87
SERVICE MANUAL CODE: 00ZSF2040TM/E No.2 MODEL SF-2040 MODEL SF-D23 MODEL SF-DM11 [ 1 ] PRODUCT OUTLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 [ 2 ] PRODUCT SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 [ 3 ] OPTIONS SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 [ 4 ] COMPONENT IDENTIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 [ 5 ] PROCESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 [ 6 ] DEVELOPING UNIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1 [ 7 ] PAPER FEED UNIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 [ 8 ] TRANSPORT/FUSING SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1 [ 9 ] HIGH VOLTAGE SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1 [10] OPTICAL SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1 [11] ELECTRICAL SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1 [12] FUNCTIONS OF PPC COMMUNICATION SYSTEM (OPTION) . . . . . 12-1 CONTENTS SHARP CORPORATION This document has been published to be used for after sales service only. The contents are subject to change without notice. Parts marked with "!" is important for maintaining the safety of the set. Be sure to replace these parts with specified ones for maintaining the safety and performance of the set.

Sharp Sf 2040 Copier Sm

Embed Size (px)

Citation preview

Page 1: Sharp Sf 2040 Copier Sm

SERVICE MANUALCODE: 00ZSF2040TM/E

No.2

MODEL SF-2040 MODEL SF-D23 MODEL SF-DM11

[ 1 ] PRODUCT OUTLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

[ 2 ] PRODUCT SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

[ 3 ] OPTIONS SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

[ 4 ] COMPONENT IDENTIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1

[ 5 ] PROCESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1

[ 6 ] DEVELOPING UNIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

[ 7 ] PAPER FEED UNIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1

[ 8 ] TRANSPORT/FUSING SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1

[ 9 ] HIGH VOLTAGE SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1

[10] OPTICAL SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1

[11] ELECTRICAL SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1

[12] FUNCTIONS OF PPC COMMUNICATION SYSTEM (OPTION) . . . . . 12-1

CONTENTS

SHARP CORPORATIONThis document has been published to be used forafter sales service only.The contents are subject to change without notice.

Parts marked with "!" is important for maintaining the safety of the set. Be sure to replace these parts with specifiedones for maintaining the safety and performance of the set.

Page 2: Sharp Sf 2040 Copier Sm

CONTENTS

[ 1 ] PRODUCT OUTLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

1. General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

2. Target users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

3. Major features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 (1) Compact body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 (2) Serviceability and functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 (3) High copy performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 (4) Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

4. System outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

[ 2 ] PRODUCT SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

1. Basic specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 (1) Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

(2) Copy method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 (3) Kinds of originals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 (4) Copy speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 (5) First copy time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 (6) Warmup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

(7) Multicopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 (8) Magnification ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 (9) Exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2(10) Paper feed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2(11) Developing method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

(12) Charge method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3(13) Transfer method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3(14) Separation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3(15) Fusing method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3(16) Cleaning method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3(17) Light source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

(18) Blanking areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3(19) Automatic duplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3(20) Paper receiving tray and finishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3(21) Additional features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4(22) Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

(23) Power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4(24) Appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4(25) Accessories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

2. Consumables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

3. Environmental requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7

[ 3 ] OPTIONS SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

1. SF-A55 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

2. SF-S15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13. SF-S53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14. SF-D23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-25. Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

I

Page 3: Sharp Sf 2040 Copier Sm

[ 4 ] COMPONENT IDENTIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1

1. External view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 2. Operation panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 3. Internal view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4

4. Clutches, solenoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 5. Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 6. Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7 7. Board list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8 8. Duplex copy tray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9

9. Desk unit (SF-D23) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10

[ 5 ] PROCESS (Photocondor drum and cleaning unit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1

1. Basic theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1(1) Image forming process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1(2) Photoconductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1

(3) Types of photoconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1(4) Characteristics of photoconductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2

2. SF-2040 basic process and structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3(1) Details of image forming process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3

(2) Relationship between the OPC drum and light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4(3) Transition of photoconductor surface potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5(4) Photoconductor drum sensitivity correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5(5) Process control function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6

3. Basic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7

[ 6 ] DEVELOPING UNIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

1. Basic theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

(1) Two-component developer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1(2) Two-component magnetic brush development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1(3) Developing bias voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

2. Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

3. Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

[ 7 ] PAPER FEED UNIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1

1. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1

2. Basic configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1

3. Basic operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2(1) Manual paper feed operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2(2) Cassette paper feed operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3

[ 8 ] TRANSPORT/FUSING SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1

1. General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1

2. Basic composition and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1 (1) Transport section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1 (2) Fusing section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1

[ 9 ] HIGH VOLTAGE SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1

1. General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1

2. Basic composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1

(1) Main (charging) corona – High voltage transformer (MHVG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1 (2) Transfer corona – High voltage transformer (THVG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1 (3) Separation corona – High voltage transformer (SHVG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1

II

Page 4: Sharp Sf 2040 Copier Sm

[10] OPTICAL SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1

1. General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1

2. Basic composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1 (1) Original table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1 (2) Copy lamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1 (3) Mirror1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1 (4) Lens (Fixed focus lens) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1 (5) Lens home position sensor (LHPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1

(6) No. 4, No. 5 mirror base home position sensor (MBHPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2 (7) Lens base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2 (8) Lens slide shaft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2 (9) Lens drive wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2(10) Mirror base C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2

(11) Mirror base C (No. 4, No. 5 mirrors) drive wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2(12) Mirror motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2(13) Mirror home position sensor (MHPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2(14) Mirror base B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2(15) Copy lamp unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2

(16) Thermal fuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2(17) Reflector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2(18) Exposure adjusting plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2(19) Mirror base drive wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2(20) Mirror base (No. 4, No. 5) drive motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2(21) Lens drive motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2

(22) AE sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2(23) Blank lamp operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2

3. Basic operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3

4. Optical system dirt correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-4 (1) Setting the reference value for optical system correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-4 (2) Dirt correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-4

[11] ELECTRICAL SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1

1. System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1

2. Main circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2 (1) CPU (IC116) HB/570 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2

(2) I/O (IC118) TE7750 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-6 (3) RAM (IC119) X28C64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-10 (4) Decoder (IC141, IC135) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-12 (5) Start/stop control circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-13 (6) Heater lamp control circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-14

(7) Driver circuit (Solenoid, magnetic clutch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-15 (8) Stepping motor drive circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-15 (9) AE (Auto Exposure) sensor circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-16(10) Toner supply motor drive circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-16

3. Operation circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-16<Key circuit> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-16 (1) Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-16 (2) Key detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-16 (3) System configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-18

<Display circuit> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-19 (1) Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-19 (2) Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-19

III

Page 5: Sharp Sf 2040 Copier Sm

4. LCD display circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-20 (1) Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-20 (2) CPU (IC222) µPD78213G-AB8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-20

(3) ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-22 (4) Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-22 (5) LCD controller (IC305) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-23

5. DC power circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-24

(1) Noise filter circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-24 (2) Rush current limiting circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-24 (3) Rectifying/smoothing circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-25 (4) Invertor circuit (Forward-convertor system) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-25 (5) Rectifying/smoothing circuit in the secondary side (24V, 38V system) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-25

(6) Control circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-26 (7) Overcurrent protection circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-26 (8) Series regulator circuit (–20V system) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-26 (9) Chopper regulator circuit (10V, 5V system) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-26(10) FW system output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-26

(11) Over voltage protection circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-27

6. Desk circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-33 (1) Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-33 (2) Operating principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-35

[12] Function of PPC communication system (Option) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1

1. General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1

2. System A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1

(1) Functions of System A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1

3. System B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2 (1) Functions and applications of System B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2

4. Communication interface PWB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-6

IV

Page 6: Sharp Sf 2040 Copier Sm

[1] PRODUCT OUTLINE

1. General description

The SF-2040 is medium class copier that produces 40 copies perminute. The SF-2040 has all the standard features of medium classcopiers to provide high productivity in offices with improved versatilityfor users.

2. Target users

Average copy volume: 12,000 ~ 15,000 copies/month

3. Major features

(1) Compact bodyUse of a front loading paper cassette.

(2) Serviceability and functionality1 Use of a liquid crystal display with backlight.

2 Department control counter (standard provision, max. 50 depart-ments).

3 Use of key operator codes.

(3) High copy performance1 First copy time: 3.1sec

2 Job speedS → S: 100%, D → D: 70%

(4) OptionsRefer to the system outline below.

4. System outline

Cassette (for replacement)(SF-CM11)

Cassette (SF-IC11)

Reversing automatic document feeder(SF-A55)

Document cover (SF-CV13)

Stand/3000-sheet paper drawer (SF-D23)

20-bin sorter (SF-S15)

1/bin staple sorter (SF-S53)

· Card counter (SF-EA11)· Auditor (SF-EA12)· Counter commander (SF-EA13)· Personal counter (SF-71A/71B)

1 – 1

Page 7: Sharp Sf 2040 Copier Sm

[2] PRODUCT SPECIFICATIONS

1. Basic specification

(1) Type Desktop

(2) Copy method Dry electrostatic copier

(3) Kinds of originals Sheet, book, three dimensional object

Thickness of original: Maximum 30mm in level with the original cover in use.

Weight of original: Maximum 1.8 kg (4 pounds)

Maximum original size: A3, Ledger

Original alignment: Center and left

Original sensor: Not used. (Provided in RADF.)

Sensing size AB series; A3, B4, A4, A4R, A5

Inch series: Ledger, Legal, Letter, Letter R, Invoice

Option: RADF

Original loading capacity: 50 sheets

Original size: A3 to A5, Ledger ∼ Invoice

Original replace speed: 40 sheets per minute

Weight of original: 35 to 128 g/m2 (14 to 34 lbs)

Mixed paper feed mode: Possible (same width)

(4) Copy speed Actual (1:1) Enlarge (ratio) Reduce (ratio)

A322 sheets per minute

16 sheets per minute(200%)

19 sheets per minute(50%)

B426 sheets per minute

16 sheets per minute(200%)

23 sheets per minute(50%)

A4 (portrait)40 sheets per minute

21 sheets per minute(200%)

33 sheets per minute(50%)

A4 (landscape)31 sheets per minute

18 sheets per minute(200%)

27 sheets per minute(50%)

B5 (portrait)40 sheets per minute

21 sheets per minute(200%)

33 sheets per minute(50%)

B5 (landscape)31 sheets per minute

18 sheets per minute(200%)

27 sheets per minute(50%)

Ledger22 sheets per minute

16 sheets per minute(200%)

19 sheets per minute(50%)

Legal26 sheets per minute

16 sheets per minute(200%)

23 sheets per minute(50%)

Letter (portrait)40 sheets per minute

21 sheets per minute(200%)

33 sheets per minute(50%)

Letter (landscape)32 sheets per minute

18 sheets per minute(200%)

27 sheets per minute(50%)

NOTE: Copy speeds indicated in Enlargement and Reduction modes are the slowest speeds in the respec-tive mode.

