1
SIDEROPHILE ELEMENT ABUNDANCES IN KARAVANNOE: IMPLICATIONS FOR THE ORIGIN OF THE EAGLE STATION PALLASITES M. Humayun 1 , S. N. Teplyakova 2 , C. A. Lorenz 2 , M. A. Ivanova 2 and A. V. Korochantsev 2 1 Department of Earth, Ocean & Atmospheric Science, and National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA; 2 Vernadsky Institute of Geochemistry and Analytical Chemistry, Kosygin St. 19, Moscow, Russia 119991. Introduc)on The link between chondri)c meteorites and differen)ated meteorites is an important goal in meteori)cs that is o9en elusive, with the excep)on of isotopic finger‐prin)ng [e.g., 1‐2]. To understand the paleomagne)sm of CV chondrites models of a par)ally differen)ated asteroid, with a carbonaceous chondri)c surface and a differen)ated interior (Fig. 1), have been proposed [3‐4]. Chemical tests of this model supported the idea that CV chondrites may be linked to the Eagle Sta)on pallasite trio (ESP) on the basis of siderophile element measurements of metal from Eagle Sta)on and Cold Bay [5]. The range of chemical frac)ona)on in the ESP meteorites is rather limited, so the recent discovery of a new member, Karavannoe [6], provides the opportunity for an improved test using siderophile elements. Olivine from the Karavannoe pallasite has oxygen isotope composi)ons and mineral chemistry (Fe/ Mn~97, Fa~20) that iden)fy it as the fourth member of the ESP [6]. Further, the metal in Karavannoe is plessite with swathing kamacite around the olivines [6]. Analy)cal Methods A 19 mm x 12 mm sawn slab of Karavannoe (Fig. 2) with minimal weathering was received from the Russian Academy of Sciences Commi\ee on Meteorites, mounted in epoxy, and polished on one side exposing >50% metal with weathering restricted to the olivine‐metal contacts. Siderophile elements were determined by rastering three olivine‐free metallic areas each ~3‐4 mm 2 . Laser abla)on ICP‐MS analysis were performed with a New Wave UP193FX excimer laser system coupled to a Thermo Element XR. A 100 µm beam spot scanned at 10‐25 µm/s, 50 Hz repe))on rate, 2 GW/cm 2 fluence, was used. Other aspects of the measurement are iden)cal to those previously described [5]. References [1] Clayton R. N. and Mayeda T. K. (1996) GCA, 60, 1999‐2017. [2] Burkhardt C. et al. (2011) EPSL 312, 390‐400. [3] Carpozen L. et al. (2010) PNAS 108, 6386‐6389. [4] Elkins‐Tanton L. et al. (2011) EPSL 305, 1‐10. [5] Humayun M. and Weiss B. P. (2011) LPSC XLII, Abstract #1507. [6] Korochantsev A. V. et al. (2013) LPSC XLIV, Abstract #2020. [7] Schmi\ W. et al. (1989) GCA, 53, 173‐185. Results The siderophile element abundances for three members of the Eagle Sta)on Pallasites (ESP) are shown in Fig. 3, compared with metallic liquid derived from mel)ng of a CV chondrite [5]. The success of measuring small areas by laser abla)on and es)ma)ng the bulk metal composi)on in a pallasite is judged in terms of obtaining meaningful representa)on of kamacite and plessite (in the case of Karavannoe) or taenite. Kamacite concentrates Co and As, while taenite concentrates Ni and Au. Fig. 4 shows the correla)on between the (Co/Ni) CI and the (As/Au) CI ra)os. Individual analyses of Cold Bay cover a broad range of composi)on, while analyses of Eagle Sta)on and Karavannoe are nearly constant at chondri)c ra)os of Co/Ni. The Ni/Co ra)o obtained in this study is iden)cal to that of Eagle Sta)on (20.6) and to that of CV metal (20.4, [5]). Because the bulk ICP data of [6] are systema)cally lower in compa)ble elements and similar in incompa)ble elements, to the new LA‐ICP‐MS data the difference between our data and that of [6] has to be ascribed to chemical zona)on within the large Karavannoe mass (132 kg, [6]), which may provide an opportunity to be\er define the internal frac)ona)on in Karavannoe. Discussion The siderophile element pa\ern of Karavannoe exhibits the high compa)ble siderophile element abundances and the marked deple)ons of W, Fe and Ga rela)ve to a CV chondrite composi)on that also characterize other members of the Eagle Sta)on grouplet (Fig. 3), confirming the prior classifica)on [6]. These features are related to forma)on under oxidizing condi)ons required to stabilize high Ni alloy. Karavannoe falls almost directly on the CV chondrite metal composi)on line [5], except that it has lower Pd and other incompa)ble elements (Au, As, etc.) as expected. In terms of establishing a gene)c rela)onship to the CV chondrites, Karavannoe nicely follows the calculated pa\ern of a solid metal formed from a CV metallic liquid [5] a9er some degree of frac)onal crystalliza)on to remove earlier solids represented by Eagle Sta)on. The exact degree of frac)ona)on required to match the Karavannoe pa\ern is determined by the S content of the liquid, which is not easy to constrain a priori. To match the Cu abundances we require about 3‐6 wt % S in the ini)al liquid, otherwise, the calculated solid metal Cu abundances formed from CV metallic liquid [5] are too high for ESP metal. Thus far, a fit to Ge remains difficult to achieve since Ge does not vary significantly in its solid metal‐liquid metal par))on coefficient. However, the temperature dependence of the metal‐silicate par))on coefficient is not well known [7]. The fit to the most vola)le elements between a calculated CV metal composi)on and the Eagle Sta)on Pallasites is sufficiently close that further refinement of the model is desirable. An important aspect of the Eagle Sta)on grouplet is that the high contents of compa)ble siderophile elements imply a high degree melt of the CV parent body consistent with the model of [3‐4]. 0.01 0.1 1 10 W Re Os Ir Ru Pt Rh Mo Ni Co Pd Fe Au As Sb Cu Ga Ge Sn CV3 metal Eagle StaMon Cold Bay Karavannoe F=1 F=0.8 F=0.6 F=0.4 0.0 0.5 1.0 1.5 0.0 1.0 2.0 3.0 4.0 (As/Au) CI (Co/Ni) CI Eagle StaMon Cold Bay CV3 metal Karavannoe Karavannoe bulk Fig. 4: Kamacite‐taenite frac)ona)on in ESP metal. Kamacite Taenite Fig. 3: CI‐, Ni‐normalized siderophile element abundances in Eagle Sta)on Pallasite metal. Fig. 1: Par)ally differen)ated parent body model for CV chondrites‐Eagle Sta)on Pallasites, a9er [3‐4]. Fig. 2: Polished sec)on of Karavannoe pallasite, newest member of the ESP grouplet [6].

