

1

2

Edge−wise winglet geometry

11/05/2008

Page 15: Siemens Wind Power - Wind Energywindpower.sandia.gov/2008BladeWorkshop/PDFs/Tues-06-Hjort.pdf · Siemens Power Generation 2005. All Rights Reserved Siemens Wind Power Aerodynamic

2007-05-08 Power Generation 15Siemens Wind Power

©S

iem

ens

Pow

er G

ener

atio

n 20

05. A

ll R

ight

s R

eser

ved

Results : Testcase 3

Flapwise winglet optimization

Chord : Fixed from testcase 1 : 0 DOFs

Edge-deflection : Fixed zero : 0 DOFs

Flap-deflection : Optimizable, outer 2.5m : 16 DOFs

No. blades : 3

Const. lift coeff. : 1.0

Const. drag coeff. : 0.01

Chord constraint : 3.5 m

Tip radius : 46.2

Free wind : 10 m/s

Rotational velocity : 16 rpm

Cp gain: 2.6 %

−0.5 0 0.5 1 1.5 2 2.5 3

44.5

45

45.5

46

46.5

47

Static pressure iso−lines

11/05/2008

Page 16: Siemens Wind Power - Wind Energywindpower.sandia.gov/2008BladeWorkshop/PDFs/Tues-06-Hjort.pdf · Siemens Power Generation 2005. All Rights Reserved Siemens Wind Power Aerodynamic

2007-05-08 Power Generation 16Siemens Wind Power

©S

iem

ens

Pow

er G

ener

atio

n 20

05. A

ll R

ight

s R

eser

ved

Results : Testcase 4

Combined edgewise/flapwise winglet optimization

Chord : Fixed from testcase 1 : 0 DOFs

Edge-deflection : Optimizable, outer 2.5m : 16 DOFs

Flap-deflection : Optimizable, outer 2.5m : 16 DOFs

No. blades : 3

Const. lift coeff. : 1.0

Const. drag coeff. : 0.01

Chord constraint : 3.5 m

Tip radius : 46.2

Free wind : 10 m/s

Rotational velocity : 16 rpm

Cp gain: > (1.1+2.6) %

−0.5 0 0.5 1 1.5 2 2.5 3

44.5

45

45.5

46

46.5

47

Velocity magnitude iso−lines

11/05/2008

Page 17: Siemens Wind Power - Wind Energywindpower.sandia.gov/2008BladeWorkshop/PDFs/Tues-06-Hjort.pdf · Siemens Power Generation 2005. All Rights Reserved Siemens Wind Power Aerodynamic

2007-05-08 Power Generation 17Siemens Wind Power

©S

iem

ens

Pow

er G

ener

atio

n 20

05. A

ll R

ight

s R

eser

ved

Conclusions

• Flap-wise square-angled winglets (small curvature radius) are optimal when combined with edge-wise deflection. If zero edge-wise deflection, a much larger curvature radius is optimal.

• Edge-wise winglets are optimal when linearly swept backwards.

• The combined flap-wise and edge-wise winglet will increase Cp more than the sum of the isolated flap-/edge-wise Cp gains. However, vortex interactions not accounted for by the model comeinto play here …

For the Cp-optimized straight blade we conclude:

11/05/2008

Page 18: Siemens Wind Power - Wind Energywindpower.sandia.gov/2008BladeWorkshop/PDFs/Tues-06-Hjort.pdf · Siemens Power Generation 2005. All Rights Reserved Siemens Wind Power Aerodynamic

©S

iem

ens

Pow

er G

ener

atio

n 20

05. A

ll R

ight

s R

eser

ved

Thank you for your attention