(5) First copy time About 3.1 seconds from upper cassette

(6) Warmup time About 100 seconds

(With pre-heat feature)

Misfeed recovery time: 8 seconds, provided the machine is in the standard condition in 60 seconds after opening the door.

(7) Multicopy Maximum multicopy number: 999 sheets

2 – 1

Page 8: Sharp Sf 2040 Copier Sm

(8) Magnification ratio Fixed ratio AB series: 4R+4E; 200, 141, 122, 115, 100, 86, 81, 70, 50%

Inch series: 4R+4E; 200, 141, 129, 121, 100, 95, 77, 64, 50%

Zooming range: 50 to 200% (1% increments)

(9) Exposure system Slit exposure and moving optical system (fixed original table)

(10) Paper feed Copy size (maximum ~ minimum) AB series: A3 to A6R

Inch series: Ledger ∼ Invoice

Method One cassette + multi-manual feed

Capacity 500 + 50 sheets

* For some areas, 2-tray specifications are also available.

AB series

Paper entry Paper size Paper weight Size selection Side, front

Upper cassette (Option)

B5/B5RA4/A4R/B4/A3

56 ~ 80g/m2 15 ~ 21 lbs.

Selection by way ofguide replacementby the serviceengineer

Front, drawer in thesame body(ADU compatibilityavailable)

Lower cassette A5/B5/B5R A4/A4R/B4/A3

56 ~ 80g/m2 15 ~ 21 lbs.

Selection by way ofguide replacementby the serviceengineer

By way of front,inner cassette

A5: * With the option inner cassette used

Inch series

Paper entry Paper feed size Paper weight Size selection Side, front

Upper cassette(Option)

Letter/Letter R/Legal/Ledger

56 ~ 80g/m2

15 ~ 21 lbs.Selection by way ofguide replacementby the serviceengineer

Front, drawer in thesame body(ADU compatibilityavailable)

Lower cassette Letter/Letter R/Legal/Ledger/Invoice

56 ~ 80g/m2

15 ~ 21 lbs.Selection by way ofguide replacementby the serviceengineer

By way of front,inner cassette

* With the option inner cassette used

Initial setting

JapanOutside

Japan (Inch)Outside

Japan (AB)Remark

Copier upper cassette * B5R — — * When shipping, the domestic(Japan/Oversea agents)paper feed module isattached.

Copier lower cassette A3 Ledger A3

Option cassette module A4 Legal A4 SF-CM11

Multi-stage desk (1st stage)Multi-stage desk (2nd stage)Multi-stage desk (3rd stage)

B4A3—

Letter R——

A4R——

(SF-D22 (Japan only))

LCD desk (1st stage)LCD desk (2nd stage)

——

—Letter

—A4 SF-D23 (Outside Japan only)

Inner cassette A3 Ledger A3 SF-IC11

Manual feed

Paper size: AB series:Inch series:

A3 to A6RLedger ∼ Invoice(Min. width: 100mm, Min. length: 139.7mm)

Paper weight: Multifeed mode:Single feed mode:

56 to 80 g/m2 (15 to 21 Ibs)52 to 128 g/m2 (14 to 34 Ibs)(A4 size or under, if above 105 g/m2 or 28 Ibs)

Kind of paper: Standard, Sharp designated paper, OHPDetection size Inch series:

AB series:Available: Ledger, Legal, Letter, Letter (R), invoiceAvailable: A3, B4, A4, A4R, A5

2 – 2

Page 9: Sharp Sf 2040 Copier Sm

(11) Developing method Dry, two components magnetic brush method

(12) Charge method (–) DC saw-tooth electrode method

(13) Transfer method (–) DC Corotron method

(14) Separation method AC Corotron method

(15) Fusing method Heat roller method

(16) Cleaning method Blade method

(17) Light source Halogen lamp

(18) Blanking areas Void area: 4mm from the lead edge Image loss: 4mm at maximum during the actual (1:1) copy mode

(19) Automatic duplex Option (SF-DM11) Location Copier upper module slot Size AB series: A3, B4, A4, A4R, B5, B5R, A5

Inch series: Ledger, Legal, Letter, Letter R Capacity 50 sheets (below A4 or letter sizes) or 30 sheets (above B4 or Legal size) Paper weight 56 to 80 g/m2 (15 to 21 Ibs)

(20) Paper receive tray and finishing

Capacity of paper receive tray 250 sheets Finishing With option in use Finisher function Sorted bin capacity Non-sorted bin capacity 20-bin sorter (SF-S15) 50 sheets 100 sheets Fixed bins 21-bin stapler sorter (SF-S53) 50 sheets (50 sheets, if stapler used)

35 sheets (A4 or Less)250 sheets Fixed bins

2 – 3

Page 10: Sharp Sf 2040 Copier Sm

(21) Additional features Availabilityof feature

APSF

Overseas: Available when RADF is used.

AMSF

Inhibited when mixed paper feed/Overseas: Available when RADFis used.

APS: AMS:

Auto paper selectionAuto magnification ratioselection

Margin shiftF

9mm shift (S → S), withadjustment function

DPCM: Dual page copy mode

DPCMF

Enlarge not permitted.Combination with the duplexfunction allowed.

Edge eraseF

7 to 12mm wide depending onthe size. Equivalent to SF-2022/2027.

TrimmingF

Area input is allowed up to 2areas. (Japan only)

MaskingF

Area input is allowed up to 2areas. (Japan only)

Cover insertionF

Selection of cover/rear orcover/both

Job memory F Recordable up to 9 jobs Auditor F Allowes up to 50 departments. Message display F

Key operator program F

Communication F

Bi-directional. Option I/F PWB(available from service parts.)

Process control F

Auto start F From the energy save mode. Auto tray switching F

Priority selection of tray

Vendor F

Binding margin shift

Width AB series Inch seriesSingle sides to single sided 9mm 1/4"Double sided to single sided 9mm 1/4"Single sided to double sided (front) 9mm 1/4"Single sided to double sided (reverse) 9mm 1/4"Double sided to double sided (front) 9mm 1/4"Double sided to double sided (reverse) 9mm 1/4"

Frame edge erase

AB series Inch seriesSize Deleted width (mm) Size Deleted width (mm)

A3 11.5±3 Ledger 11.5±3B4 9.5±3 Legal 7 ±3A4 11.5±3 Letter 11.5±3A4R 10 ±3 Letter R 7 ±3B5 9.5±3 Invoice 7 ±3B5R 8 ±3

(22) Power supply Voltage:Frequency:

100V, 110V, 120V, 127V, 220V, 240V50/60Hz, universal

(23) Power consumption Maximum power consumption: 1.5KW, maximum, with options used

(24) Appearance WxDxH (mm) 633 x 650 x 567 (at the top of the table glass)633x 650 x 607 (at the top of the original cover)

Occupied area (W x D in mm) 1205 x 650 (with the paper receive tray and manual feed bypass openWeight: Main body About 71.2Kg

Paper feed module: 3.9KgOriginal cover: 1.5Kg

2 – 4

Page 11: Sharp Sf 2040 Copier Sm

(25) Accessories

Destination Japan SEC SECL SEEG SUK SCA AB agent Inch agentDrum Installed when

shipping.Installed when

shipping.Installed when

shipping.Separately

packed.Separately

packed.Installed when

shipping.Partly packed. Partly packed.

Developer (Black) F × × × × × × ×Toner cartridge F × × × × × × ×Original cover Standard

provisionOption Option Option Option Option Standard provision

Paper exit tray 1*1 F

Original table × F ×Toner collectioncontainer

F (4 pcs.) One is installed when shipping.

Operation manual Japanese Exclusive English English/French GG: GermanBG: None

Exclusive English English English/French/Arabic

Typical example

English/Spanish

Typical exampleDust cover F × F (Part)Zooming ratio table F

ROM language Japanese English English GG: GermanBG: None

English English English/French/Spanish depending onthe destination.

Key sheet Japanese English English/French GG: GermanBG: None

English English English, partlySpanish

English, partlySpanish

SEL = English/French packed together. SEEG (BG) = Treated in a kit.Other printed matters:Delivery/installation report (Japan/SEEG), SCA warranty, Warranty registration (SUK), Maintenance card, Counter contract × 2 (Japan)

*1: Retractable (Japan), Fixed (Outside Japan)

2. ConsumablesSF-2040 supply system (SEC)

No. Name Content Life Product name Package Remark1 Drum OPC drum × 1 160K SF-240DR 102 Developer (Black) Developer (850g) × 10 80K (× 10) SF-240MD1 1 (SF-240ND1) × 10 = SF-240MD13 Toner (Black) Toner cartridge (600g) × 10 16.5K (× 10) SF-240MT1 1 (SF-240NT1) × 10 = SF-240MT14 Upper heat roller kit Upper heat roller

Fusing separation pawl (Upper)Fusing gear

× 1 × 4 × 1

160K SF-222UH 5 For replacement of the fusing separation pawl(80K life) at every 80K, use one which is treatedas a service part.

5 Lower roller kit Lower heat rollerFusing separation pawl (Lower)

× 1 × 2

160K SF-240LH 5 For replacement of the fusing separation pawl(80K life) at every 80K, use one which is treatedas a service part.

6 80K maintenance kit Cleaner bladeCharging plate unitDrum separation pawl unit

× 1 × 1 × 1

80K SF-235KA1 5 Products are shipped from out division. Treatedas parts in SEC.(222BL) × 10 = 222CB For reception of order, SF-222CB is used.(240RU) × 10 = 235CR2 For reception of order, SF-235CR2 is used.

7 Cleaner blade Cleaner blade × 10 80K (× 10) SF-222CB 18 Upper cleaning roller Upper cleaning roller × 1 80K (× 10) SF-240UR 1

9 Lower cleaning roller Lower cleaning roller × 10 80K (× 10) SF-235CR2 1 (235RU) × 10 = 235CR2 For reception of order, SF-235CR2 is used.

10 Staple cartridge Cartridge × 5 5,000 times × 5 SD-LS20 10 Common to the cartridge for SD-2075/3075. (SD-SC20) × 5 = SD-LS20

* For toner collection container (4 pcs./80K), screen grid (80K), charger wire (80K), ozone filter (80K), toner reception seal (160K), and DV seal(160K), use service parts. For charging plate unit (120K) and drum separation pawl unit(120K), service parts are also available.