SIDEROPHILE ELEMENT ABUNDANCES IN KARAVANNOE: … · 2014. 4. 1. · that of CV metal (20.4, [5]). Because the bulk ICP data of [6] are systemacally lower in compable elements and

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: SIDEROPHILE ELEMENT ABUNDANCES IN KARAVANNOE: … · 2014. 4. 1. · that of CV metal (20.4, [5]). Because the bulk ICP data of [6] are systemacally lower in compable elements and

SIDEROPHILEELEMENTABUNDANCESINKARAVANNOE:IMPLICATIONSFORTHEORIGINOFTHEEAGLESTATIONPALLASITES

M. Humayun1, S. N. Teplyakova2, C. A. Lorenz2, M. A. Ivanova2 and A. V. Korochantsev2

1Department of Earth, Ocean & Atmospheric Science, and National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA; 2Vernadsky Institute of Geochemistry and Analytical Chemistry, Kosygin St. 19, Moscow, Russia 119991.

Introduc)onThelinkbetweenchondri)cmeteoritesand

differen)atedmeteoritesisanimportantgoalinmeteori)csthatiso9enelusive,withtheexcep)onofisotopicfinger‐prin)ng[e.g.,1‐2].Tounderstandthepaleomagne)smofCVchondritesmodelsofapar)allydifferen)atedasteroid,withacarbonaceouschondri)csurfaceandadifferen)atedinterior(Fig.1),havebeenproposed[3‐4].ChemicaltestsofthismodelsupportedtheideathatCVchondritesmaybelinkedtotheEagleSta)onpallasitetrio(ESP)onthebasisofsiderophileelementmeasurementsofmetalfromEagleSta)onandColdBay[5].Therangeofchemicalfrac)ona)onintheESPmeteoritesisratherlimited,sotherecentdiscoveryofanewmember,Karavannoe[6],providestheopportunityforanimprovedtestusingsiderophileelements.OlivinefromtheKaravannoepallasitehasoxygenisotopecomposi)onsandmineralchemistry(Fe/Mn~97,Fa~20)thatiden)fyitasthefourthmemberoftheESP[6].Further,themetalinKaravannoeisplessitewithswathingkamacitearoundtheolivines[6].

Analy)calMethodsA19mmx12mmsawnslabofKaravannoe

(Fig.2)withminimalweatheringwasreceivedfromtheRussianAcademyofSciencesCommi\eeonMeteorites,mountedinepoxy,andpolishedononesideexposing>50%metalwithweatheringrestrictedtotheolivine‐metalcontacts.Siderophileelementsweredeterminedbyrasteringthreeolivine‐freemetallicareaseach~3‐4mm2.Laserabla)onICP‐MSanalysiswereperformedwithaNewWaveUP193FXexcimerlasersystemcoupledtoaThermoElementXR.A100µmbeamspotscannedat10‐25µm/s,50Hzrepe))onrate,2GW/cm2fluence,wasused.Otheraspectsofthemeasurementareiden)caltothosepreviouslydescribed[5].