SF-2040 supply system (SECL)

No. Name Content Life Product name Package Remark1 Drum OPC drum × 1 160K A3SF240DR 102 Developer (Black) Developer (850g) × 10 80K (× 10) A3SF240MD1 1 (SF-240ND1) × 10 = SF-240MD13 Toner (Black) Toner cartridge (600g) × 10 16.5K (× 10) A3SF240MT1 1 (SF-240NT1) × 10 = SF-240MT14 80K maintenance kit Upper cleaning roller

Lower cleaning rollerToner collection containerFusing separation pawl (Upper)Fusing separation pawl (Lower)Screen gridCleaner bladeCharging plate unitDrum separation pawl unit

× 1 × 1 × 4 × 4 × 2 × 1 × 1 × 1 × 1

80K A3SF240KA 1

5 160K maintenance kit Upper heat rollerLower heat rollerToner reception sealDV sealFusing gear

× 1 × 1 × 1 × 1 × 1

160K A3SF240KB 1

6 Staple cartridge Cartridge × 5 5,000 times × 5 A3SDLS20 10 Common to the cartridge for SF-2075.(SD-SC20) x 5 = SD-LS20

2 – 5

Page 12: Sharp Sf 2040 Copier Sm

SF-2040 supply system (SEEG, SUK)

No. Name Content Life Product name Package Remark1 Drum OPC drum × 1 160K SF-240DM 102 Developer (Black) Developer (850g) × 10 80K (× 10) SF-240LD1 1 (SF-240DV1) × 10 = SF-240LD13 Toner (Black) Toner cartridge (600g) × 10 16.5K (× 10) SF-240LT1 1 (SF-240T1) × 10 = SF-240LT14 80K maintenance

kitUpper cleaning rollerLower cleaning rollerToner collection containerFusing separation pawl (Upper)Fusing separation pawl (Lower)Screen gridCleaner bladeCharging plate unitDrum separation pawl unit

× 1× 1× 4× 4× 2× 1× 1× 1× 1

80K SF-240KA 1 To cope with Europe EAN code, distinguishedfrom A3SF240KA.

5 160Kmaintenance kit

Upper heat rollerLower heat rollerToner reception sealDV sealFusing gear

× 1× 1× 1× 1× 1

160K SF-240KB 1 To cope with Europe EAN code, distinguishedfrom A3SF240KB.

6 Staple cartridge Staple cartridge × 5 5,000 times × 5 SD-LS20 10 Common to the cartridge for SD-2075.(SD-SC20) × 5 = SD-LS20

SF-2040 supply system (SCA, SCNZ, Middle East, Africa)

No. Name Content Life Product name Package Remark1 Drum OPC drum × 1 160K A3SF240DM 102 Developer (Black) Developer (850g) × 10 80K (× 10) A3SF240LD1 1 (SF-240DV1) × 10 = SF-240LD13 Toner (Black) Toner cartridge (600g) × 10 16.5K (× 10) A3SF240LT1 1 (SF-240T1) × 10 = SF-240LT14 80K maintenance kit Upper cleaning roller

Lower cleaning rollerToner collection containerFusing separation pawl (Upper)Fusing separation pawl (Lower)Screen gridCleaner bladeCharging plate unitDrum separation pawl unit

× 1 × 1 × 4 × 4 × 2 × 1 × 1 × 1 × 1

80K A3SF240KA 1

5 160K maintenance kit Upper heat rollerLower heat rollerToner reception sealDV sealFusing gear

× 1 × 1 × 1 × 1 × 1

160K A3SF240KB 1

6 Staple cartridge Cartridge × 5 5,000 times × 5 A3SDLS20 10 Common to the cartridge for SD-2075.(SD-SC20) × 5 = SD-LS20.

SF-2040 supply system (Asia,, Middle/South America)

No. Name Content Life Product name Package Remark1 Drum OPC drum × 1 160K A3SF240DR 102 Developer (Black) Developer (850g) × 10 80K (× 10) A3SF240CD1 1 (SF-240SD1) × 10 = SF-240CD13 Toner (Black) Toner cartridge (600g) × 10 16.5K (× 10) A3SF240CT1 1 (SF-240ST1) × 10 = SF-240CT14 80K maintenance kit Upper cleaning roller

Lower cleaning rollerToner collection containerFusing separation pawl (Upper)Fusing separation pawl (Lower)Screen gridCleaner bladeCharging plate unitDrum separation pawl unit

× 1 × 1 × 4 × 4 × 2 × 1 × 1 × 1 × 1

80K A3SF240KA 1

5 160K maintenance kit Upper heat rollerLower heat rollerToner reception sealDV sealFusing gear

× 1 × 1 × 1 × 1 × 1

160K A3SF240KB 1

6 Staple cartridge Carriage × 5 5,000 times × 5 A3SDLS20 10 Common to the cartridge for SD-2075.(SD-SC20) × 5 = SD-LS20

2 – 6

Page 13: Sharp Sf 2040 Copier Sm

3. Environmental requirements

Conditions required for proper operation of the machine, as well as assurance of copy quality, the following are requested.

1 Standard conditionsRecommended temperature range at 20 to 25 Centigrade (68 to 77 degrees F) and humidity range at 65 ± 5%RH.

2 Operating conditions

3 Shipping conditions

4 Consumables storage conditions

60%

20%

30˚C 35˚C

80%

Temperature15˚C

Humidity

60%

20%

30˚C 45˚C

90%

Temperature-20˚C

Humidity

20%

40˚C

90%

Temperature-5˚C

Humidity

2 – 7

Page 14: Sharp Sf 2040 Copier Sm

[3] OPTIONS SPECIFICATIONS

1. SF-A55

Name Reversing automatic document feeder

Original feed system Continuous auto feed

Document feed sequence Bottom take-up feeding (Face-up discharge)

Document transfer drive Belt drive

Orientation of document setting Face up

Document size A3 ∼ B5/W letter ∼ Invoice

Document weightThin paper mode: 35 ∼ 50g/m2 (Japan only)Standard mode: 51 ∼ 128g/m2

Max. No. of documents to beset

Max. 50 sheets (35 - 80g/m2)(30 sheets for A3 or 11" × 17")

Function

Original reverse mechanism (duplex original)SDF/ADF mode selection (selectable with the keyoperator program. Japan only)Original size detection mechanismThin film/standard mode selection (selectable with thekey operator program. Japan only) Mixed paper feedRandom paper feed allowed

Power supply Supplied from the copier

Dimensions 600 (W) × 525 (D) × 170 (H)mm

Weight Approx. 15kg

2. SF-S15Name 20-bin sorter

No. of bins 20 bins

Paper collection Copy face up

Capacity per bin Max. 50 sheets (100 sheets: Top bin)

Allowable paper size/weightfor collating

Max. A3, Min.: B5 (Min. A6 for non-sort)Non-sort: 52 ∼ 128g/m2, Sort/Grouping: 56 ∼ 80g/m2

Power source Supplied from the copier.

Dimensions 500mm (W) × 520mm (D) × 957mm (H)

Weight About 13kg

3. SF-S53Name Staple sorter

No. of bins 20 bins

Paper collection Copy face up

Capacity per bin Max. 50 sheets (250 sheets: Top bin)

Allowable paper size/weightfor collating

Max.: A3, Min.: B5 (Non-sort: Min. A5),Non-sort: 52 ∼ 128g/m2, Sort/staple sort/grouping: 56 ∼ 89g/m2

No. of sheets for stapling 50 sheets (80g/m2)

Power source Supplied from the copier.

Dimensions 475mm (W) × 597mm (D) × 995mm (H)

Weight About 42.1kg

3 – 1

Page 15: Sharp Sf 2040 Copier Sm

4. SF-D23

Name 2-cassette paper feed desk

Paper size and capacity 550 sheets of A3, B4, A4, or B5 for each cassette

Paper weight 56 ∼ 80g/m2

Paper transport system Roller transport (center reference)

Power source Supplied from the copier.

Dimensions 600mm (W) × 625mm (D) × 451mm (H)

Weight About 32kg

5. SF-DM11Name Duplex module

Paper size A3 ∼ B5

Paper weight 56 ∼ 80g/m2

Capacity A3/B4: 30 sheets, A4/B5: 50 sheets

Power source Supplied from the copier.

Weight About 6kg

6. SF-CM11Cassette module

• Equivalent to the upper cassette of the copier body. The optional 2-cassettepaper feed desk can be attached.

7. SF-IC11Inner cassette

• Paper cassette for replacement of the lower cassette.

8. SF-71A (counter), SF-71B (socket)• Personal counter

9. Other counters

Card-type department counter (SF-EA11)Password-system department counter (SF-EA12)Counter commander (SF-EA13)

10. Desk SF-DS15

9 9 9 9 9

3 – 2

Page 16: Sharp Sf 2040 Copier Sm

[4] COMPONENT IDENTIFICATION

1. External view

1 Document holder 2 Exit tray 3 Document cover (optional)

4 Operation panel 5 Document glass 6 Paper clip tray

7 Manual feed tray paper guides 8 Manual feed tray 9 Exit area cover

F Power switch GDuplex module or 500-sheet paperdrawer (optional) H Lower paper tray

I Front cover J Toner collecting container cover K Handles

L Side cover

1 2 3 4 5 6 7

9 10 11 12 13 14 15 16

8

4 – 1

Page 17: Sharp Sf 2040 Copier Sm

M Fusing section N Transport section open/close lever O Photoconductor drum

P Charger Q Toner box R Toner box lever

S Roller rotating knob T Toner collection container

16 17 18 18 20 21

22 23

4 – 2

Page 18: Sharp Sf 2040 Copier Sm

2. Operation panel

1 COVERS key and indicator 2 ERASE key and indicator 3 MARGIN SHIFT key and indicator

4 DUAL PAGE COPY key and indicator 5 AUTO IMAGE key 6 Message display

7 INFORMATION key and indicator 8 SCROLL DISPLAY keys 9 COPY quantity display

F PROGRAM ( ) key G INTERRUPT key and indicator H LCD contrast control

I SORTER key and indicators J ORIGINAL TO COPY key and indicators K ZOOM keys

L Reduction ( ) key M Enlargement ( ) key N 100% key

O COPY RATIO display P EXPOSURE display Q EXPOSURE key

R AUTO PAPER SELECT display S LIGHT key T DARK key

U Paper size display V TRAY SELECT key W Original size display

X 10-key pad Y AUDIT CLEAR ( ) key Z Clear ( ) key

[ CLEAR ALL ( ) key \ START key and indicator

P

0/ C

CA

COVERS ERASE MARGINSHIFT

DUAL PAGECOPY

SORTER ORIGINAL TO COPY

EVEN NUMBER

ODD NUMBER

(ORIGINALS)

10 0

AUTO IMAGE

ZOOM

100%

SORT

STAPLESORT

GROUP PRE-COUNTORIGINALS

00

11

1

AUTOMANUAL PHOTO

EXPO SU RE LIGHT DARK

AUTO

EXPO SU RE

COPY RATIO

1 0 0 %

00x1718½x110

AUTO PAPERSELECT

READY TO COPY.

ORIGINAL

SCROLL DISPLAY

INFORMATION

TRAY SELECT AUDIT CLEAR

CLEAR ALL

START

0/

CA0 1 2

543

6 8 9

C

P

PROGRAM

LCD contrast control Use the contrast control adjustment to vary thecontrast of the message display to best suit the room lighting conditions.

21 3 4 5 6 7 8 9 10 11 12

13 14 1516

17 1918 20

21 23 24 2522

26 27 2829

30 31 32

INTERRUPT

8¼x11R

8½x11

4 – 3

Page 19: Sharp Sf 2040 Copier Sm

3. Internal view

1 #2 mirror 2 #3 mirror 3 #1 mirror

4 Copy lamp 5 Lens unit 6 Main corona unit

7 Blank lamps 8 #6 mirror 9 #4 mirror

F #5 mirror G — H Developing tank

I Resist roller J Transfer corona K Drum

L Separation corona M Drum separator pawl N Cleaner unit

O Suction unit P Suction belts Q Upper heat roller

R Lower heat roller S Heater lamp T Lower separator pawl

U Upper separator pawl V Upper cleaning roller W Fuser thermistor

X Delivery select gate Y Manual feed takeup roller Z Manual feed paper feed roller

[ Counter manual feed roller \ Transport roller (upper) ] Transport roller (lower)

Upper paper feed roller _ Upper paper feed reverse roller ‘ Upper paper takeup roller

a Lower paper feed roller b Lower paper feed reverse roller c Lower paper takeup roller

d Lower cleaning roller

3 4 1097

12

13

30

29

31

32

34

35

36

37

38

39

26

25

24

23 22 21 19 18 17 16 1514

21 5 6 8

27

28

20

33

40

4 – 4

Page 20: Sharp Sf 2040 Copier Sm

4. Clutches, solenoids

Signal name Name Function

1 CPFS1 Upper cassette paper feed solenoid For tensioning takeup roller

2 CPFS2 Lower cassette paper feed solenoid For tensioning takeup roller

3 CPFC1 Upper cassette paper feed clutch For actuating paper feed roller

4 CPFC2 Lower cassette paper feed clutch For actuating paper feed roller

5 MPFS Manual paper feed solenoid For tensioning takeup roller

7 TRCH Transport roller clutch (fast) For actuating transport roller (fast)

8 RRC Resist roller clutch For actuating resist roller

9 PSPS Paper separation solenoid For actuating paper separation solenoid

F DGS Duplex copy gate solenoid For actuating duplex copy gate

10

9

8

7

4

1

2

3

5

4 – 5

Page 21: Sharp Sf 2040 Copier Sm

5. Sensors

Signal name Type Name Output

1 CSWL Microswitch Cover switch, (left) On when closed

2 POD Transmssive photosensor Paper exit sensor Low when paper passes over

3 P-SW See-saw switch AC power switch —

4 MHPS Transmissive photosensor Mirror home position sensor High when scanner at home postion

5 CSWF Microswitch Cover switch, (front) On when closed

6 LHPS Transmissive photosensor Lens home position sensor Low when lens at home postion

7 PSD Transmissive photosensor Paper separation sensor High when paper passes over

8 OCSW Transmissive photosensor Original cover switch Low when cover is open

9 PPD2 Transmissive photosensor Paper transport sensor Low when paper passes over

F MBHPS Transmissive photosensor Mirror home position sensor Low when mirror at home position

G PPD1 Transmissive photosensor Paper transport sensor-1 Low when paper passes over

H PED1 Transmissive photosensor Manual feed paper sensor Low when paper passes over

I TFD Transmissive photosensor Full waste toner sensor Low when full waste toner detected

J LUD1 Transmissive photosensor Upper cassette liftup sensor Low when lift plate detected

K PED2 Transmissive photosensor Upper cassette paper sensor Low when paper detected

L CSWR Microswitch Doorswitch (right) On when closed

M PID Transmissive photosensor Paper transport sensor High when paper passes over

N LUD2 Transmissive photosensor Lower cassette liftup sensor Low when lift plate detected

O PED3 Transmissive photosensor Lower cassette paper sensor Low when paper detected

P PLS1 Transmissive photosensor Manual tray paper length sensor Low when detected

Q PLS2 Transmissive photosensorManual tray paper length sensor(Inch series only)

Low when detected

1

2

3

4

5 6 7 8 9 10

11

12

13

16

17

18

19

14

15

21

20

4 – 6

Page 22: Sharp Sf 2040 Copier Sm

6. Motors

Signal name Name Type Function

1 MM Main motor DC, brushless Driving copier and ADU option

2 SM Mirror motor DC, brushless Driving optical system mirror bases A and B

3 LEM Lens motor DC, stepping Driving optical lens

4 MBM #4/5 mirror base motor DC, stepping Driving optical mirror base C

5 TM Toner motor DC, synchronous Supplying toner

6 LUM1 Upper cassette liftup motor DC, brush Lifting upper paper feed cassette baseplate

7 LUM2 Lower cassette liftup motor DC, brush Lifting lower paper feed cassette baseplate

8 CFM Cooling fan motor DC, brushless Cooling optical system

9 VFM Ventilation fan motor DC, brushless Ventilating fuser area

F SFM Suction fan motor DC, brushless Ventilating process unit area aid in paper transport

G DVFM DV fan motor DC, brushless Ventilation around the developing unit

9 12 85 4

3

6

7

10

11

4 – 7

Page 23: Sharp Sf 2040 Copier Sm

7. Board list

Name Type Function

1 Main PWB Japan/Export Primary control of copier functions

2 Operation PWB Common Display

3 AC PWB Japan/Export, 100V/200V Supplying AC power

4 Blank lamp PWB Common Controlling blank lamps

5 Original sensing light emitting PWB Japan Sensing original size

6 Original sensor light receive PWB Japan Sensing original size

7 AE PWB Common Automatic exposure sensor

8 Cassette paper size PWB Common Sensing cassette paper size

9 Liftup motor PWB Common Driving paper cassette bottom plate liftup

F DC power supply unit 100V/200V series Supplying DC power

G High voltage transformer Common Supplying process unit high voltage and developing bias voltage

H Discharge lamp Common Driving discharge lamps

I Process control VR PWB Common Process sensor sensitivity adjustment

JManual feed paper size sensorPWB

Japan/Export Paper size detection (Japan, portrait only)

K LCD control PWB Japan/Export LCD display drive/control

L LCD invertor PWB Common LCD power invertor circuit

M LCD volume PWB Common LCD light intensity adjustment

9

8

13

4

1716

17512310 1162

15

14

4 – 8

Page 24: Sharp Sf 2040 Copier Sm

8. Duplex copy tray

Signal name Type Name Output

1 APHPS2 Transimissive photosensor ADU rear plate home position sensor Low when at home position

2 DPPD1 Transimissive photosensor ADU paper transport sensor-1 High when paper passes over

3 APHPS1 Transimissive photosensor ADU alignment plate home position sensor Low when over home position

4 DPPD2 Transimissive photosensor ADU paper transport sensor-2 High when paper detected

5 DTPID Transimissive photosensor ADU tray sensor High when paper detected

6 DPFD Transimissive photosensor ADU paper entry sensor High when paper detected

7 PAM2 DC stepping motor ADU rear plate motor

8 PAM1 DC stepping motor ADU alignment plate motor

9 DPFC Magnetic clutch ADU paper feed clutch

F DRRC Magnetic clutch ADU counter roller clutch

G DDC Magnetic clutch ADU clutch

H ADUPWB Duplex copy tray load driving Diode PWB

6

1 2

387 9 10 5 412

11

4 – 9

Page 25: Sharp Sf 2040 Copier Sm

9. Desk unit (SF-D23)

11

12 1617

13

18

10

9

8

7

625

4

3

1

23

21

2219

2014

15

4 – 10

Page 26: Sharp Sf 2040 Copier Sm

A. Sensors and switches

Signal name Name Type Function/operation Contact/output

1 SIZESW Size switch Slide switch Size (A4, B5, Letter) selection —

2 F/LSWFront loadingopen/close switch

Microswitch Desk open/close detection H level when open.

3 DPE2 Empty sensor Reflection type sensorCassette 2 original presencedetection

H level when paper isdetected.

4 DLPD3 Paper pass sensor 2 Reflection type sensorTurns to H level when the paper leadedge is transported to the front ofpickup roller 1.

H level when paper isdetected.

5 DLPD2 Paper pass sensor 1 Reflection type sensorTurns to H level when the paper leadedge is transported to the back ofpickup roller 1.

H level when paper isdetected.

6 DDOP Side open/close sensor Photo interrupter Side cover open/close detection L level when open.

7 DLUD1 Level sensor 1 Photo interrupter Cassette 1 paper height control H level when interrupted.

8 LMS1 Limit sensor 1 Photo interrupterPrevention against excessive heightof cassette 1 paper

H level when interrupted.

9 DPOD1 Resist sensor 1 Photo interrupter Paper pass detection Paper in: L level

F DLPD1 Paper pass sensor 0 Reflection type sensorTurns to H level when the paper leadedge is transported to the front ofseparation roller.

H level when paper isdetected.

G DLUD2 Level sensor 2 Photo interrupter Cassette 2 paper height control H level when interrupted.

H LMS2 Limit sensor 2 Photo interrupterPrevention against excessive heightof cassette 2 paper

H level when interrupted.

I DPOD2 Resist sensor 2 Photo interrupter Paper pass detection Paper in: L level

J E2CLKElevator motor 2 clocksensor

Photo interrupterElevator motor 2 encoder clockdetection

Pulse output

K E1CLKElevator motor 1 clocksensor

Photo interrupterElevator motor 1 encoder clockdetection

Pulse output

B. Electromagnetic clutches

Signal name Name Type Function/operation Contact/output

L P2CL Pick up roller clutch 2 Electromagnetic clutchLinks/releases the transport motordrive and the pick roller 2.

Links the drive whenON.

M P1CL Pick up roller clutch 1 lectromagnetic clutchLinks/releases the transport motordrive and the pick roller 1.

Links the drive whenON.

N BCL Separation clutch Electromagnetic clutchLinks/releases the transport motordrive and the separation roller.

Links the drive whenON.

O RCL Resist clutch Electromagnetic clutchLinks/releases the transport motordrive and the resist roller.

Links the drive whenON.

C. Motors

Signal name Name Type Function/operation

P E1MOT Elevator motor 1 DC motor Drives the lifting mechanism of cassette 1 paper bundle.

Q E2MOT Elevator motor 2 DC motor Drives the lifting mechanism of cassette 2 paper bundle.

R HMOT Transport motor DC brushless motor Drives the whole mechanism of paper transport.