References[1]ClaytonR.N.andMayedaT.K.(1996)GCA,60,1999‐2017.[2]BurkhardtC.etal.(2011)EPSL312,390‐400.[3]CarpozenL.etal.(2010)PNAS108,6386‐6389.[4]Elkins‐TantonL.etal.(2011)EPSL305,1‐10.[5]HumayunM.andWeissB.P.(2011)LPSCXLII,Abstract#1507.[6]KorochantsevA.V.etal.(2013)LPSCXLIV,Abstract#2020.[7]Schmi\W.etal.(1989)GCA,53,173‐185.

ResultsThesiderophileelementabundancesfor

threemembersoftheEagleSta)onPallasites(ESP)areshowninFig.3,comparedwithmetallicliquidderivedfrommel)ngofaCVchondrite[5].Thesuccessofmeasuringsmallareasbylaserabla)onandes)ma)ngthebulkmetalcomposi)oninapallasiteisjudgedintermsofobtainingmeaningfulrepresenta)onofkamaciteandplessite(inthecaseofKaravannoe)ortaenite.KamaciteconcentratesCoandAs,whiletaeniteconcentratesNiandAu.Fig.4showsthecorrela)onbetweenthe(Co/Ni)CIandthe(As/Au)CIra)os.IndividualanalysesofColdBaycoverabroadrangeofcomposi)on,whileanalysesofEagleSta)onandKaravannoearenearlyconstantatchondri)cra)osofCo/Ni.TheNi/Cora)oobtainedinthisstudyis

iden)caltothatofEagleSta)on(20.6)andtothatofCVmetal(20.4,[5]).BecausethebulkICPdataof[6]aresystema)callylowerincompa)bleelementsandsimilarinincompa)bleelements,tothenewLA‐ICP‐MSdatathedifferencebetweenourdataandthatof[6]hastobeascribedtochemicalzona)onwithinthelargeKaravannoemass(132kg,[6]),whichmayprovideanopportunitytobe\erdefinetheinternalfrac)ona)oninKaravannoe.

Discussion

Thesiderophileelementpa\ernofKaravannoeexhibitsthehighcompa)blesiderophileelementabundancesandthemarkeddeple)onsofW,FeandGarela)vetoaCVchondritecomposi)onthatalsocharacterizeothermembersoftheEagleSta)ongrouplet(Fig.3),confirmingthepriorclassifica)on[6].Thesefeaturesarerelatedtoforma)onunderoxidizingcondi)onsrequiredtostabilizehighNialloy.KaravannoefallsalmostdirectlyontheCVchondritemetalcomposi)online[5],exceptthatithaslowerPdandotherincompa)bleelements(Au,As,etc.)asexpected.Intermsofestablishingagene)crela)onshiptotheCVchondrites,Karavannoenicelyfollowsthecalculatedpa\ernofasolidmetalformedfromaCVmetallicliquid[5]a9ersomedegreeoffrac)onalcrystalliza)ontoremoveearliersolidsrepresentedbyEagleSta)on.Theexactdegreeoffrac)ona)onrequiredtomatchtheKaravannoepa\ernisdeterminedbytheScontentoftheliquid,whichisnoteasytoconstrainapriori.TomatchtheCuabundanceswerequireabout3‐6wt%Sintheini)alliquid,otherwise,thecalculatedsolidmetalCuabundancesformedfromCVmetallicliquid[5]aretoohighforESPmetal.Thusfar,afittoGeremainsdifficulttoachieve

sinceGedoesnotvarysignificantlyinitssolidmetal‐liquidmetalpar))oncoefficient.However,thetemperaturedependenceofthemetal‐silicatepar))oncoefficientisnotwellknown[7].Thefittothemostvola)leelementsbetweenacalculatedCVmetalcomposi)onandtheEagleSta)onPallasitesissufficientlyclosethatfurtherrefinementofthemodelisdesirable.AnimportantaspectoftheEagleSta)on

groupletisthatthehighcontentsofcompa)blesiderophileelementsimplyahighdegreemeltoftheCVparentbodyconsistentwiththemodelof[3‐4].

0.01

0.1

1

10

W ReOs Ir Ru Pt RhMoNi Co Pd Fe AuAs Sb CuGaGe Sn

CV3metalEagleStaMonColdBayKaravannoeF=1F=0.8F=0.6F=0.4 0.0

0.5

1.0

1.5

0.0 1.0 2.0 3.0 4.0

(As/Au)

CI

(Co/Ni)CI

EagleStaMon

ColdBay

CV3metal

Karavannoe

Karavannoebulk

Fig.4:Kamacite‐taenitefrac)ona)oninESPmetal.

Kama

cite

Taenite

Fig.3:CI‐,Ni‐normalizedsiderophileelementabundancesinEagleSta)onPallasitemetal.

Fig.1:Par)allydifferen)atedparentbodymodelforCVchondrites‐EagleSta)onPallasites,a9er[3‐4].

Fig.2:Polishedsec)onofKaravannoepallasite,newestmemberoftheESPgrouplet[6].