S — Control PWB — —

4 – 11

Page 27: Sharp Sf 2040 Copier Sm

[5] PROCESS(Photoconductor drum and cleaningunit)

1. Basic theory

With the indirect static copier, a plain paper is used for the copypaper. As a latent static image is formed on the surface of thephotoconductor, the image is then developed into visible (toned)image using the toner. Then the toner is transferred onto the copypaper.The plain paper copier (PPC) has six basic processing steps ofcorona charge, exposure, development, transfer, discharge, andcleaning. The cleaning step prepares the photoconductor surface forrepeated use.

(1) Image forming process

1 Corona charges the photoconductor.

2 The photoconductor is exposed to light to form a static latentimage.

3 Toner is attracted to the static latent image.

4 The toner on the drum is transferred onto the copy paper.

5 The charge remaining on the photoconductor surface (residualcharge) is removed.

6 Toner remaining on the photoconductor (residual toner) isremoved.

(2) PhotoconductorWhile some materials conduct electricity, others do not. Materials,therefore, can be put into three categories of conductor, semiconduc-tor, and insulator.Because these categories are conceptual, distinct classification isdifficult.Generally, the following is applied.Material whose specific resistance is over 103Ωcm is called insulatorand under 10–3Ωcm is called conductor.Those which exist between the two are normally called semiconduc-tor does not.Conductors always have electrical conductivity, while a semiconduc-tor does not. But, it may become a conductor under certain condi-tions.The photoconductor used by the copier is an insulator when notexposed to light, but its electrical resistance abates when exposed tolight. When exposed to light, the photoconductor surface becomesconductive. Material having the property to become conductive inlight (photo conductive phenomenon) is a photoconductor orphotosemiconductor.

(3) Types of photoconductorsThe pricipal materials of a photoconductor are zinc oxide (ZnO),amorphous selenium (amorphous Se), selenium alloy, cadmium sul-fide (CdS), amorphous silicon (amorphous Si), and organic photocon-ductor (OPC).

Described next are structures of the photoconductors we have usedup to now.

Zinc oxide (ZnO) master

Cadmium sulfide (CdS) drum

Organic photoconductor (OPC) master and drum

Selenium (Se) drum

1

2

3

4

5

6

Charging

Exposure

Development

Transfer

Discharge

Cleaning

Photoconductor

HV

CTL

CGL

Base

Dark area Dark areaLight

Theory of photoconduction

Amorphous selenium(amorphousSe)

Selenium alloy

Zinc oxide(ZnO)

Cadmium sulfide(CdS)

Amorphous silicon(amorphous Si)

Organic photoconductor(OPC)Organic photoconductor

Inorganic photoconductor

Photoconductive layer (zinc oxide layer)Intermediate layerPaperBack coating paper

Base paper

PET layerMicro space layerPhotoconductive layer (CdS layer)Aluminum layer

Charge transfer layerCharge generation layer

Opticalconductivelayer(OPC layer)

Aluminum layer

(selenium layer)Photoconductive layer

Aluminum layer

5 – 1

Page 28: Sharp Sf 2040 Copier Sm

Zn0 OPC CdS Se

Photoconductorsensitivity 4 3 2 1

Photoconductorstrength 4 3 2 1

Photoconductorlife

Several hundredcycles

Several tenthousand cycles

Several tenthousand cycles

Several hundredthousand cycles

Photoconductor characteristics1 > 2 > 3 > 4

Characteristics of organic photoconductors

• Permits a variety of structures (drum, sheet, belt)

• Higher insulation in dark area (charge acceptability and retentivity)

• Permits a variety of molecular structure (allows a variety ofmolecular design)

• Light weight

• Stable against humidity and temperature

• Safety for environment (non-pollution, unrestrained disposal)

• Not strong in anti-wear property

• Not strong against light and ozone.

(4) Characteristics of photoconductorMentioned next are the general characteristics important to use forthe photoconductive material.

1. Photo-sensitivity 2. Spectrum characteristics3. Acceptor potential 4. Charge retentivity5. Residual potential 6. Fatigue

[Photo-sensitivity]This is dependent on the attenuation speed of the potential when thephotoconductor is exposed to light.

[Spectrum characteristics]Wave length of the light differs by the kind of the photoconductor.

Relationship between color and wave lengthLight having wave length of 380mm through 780mm can be recog-nized by human eyes, which is called visible light. Wave lengthshorter than that is called ultraviolet light and the longer than that iscalled infrared light. Figure below shows the relationship between thewave length of light and color.

[Acceptor potential]The resistance in the dark area of the photoconductor decreases as the electric field increases among layers.As the electric field is formed to a higher value as the photoconductoris charged, the resistance in the related layer decreases and the rateof charge retained in the photoconductor is restricted. The potential ofthe photoconductor in this instance is called acceptor potential whichis the important factor to determine the potential contrast. To avoidgiving electrical distortion in the photoconductor, charge is normallymade to a level slightly lower than the acceptor potential.

[Charge retentivity]The time the static latent image is held by the photoconductordepends on the speed at which the potential decreases in the darkarea. For this, measure the time the photoconductor potential abatesto a half of the starting value in the dark area. This charge retentivitymay cause a problem when the time from the exposure to thedevelopment is long. But, it may not be a problem with the machinewhere a series of operations from charge, exposure, and develop-ment are automated and time between processes is shorter.

[Residual potential]When the charged photoconductor is exposed to light, the potentialabruptly diminishes at first, then begins decay relatively slowly. Thepotential of the photoconductor where slow decay starts is calledresidual potential. Because a less residual potential produces a largepotential contrast, low residual charge is preferable.The value of the residual potential affects largely the development ofgradual tone.

[Fatigue]If charge and exposure are repeated, the phenomenon calledphotoconductor fatigue occurs. In other words, it appears as an in-crease of the decay speed of the photoconductor potential or adecrease in the charge retentivity.

Now, we have learned about the characteristics required for chargingof the photoconductor. If charge is repeated from the corona unit inthe actual operation, the corona wire is likely to be contaminated withdust, stain, and scattered toner, causing uneven corona charge. Toavoid this, the corona wire needs to be cleaned well.

1.0

400

0.8

0.6

0.4

0.2

500 600 700 800

Se:Te

OPC

Amorphous silicon

Sp

ect

rum

se

nsi

tivity

(re

lativ

e v

alu

e)

WavelengthSpectrum sensitivity

350 400 450 500 550 600 650 700 750 800

Blue green

Vio

let

Blu

e

Gre

en

Yel

low

Ora

ng

e

Red InfraredUltraviolet

5 – 2

Page 29: Sharp Sf 2040 Copier Sm

2. SF-2040 basic process andstructure

• The Scorotron method is used to evenly charge the photoconduc-tor surface to the given potential in the charge process. Thecorona wire regularly used is now replaced with a new coronacharge mechanism that employs the 0.1mm thick stainless steelsaw tooth plate, in order to suppress ozone generated when theoxide molecule in air is ionized.

• Considering the service efficiency, the process separationmechanism is adopted.

• To prevent high voltage leakage by the loose corona charge unit, aone-touch stopper mechanism is adopted.

(1) Details of image forming process

STEP 1. Charging(grid voltage refer page 8-1)The main corona discharges negative corona to give negative char-ges to the OPC drum surface evenly. The surface potential of the OPC drum is controlled by the screengrid voltage to maintain at the potential equal to the grid voltage.

• When the drum surface voltage is lower than the screen grid volt-age, electric charges from the main corona pass through thescreen grid to reach the drum surface and charge it until the drumsurface voltage becomes equal to the grid voltage.

• When the drum surface voltage reaches almost the same level asthe grid voltage, electric charges from the main corona flowthrough the electrode of the screen grid to the high voltage unitgrid voltage output circuit, thus maintaining the drum surface volt-age at the same level as the grid voltage.

STEP 2. Exposure (Copy lamp, mirror, lens)The optical image of an original is projected through the mirror andlens onto the OPC drum surface by the copy lamp. The resistance ofthe OPC layer reduces in the bright area (light area on the original) todischarge negative charge, forming an electrostatic latent image onthe drum surface. In reduction copy, the non-image area of the image is discharged bythe BL (blank lamp) before exposure.

STEP 3. Development (Bias –300V)The electrostatic latent image on the drum surface is formed into avisible image by the toner. This copier employs the two-componentmagnetic brush development system, where a bias voltage of –300Vis applied to the carrier (MG roller) and the toner is charged positivelyby friction with the rotating carrier.

STEP 4. TransferThe visible image on the drum surface is transferred on to the copypaper. A negative charge of the transfer corona is applied to the rearsurface of the copy paper to transfer the toner from the drum surfaceto the copy paper.

Screen grid

Grid voltageoutput section

Main coronaoutput section

High voltageunit

Exposure

Exposure(Copy lamp)

OPC layer

Pigment layer

Aluminum(Drum)

Dark area Light area Dark area Light area

N

S

S

N

N

-300V

Carrier

Toner

Toner

Copy paper

Paper guide

High voltage unit

5 – 3

Page 30: Sharp Sf 2040 Copier Sm

STEP 5. SeparationThough the copy paper and the drum are both negatively chargedafter transfer, the negative potential on the drum is higher than thaton the copy paper, generating an attraction force between the drumand the copy paper. To remove the attraction force, AC corona isapplied to the copy paper by the separation corona to raise thepotential on the copy paper to the same level as the drum surfacepotential. The attraction force is eliminated and the copy paper isseparated from the drum. If the paper is not separated from the drum,the separation pawl works to separate it mechanically.

STEP 6. CleaningResidual toner on the drum is collected by the cleaning blade.

STEP 7. DischargeThe electrical resistance of the OPC layer is reduced by radiationfrom the discharge lamp over the drum to remove residual charges.

Photo modeThe photo mode is provided to make clear half-tone copy of the photooriginals. In the photo mode, the grid voltage and the copy lamp voltage arelowered than in the standard copy mode (the copy density of theblack background is lowered) to provide half tone graduations of thecopy.

(2) Relationship between the OPC drum and lightThe light exposed is absorbed by the charge carrier generation layer(CGL) to generate the charge carrier and moves towards the chargecarrier transport layer (CLT). The carrier reached CTL then movestowards the drum surface through CTL to neutralize the surfacecharge.

AC4KV

Separationpawl

Copy paper

Separation coronaoutput section

High voltage unit

Cleaner blade

Residualtoner

Discharge lamp

(Dark)

Copy density

(Light)

Gradation is increased toprovide larger expressionwidth of half tone.

Original density (Dark)

Normal copy mode

Photo mode(The copy density ofblack background isdecreased.)

CTL

CGL

Grid

5 – 4

Page 31: Sharp Sf 2040 Copier Sm

(3) Transition of photoconductor surface potential

(4) Photoconductor drum sensitivity correctionIn this machine, fall in sensitivity due to long use of the photoconduc-tor drum is corrected by the copy lamp light intensity to preventagainst considerable change in copy quality. The photoconductor drum sensitivity fall correction is performed asfollows:

DLBLCharge Exposure Develop Transfer Separate Clean

Dark area

Developing bias voltage

Light area

Residual potential

-850V

-300V

Cleaner

OPC drum

Develop

(NEW)

CTL

CGL

(USED)

CTL

CGL

Sim46

CLV

5K0 10K 15K 20K 25K 70K 75K 80K

CL(V) + (0.33V x 2)CLV + 2 counts

(Sim46-01)

Change the thickness of the carrier transport layer (CTL).By the developper.By the cleaner blade.

Drum counter

5 – 5

Page 32: Sharp Sf 2040 Copier Sm

(5) Process control function

[Summary]The process control function detects the density of the standard tonerimage formed on the photoconductor, the density of the initial imageand controls the charging grid voltage so that the same level as theinitial image density is provided. That is, the process conditions are established and the high voltageoutput and exposure level are controlled to stabilize the toner density.

Process control

1 Toner patch images are formed on the photoconductor surfaceunder the three process conditions (MC grid bias voltage). At the first process control, a toner parch image is formed with thereference grid voltage –630V as the center and ±50V. At thesecond or later process control, the MC grid bias voltage deter-mined at the former process control is used as the center, and atoner patch is formed under the process condition of ±50V to thecenter value.

2 Measure the three toner patch images formed in the above andthe drum surface with the process density sensor to obtain therelations.

BVS: Sensor detection level on the photoconductor drum surfacePVS: Sensor detection level with the toner patch image

Obtain the above two levels from the calculation formula and recordthem as the reference values.

A. STD BA: Reference level when detecting the drum surface→ STD BA = BTS x 20

B. STD PA: Reference level when detecting the toner patch image→ STD PA = PTS x 20In the density correction, the process conditions are determinedso that the ratio of the reference levels

STD PASTD BA

set in the above

may be maintained at constant.

3 Obtain the MC grid bias voltage from the reference level ratio.

In this machine, the absolute value of the output of the densitysensor is not directly used for control calculation, but the ratio ofthe sensor output value (BA) on the drum surface and the sensoroutput (PA) of the toner patch image is used for control calcula-tion. Though, therefore the light quantity of the reflection type sensor isvaried by dirt or deterioration, the ratio (PA/PB) will not be affectedby change in light quantity to provide stable control. The grid voltage value where the same density level as the refer-ence level is obtained and displayed as GB ADJUST by SIM 44-9.

4 When the MC grid bias voltage is corrected by the process con-trol, the corresponding light quantity is calculated to control thecopy lamp. To correct the MC grid voltage, the delta value of the sensitivitylevel when the initially recorded reference grid voltage is –630Vand the MC grid voltage where the same density is obtained inprocess control is fed back to the MC grid voltage of each mode.

Process control timingIn this machine, the process control is performed in the followingtiming:

1 When the main switch is turned on. (When warming up with 45sec or more READY time)

2 At every specified copy quantity (First copy after 1,000 copies)Judged by the total counter.The correction is reset by Simulation 25-2.

3 After the specified time after turning on the main switch. (Firstcopy after 2 hours)

Main control PWBProcess densitysensor PWB

High voltage PWB

(Light quantity correction)

CPU densityjudgement

I/O MC gridoutput selection

Density detectionlevel setting(VR2)

MC grid biasoutput (densitycorrection) in each mode

R

F

472V

BV

PV

Bias

440V

408V

123

123

1IDPAT =PV 1 x 20

2IDPAT =PV 2 x 20

3IDPAT =PV 3 x 20

1IDBAS =BV 1 x 20

2IDBAS =BV 2 x 20

3IDBAS =BV 3 x 20

Drum 1/2 rotation 2/2 rotation 3/2 rotations

SurfaceTonerimage Surface

Tonerimage Surface

Tonerimage

1

2

3

Surface

1=ID PAT1ID BAS1

2=ID PAT2ID BAS2

3=ID PAT3ID BAS3

PABA

-660-610-560

3

2

1

MC grid bias voltage

STD PASTD BA

GB PAT

5 – 6

Page 33: Sharp Sf 2040 Copier Sm

Drum markingIn this machine, a toner patch image is formed in the same positionon the photoconductor drum surface to improve the accuracy of theprocess control. A marking is provided on the drum and the marking is sensed beforeforming a toner patch image. If the marking is not sensed, themachine stops its operation and indicates "F2-32" trouble.There are two drum markings (3 × 8 m).

3. Basic structure

Photoconductor drum: The 65mmφ ground plate of the OPCdrum is on the rear frame side of the drumunit so that it contacts the drum locatorpin.

Blank lamp: The non-image area is exposed by thelight from the blank lamp to erase thepositive potential outside the drum CTL.Use of the latch simplifies the lamp posi-tion adjustment.

Discharge lamp: Eight bulbs cast light over the drum sur-face to erase the positive potential in CTL.A ventilation hole provided in the drumframe releases heat from bulbs.

Cleaning mechanism: The cleaning blade removes the tonerremaining on the drum surface. The bladealways rests on the drum surface.

Main corona: The saw tooth corona charge method isused. Use of the screen grid maintains theeven charge potential over the photocon-ductor surface.

Enforced separation mechanism:

Using two separation pawl, the copypaper stuck over the drum surface isforced to separate from the drum surface.

Waste toner transport mechanism:

To enhance the toner transport efficiency,a transport pipe is used and toner backupis avoided by setting the waste tonertransport path downward.

R

F

5 – 7

Page 34: Sharp Sf 2040 Copier Sm

[6] DEVELOPING UNIT

1. Basic theory

(1) Two-component developerThe developer consists of toner and carrier, which is usually calleddeveloper.The carrier is a medium that applies toner to the static latent imageon the photoconductor.As the carrier is stirred with the toner, the friction charges it to positiveor negative.Because the developer fatigues, this affects its characteristics anddeteriorates the copy quality, it needs to be replaced after a givenperiod.

(2) Two-component magnetic brush developmentA rotary, non-magnetic sleeve is provided over the magnet roller andis rotated.Carrier forms the magnetic brush on the sleeve surface by magneticforce to make toner be attracted onto the latent electrostatic image onthe photoconductor.

(3) Developing bias voltageWhen the photoconductor is exposed to light, the surface potential(voltage) of the photoconductor is not removed completely andremains as a residual potential. Therefore, the toner stuck on thephotoconductor by the residual potential stains a white area of thecopy background.To prevent this, a voltage of the same charge on the photoconductorsurface which is higher than the charged potential is added to themagnetic roller to avoid the toner from remaining on the photocon-ductor surface.

2. Structure

No. Name

1 Developer mangetic rollerMagnetic brush is formedwith the carrier by themagnetic force.

2 Developer doctor plateA plate employed to limit theheight of the magneticbrush.

3 Developer stirring rollerCarrier within the developingunit is stirred to distributethe toner evenly.

4 Developer transport rollerThe toner fed from the tonerhopper is supplied to thestirring unit.

5 Toner density sensorUsed to detect the density ofthe toner contained in thedeveloper.

3. Operation

When the power is turned on, the machine goes into the warmupmode and the main motor starts to run in 1.5 minutes.The developer unit is driven by the main motor via the main drive unit.Ratio of the carrier and the toner within the developing unit ismonitored by the toner density sensor as a change in the magnetictransmission rate. The voltage is sent to the analog input line of theCPU on the main board.In the CPU, the input voltage level is monitored and the main motorand the toner motor are controlled until the optimum density is ob-tained. Then the toner is supplied, transported, and stirred.

++

+++

+

MG roller

Residual potential < DV BIAS

TonerCarrier

DV BIAS-300V

Developing bias voltage

1 3

2 4

5

6 – 1

Page 35: Sharp Sf 2040 Copier Sm

[7] PAPER FEED UNIT

1. Outline

The front load method and the foldable multicopy table are providedto save space. The machine is equipped with two 500-sheet casset-tes and a manual feed multicopy table that may feed up to 50 sheets.Use of a desk unit option and a cassette module allows to expand thesystem.

Standard setting

2. Basic configuration

SF-DM11

SF-2040SF-IC11

SF-CM11

SF-D23

1

2

3

4

5

6

7

8

21 20 19 18

17

16

15

14

13

12

11

10

9

No. Name

1 Resist roller Synchronizes the copy paper with image by controlling the resist roller clutch (RRC).

2(PPD2)Paper transport sensor

For control of the paper transport roller clutch (TRC).

3(LUD1)Lift upper limit sensor

For control of the upper cassette liftup motor; a high on this line stops the motor.

4(PED1)Paper presence sensor

For detection of paper in the upper cassette; a low on this line shows that paper is present.

5 Takeup roller The upper cassette paper takeup roller descends at the moment the paper feed solenoid turns on.

6(LUD2)Lift upper limit sensor

For control of the lower cassette liftup motor; a high on this line stops the motor.

7(PED2)Paper presence sensor

For detection of paper in the lower cassette; a low on this line shows that paper is present.

8 Takeup roller The lower cassette paper takeup roller descends at the moment the paper feed solenoid turns on.

9 Counter paper feed roller For prevention of double feed paper using the lower paper reversion roller.

F Paper feed roller Lower cassette paper feed roller with an internal one-way clutch.

G(PID)Paper entry sensor

Entry of paper from the lower cassette is sensed to turn off the paper feed solenoid.

H Paper transport roller For transport of paper from the lower paper cassette.

I Paper reversion roller For prevention of double feed paper using the upper paper reversion roller.

J Paper feed roller Upper cassette paper feed roller with an internal one-way clutch.

K Paper transport roller Paper from the cassette is transported to the resist roller.

L(TFD)Full waste toner sensor

A low on this line shows the full toner condition.

M(PEDMFT)Paper presence sensor

For detection of manual feed paper; a low on this line shows the paper is present.

N Takeup roller Manual feed paper takeup roller

O Paper feed roller Manual paper feed roller with one-way clutch

P Paper reversion roller For prevention of double feed paper using the lower paper reversion roller.

Q(PPD1)Paper transport sensor

For detection of paper from cassette and manual paper feed.

7 – 1

Page 36: Sharp Sf 2040 Copier Sm

3. Basic operation

(1) Manual paper feed operation1 When the manual feed is at rest, the manual paper feed solenoid

(MPFS) is off and the manual feed stopper is closed with thetakeup roller in the up position. Latches and clutches are in theposition shown in the figure below.

2 When the PRINT switch is pressed, the manual paper feedsolenoid (MPFS) turns active, the manual feed latch A disengagesfrom the manual feed clutch sleeve A, the manual feed roller andthe manual feed takeup roller start rotating. Then the manual feedstopper opens and the manual feed takeup roller comes in closecontact with the copy paper to start paper feed.

3 When the pawl C of the manual feed clutch sleeve B7 is caught bythe manual feed latch B7, the manual feed stopper goes downand the manual feed takeup roller goes up. At this moment, thetransport roller is rotating.

4 After the lead edge of the copy paper is detected by PPD2, themanual feed solenoid turns off after 0.2 second. Here, the pawl Bof the clutch sleeve B7 is caught by the manual feed latch B7.This produces a buckle in the paper between the resist roller andthe paper feed roller.

A B

Manual feedtakeup roller

Transfer paper

Manual feed stopper

Manual paper feed roller

Manual feedfriction plate

Manual feedclutch sleeve A

Manual feedlatch A

Manual feedsolenoid

Manual feedclutch sleeve

Manual feed latch

AB

ON

C

Manual feed stopper

Manual paper feed roller

Manual feedtakeup roller

Manual feedclutch sleeve

Manual feedclutch sleeve A

Manual feedlatch A

Manual feedsolenoid

Manual feed latch

AB

ON

Manual feed takeup rollerManual feed stopper

Manual paperfeed roller

Manual feedclutch sleeve A

Manual feedlatch A

Manual feedsolenoid

Manual feedclutch sleeve

Manual feed latch

Transfer paper

OFF

AB

C

Manual feed takeup roller

Manual feed stopper

Manual paperfeed roller

Manual feed clutch sleeve A

Manual feed latch A

Manual feed solenoid

Manual feedclutch sleeve

Manual feed latch

Transfer paper

Resist roller

7 – 2

Page 37: Sharp Sf 2040 Copier Sm

5 In synchronization with rotation of the resist roller, the manual feedsolenoid turns on for 0.08 seconds and the manual paper feedroller rotates. A misfeed caused by a lack of seizure of the resistroller is prevented. Here, the manual takeup roller is up.

6 The manual feed solenoid turns off, the pawl A of the manual feedclutch sleeve B7 is caught by the manual feed latch B7, themanual feed operation terminates. The copy paper is then sent tothe transfer unit by way of the resist roller.

(2) Cassette paper feed operationFor the upper, lower, and desk cassettes, paper is fed in the samemanner.

The operations of the lower cassette are described below.

1 Liftup actionWhen the power is turned on to the copier, the main circuit in-itiates to check every sensor.The liftup motor is turned on or off according to the state of thepaper presence sensor (PED) and the liftup sensor, and it be-comes ready to feed paper.

2 Paper feed operationWhen the PRINT switch is pressed, the cassette paper feedsolenoid (CPFS2) and the cassette paper feed clutch (CPFC2)turn on. As the solenoid turns on, the paper takeup roller is forceddown to make contact with paper.As the clutch turns on, the paper feed roller and the takeup rollerstart to rotate to pick up paper.The paper picked up passes over the paper entry sensor (PID)and sent to the paper transport roller area.The paper transport roller is driven with two kinds of clutches.Paper transport from the paper feed block to the resist roller isperformed with the high speed clutch.The paper obstructed by the resist roller synchronizes with theoptical unit and is transported to the process unit. Because thepaper is transported at the same speed as the process unit rota-tion, the drive changes from the high speed clutch to the lowspeed clutch.

AB

ON

Manual feed takeup roller

Manual feed stopperResist roller

Transfer paper

Manual feedclutch sleeve

Manual feed latch

Manual paperfeed roller

Manual feed clutch sleeve A

Manual feed latch A

Manual feed solenoid

OFF

AB

Manual feed clutch sleeve

Manual feed clutch sleeve A

Manual feed latch A

Manual feed solenoidManual feed latch

MM

SFM

CFM

DL

THV

MHV

BL

SHV

PPD2

PSD

POD

MPFS

RRC

200

RESIST

200

Power ON

CPFS2 turns on and the take-up rollerpresses the copy paper to start paper feed.

YES

NO

LUM ON

PED/LUD"ON"

7 – 3

Page 38: Sharp Sf 2040 Copier Sm

Lower cassette paper feed timing chart

500 ms ON when A3 (11"x17") paper feeding with the lower cassette.

[8] TRANSPORT/FUSING SECTION

1. General

This machine allows transport of paper of max. A3 (11" x 17") andmin. A5 (8 1/2" x 5 1/2"). After images are transferred on the paper, the paper is separatedfrom the drum and transported to the fuser section by rotations of theresist roller and the transport belt. The paper separation sensor (PSD) is provided at the transport sec-tion. This sensor (PSD) is used to sense paper separation and fordrive timing of the duplex gate solenoid (DGS) after fusing.

2. Basic composition and functions

(1) Transport section1 Transport belts (2pcs)

The transport belts are provided with notches to hold paper rearends.

2 Separation sensor (PSD)This is a transmission type sensor, and attached to the main bodychassis.

3 Suction fan motor and ozone filerOzone generated in the process high voltage section is absorbedthrough the filter.

(2) Fusing section1 Upper heat roller

The upper heat roller is teflon-coated. (Reversed crown shape)

2 Lower heat rollerA silicone rubber roller is used. (Crown shape)

3 Separation pawlThe upper heat roller is equipped with four pawls which are tefloncoated to reduce friction. the lower heat roller is equipped with two pawls.

4 Upper/lower separation functionThe upper and lower heat roller sections are separated by rotatingoperations with the transport roller as a fulcrum, providing betterserviceability.

5 Drive system divisionThe fuser unit is rotated by the main drive unit. In case of manualrotation of the fuser unit to remove paper jam, however, excessiveloads may be applied to the gears. To prevent against this, thespring clutch is provided in the main drive gears.

[9] HIGH VOLTAGE SECTION

1. General

There are three kinds of coronas; the main corona, the transfercorona, and the separation corona. The main corona employs thescorotron system, where the drum surface is evenly charged withnegative charges controlled by the screen grid between the coronaand the drum. The transfer corona is used to transfer toner imagesfrom the drum to the copy paper. A high, negative voltage is appliedto the rear side of the paper. The separation corona applies ACcorona to the copy paper to eliminate potential difference with thedrum to allow separation of the paper.

2. Basic composition

(1) Main (charging) corona – High voltage transformer (MHVG)

(Electrode sheet front-rear balance difference: max. 8µA)

Grid voltage Developing bias voltage

Standard mode –860V±10V

Photo mode –610V±10V –300V

TSM mode –755V±10V

(2) Transfer corona – High voltage transformer (THVG)

–57±4µA (Electrode sheet front-rear balance difference: max. 5µA)

(3) Separation corona – High voltage transformer (SHVG)

AC4KV ±0.1KV

MM

SFM

CFM

DL

THV

MHV

BL

SHV

PPD1

PPD2

PSD

POD

TRCH

RRC

PID

CPFS2

CPFC2

PSPS

0.22

RESISTSim 51-2

Paper

Transport belt

Feeding direction

8 – 1

Page 39: Sharp Sf 2040 Copier Sm

[10] OPTICAL SECTION

1. General

This machine is composed of the fixed focus lens and six mirrors.The lens and the 4, 5 mirrors are moved by the stepping motor topositions according to the magnification ratio of reduction, normal, orenlargement copy. Magnification ratio is changed from 50% to 200%in 151 steps of 1%. The six mirrors realize a compact design. The slitexposure system with the moving light source is employed. Copyimage density can be controlled by changing the light quantity of thecopy lamp.

The automatic exposure sensor is provided to sense density of theoriginal and the copy lamp light quantity is controlled by the maincircuit to provide even copy image.

2. Basic composition

18 4 3 11 2 1 20 19 14 7 12

10 5 17 6

9 16 8 13

1 Copy lamp 2 Reflector 3 No. 1 mirror

4 No. 2 mirror 5 No. 3 mirror 6 Lens

7 No. 4 mirror 8 No. 5 mirror 9 No. 6 mirror

F Mirror base B unit G Copy lamp unit H Mirror base C unit

I Lens drive motor J No. 4, No. 5 mirror base drive motor K Mirror motor

L Mirror base home position sensor M Lens home position sensor N Mirror home position sensor

O Automatic exposure sensor P OC switch

(1) Original tableThe original table is fixed, and an original is set to the left center.

(2) Copy lamp100V system 85V 275W200V system 170V 310W

(3) MirrorSix mirrors are used. No. 1 mirror is attached to lamp unit, mirror base A, No. 2 and No. 3mirrors to mirror base B, No. 4 and No. 5 mirrors to mirror base C. Mirror bases A and B are scanned when copying. Mirror base C isused to change the distance between an original and the photocon-ductor in reduction or enlargement copy.

(4) Lens (Fixed focus lens)• Construction: 1 group 3 lenses

• Brightness: F8.5

• Focal distance: 195mm ±1%

(5) Lens home position sensor (LHPS)This sensor is used to sense lens position. The output signal ofthis sensor serves as the basic signal to control the copy magnifica-tion ratio.

10 – 1

Page 40: Sharp Sf 2040 Copier Sm

(6) No. 4, No. 5 mirror base home position sensor (MBHPS)

This sensor is used to sense mirror base C (No. 4, No. 5 mirrors).The output of this sensor serves as the basic signal to control thecopy magnification ratio.

(7) Lens baseThe lenses are mounted to this base, which is moved in the paperfeed direction for reduction copy and in the paper exit direction forenlargement copy.

(8) Lens slide shaftThis shaft is used to control optical axis of the lenses in reduction orenlargement copy. The lenses follow on the slide base shaft.

(9) Lens drive wireThe lens drive wire is used to move the lens base.

(10) Mirror base CNo. 4 and No. 5 mirrors are attached to mirror base C. Mirror base Cis moved by the mirror base drive motor to adjust the distance be-tween an original and the photoconductor in reduction or enlargementcopy.

(11) Mirror base C (No. 4, No. 5 mirrors) drive wireThis wire is used to move mirror base C (No. 4, No. 5 mirrors).

(12) Mirror motorThe mirror motor is a DC servo motor used to move mirror base Aand mirror base B. Its rotation is adjusted according to each mag-nification ratio.

(13) Mirror home position sensor (MHPS)This is a transmission type sensor used to sense the home position ofmirror base A.

(14) Mirror base BNo. 2 and No. 3 mirrors are attached to mirror base B, which ismoved by the mirror motor.

(15) Copy lamp unitThis is composed of No. 1 mirror, the thermal fuse, the copy lamp,the exposure adjusting plate, and the reflector, and is scanned by themirror motor.

(16) Thermal fuseThe thermal fuse is provided at the reflector to prevent against abnor-mal temperature rise in the optical system. In case of an abnormaltemperature rise, it turns off the power source of the copy lamp.100V system 110 °C200V system 110 °C

(17) ReflectorLight from the copy lamp is reflected by the reflector onto an original.

(18) Exposure adjusting plateThere are three exposure adjusting plates attached to mirror base Ato adjust exposure balance between the front and the rear sides.

(19) Mirror base drive wireThe mirror motor power is transmitted to mirror base A and mirrorbase B to scan the mirror base by means of this wire.

(20) Mirror base (No. 4, No. 5) drive motorThis is a stepping motor used to drive mirror base C.

(21) Lens drive motorThis is a stepping motor used to change lens positions.

(22) AE sensorThe AE sensor senses the original density by the magnitude of lightreflected from the original. The center area of about 100mm wide inthe mirror base scan direction is the light measuring area. The elements are photo diodes.

(23) Blank lamp operation When a reduction image is copied on a large size paper in reductioncopy, the outside area becomes black background. In another copy mode also, electric charges remain on the outer areaof the original image and toner is attracted to the area. To dischargethis, light is radiated on the drum by the blank lamp to prevent againstadhesion of toner in the outer area of the image. The lead edge void is formed by the drum discharge system with theblank lamp light. The void width can be adjusted by the diagnosticfunction.

10 – 2

Page 41: Sharp Sf 2040 Copier Sm

3. Basic operation

(Relation between an original, the lenses, and images in each mag-nification ratio)Normal copy: The distance between the original surface set on the

table glass and the lens is adjusted to the distancebetween the lens and the exposure surface of thephotoconductor to make a normal copy.

Enlargement: The lens approaches nearer the original comparedfrom the normal copy and the distance between theoriginal surface and the lens is shortened. No. 4 and No. 5 mirrors go far from the lens and thedistance between the lens and the exposure surfaceof the photoconductor becomes greater. The distance between the original and the exposuresurface of the photoconductor becomes greater thanin the normal copy.

Reduction: The lens approaches nearer the photoconductor com-pared from the normal copy, and the distance be-tween the original surface and the lens becomesgreater. The distance between the lens and the exposure sur-face of the photoconductor becomes shorter. No. 4, 5 mirror and the mirror base go far from thelens. The distance between the original and the exposuresurface of the photoconductor becomes greater thanin normal copy.

(Copy lamp control for each copy density mode)

° Manual density copy mode

Perform simulation 46-01 to determine the copy lamp application vol-tages (Vcl) in EX1 and EX5. When the copy lamp application voltages in EX1.0 and EX5.0 aredetermined, the voltage difference between them is divided into nine. The application voltage of the copy lamp at each exposure level isdetermined by changing ON time duty of the copy lamp ON controlsignal.

° Photo density copy modeThe control method is the same as in the manual density copy mode.The image density is controlled by decreasing the grid bias voltage ofthe charging corona. To reproduce half tone image, however, ONtime duty of the copy lamp ON signal is made shorter than in themanual density copy mode. (The application voltage is reduced.)

Mirror base scan speed

Copy paperfeed direction

Lens and mirror positionsare changed to adjust themagnification ratio.

Mirror scan speed is changed to adjust the magnification ratio.

Mirror scan speed Drum rotating speed < Mirror scan speed

Enlargement

Original

Lens and mirrorpositions arechanged to adjustthe magnificationratio.

Reduction

80

70

60

50

(V)

EX1 2 3 4 EX5

(MAX. 83V)

(MIN. 50.3V)

VCL(Copy lampapplicationvoltage)

10 – 3

Page 42: Sharp Sf 2040 Copier Sm

4. Optical system dirt correction

In the SF-2040, exposure density is corrected by changing the copylamp light quantity depending on dirt in the optical system (the copylamp unit, No. 1 mirror, No. 2 mirror, No. 3 mirror).The optical system dirt correction is performed as follows:

(1) Setting the reference value for optical system correction.

1 Clean the optical system at every maintenance.

2 Perform Simulation 46-1.(The previous data are cleared.)

3 After completion of Simulation 46-1, when performing the firstmirror initialization, measure light quantity of the copy lamp.

Obtain the average value from the four measurement values anduse the average value as the reference value for correction.

(2) Dirt correction

50ms

300ms

CL

Light quantity measurement

Reference plate (Glass holder) Table glass

Automatic exposuresensor

CPU reference valuesetting

100 200 300 400 79.8K 80K

CLV + (0.33 x 2)

Sim46

CLV

Reference plate (Glass holder) Table glass

Copy lamp light quantity "UP"

Automatic exposuresensor

CPUReference value

> Measured valueCorrection data output

Reference plate (Glass holder) Table glass

Copy lamp light quantity "UP"

Automatic exposuresensor

CPUReference value

> Measured valueCorrection data output

10 – 4

Page 43: Sharp Sf 2040 Copier Sm

[11] ELECTRICAL SECTION

1. System block diagram

LUM

1

LUM

2

CS

WL

PS

D

PS

PS

DG

S

PO

D

PW

S

PLS

1,2

PE

D1

MP

FS

PE

D2

LUD

1

UC

SS

CP

FS

1,C

PF

C1

PE

D3

LUD

2

UC

SS

PID

PP

D1

PP

D2

CP

FS

2,C

PF

C2

RR

C

TR

C

DL

PW

B

1 7

VF

M

SH

V

GR

ID

TH

V

MC

12

31

1

CF

MM

HP

SC

SW

F

3

MIR

M

3 1 31 33333 1 1 31 3 31 31 1 13

13

BL

PW

BA

ES

PW

B

23

32

13

1

32

33

1

3 1

LMM

BM

MB

HP

ST

FD

OC

SW

3

13

13

131

1 7

TM

21

3

+38V

1 2

4V2

10V

14

10V

23

5V

15

-20

V6

FW

DM

PW

B

ID P

WB

VR

PW

B

2

MM

SF

M

+38

V

+38V

45

6

31

HL

CL

LHP

S

CS

WR

2

Mirr

or m

otor

PW

B

13

VR

PW

B

2

LCD

unit

Ope

ratio

nP

WB

Inve

rte

run

it

LCD

con

trol

PW

BO

RS

ligh

tre

cept

ion

OR

S li

ght

emitt

ing

PW

B

Aud

itor

Per

sona

lco

unte

r

AD

F/R

AD

Fco

ntro

l PW

B

Des

k un

itco

ntro

l PW

B

Sor

ter

cont

rol

PW

B

Deh

umid

ifier

hea

ter

Mai

n sw

itch

AC

pow

erso

urce

AC

circ

uit

PW

B

DV

uni

t

Mai

n c

ircu

it P

WB

CP

U,I/

O m

em

ory,

driv

er

AD

Uun

it

DC

pow

erci

rcui

t

Hig

h vo

ltage

circ

uit

DV

FAN

A

A

11 – 1

Page 44: Sharp Sf 2040 Copier Sm

2. Main circuit(1) CPU (IC116) HB/570

1 GeneralThe CPU controls the loads of the main body, performs data trans-mission and reception through the connected optional controllers andthe serial data line, and controls the whole system.

2 FeaturesThe HB/570 is equipped with the freely programmable ISP (IntelligentSub Processor). It is a single-chip micro-processor which performshigh-speed execution of exclusive commands to strengthen theroutine functions such as the timer function and the serial com-munication function.

Major features

° ISP (Built-in EPROM)

° SCI (Serial communication interface)

° PWM timer (Pulse wide modulation)

° A/D convertor

° Watch-dog timer

° I/O port

° 2KByte memory RAM

3 Pin arrangement

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

84

83

82

81

80

79

78

77

76

75

74

73

72

71

70

69

68

67

66

65

64

63

62

61

60

59

58

57

P90/PW3/IOF10

P91/PW4/IOF11

P92/PW5/IOF12

P93/IOF13

P94/IOF14

P95/IOF15

P96.IOF16

P97/IOF17

VCC

P100/IOF20

P101/IOF21

P102/IOF22

P103/IOF23

P104/IOF24

P105/IOF25

P106/IOF26

P107/IOF27

P80/IOF00

P81/IOF01

P82/IOF02

P83/IOF03

P84/IOF04

P85/IOF05

P86/IOF06

VSS

P120/D8

P121/D9

AVCC

STBY

MD2

MD1

MD0

P17/LWR

WR/HWR

RD

AS

VCC

XTAL

EXTAL

VSS

NMI

RES

P10/Φ

P11/BACK

P12/BREQ

P13/WAIT

P53/A19

P52/A18

P51/A17

P50/A16

A15

A14

A13

A12

A11

P87/IOF07

2930

3132

3334

3536

3738

3940

4142

4344

4546

4748

4950

5152

5354

55 56

P12

2/D

10

P12

3/D

11

P12

4/D

12

P12

5/D

13

P12

6/D

14

P12

7/D

15

VS

S

D0

D1

D2

D3

D4

D5

D6

D7

VC

C A0

A1

A2

A3

A4

A5

A6

A7

VS

S A8

A9

A10

112111

110109

108107

106105

104103

102101

10099

9897

9695

9493

9291

9089

8887

86 85

P11

7

P11

6

P11

5

P11

4

P11

3

P11

2

P11

1

P11

0

VS

S

P65

/SC

K

P64

/RX

D

P63

/TX

D

P62

/PW

2

P61

/PW

1

P60

/PW

0

P54

/IOR

0

P56

/E

P57

/AD

TR

G

VS

S

AV

SS

P77

/AN

7

P76

/AN

6

P75

/AN

5

P74

/AN

4

P73

/AN

3

P72

/AN

2

P71

/AN

1

P70

/AN

0

H8/570

HD

6475708FJA

PA

N

11 – 2

Page 45: Sharp Sf 2040 Copier Sm

4 Internal block diagram

P10

/ΦP

11/B

AC

K

P12

/BR

EQ

P13

/WA

IT

P17

/LW

R

AS

RD

WR

/HW

R

D0

D1

D2

D3

D4

D5

D6

D7

A0A1

A2

A3A4

A5

A6

A7A8

A9

A10

A11A12

A13

A14

EXTAL

XTAL

NMI

RES

STBY

MD0

MD1MD2

Vcc

Vss

P127/D15

P126/D14P125/D13P124/D12P123/D11P122/D10

P121/D9P120/D8

P117

P116P115

P114P113P112

P111P110

P10

7/IO

F27

P10

6/IO

F26

P10

5/IO

F25

P10

4/IO

F24

P10

3/IO

F23

P10

2/IO

F22

P10

1/IO

F21

P10

0/IO

F20

P97

/IOF

17

P96

/IOF

16P

95/IO

F15

P94

/IOF

14

P93

/IOF

13P

92/IO

F12

/PW

5

P91

/IOF

11/P

W4

P90

/IOF

10/P

W3

P87

/IOF

07

P86

/IOF

06P

85/IO

F05

P84

/IOF

04

P83

/IOF

03P

82/IO

F02

P81

/IOF

01P

80/IO

F00

P50/A16P51/A17

P52/A18

P53/A19

P54/IRQ0P56/E

P57/ADTRG

P60/PW0

P61/PW1

P62/PW2

P63/TXDP64/RXDP65/SCK

P70/AN0P71/AN1

P72/AN2

P73/AN3

P74/AN4P75/AN5

P76/AN6

P77/AN7

AVcc

AVss

3

6

A14

H8/500CPU

ISP

RAM 2K byte

Port 1 Bus control Data buffer

Clock oscillator

Wait statecontroller

Add

ress

buf

fer

Watch dogtimer

Interruptioncontroller

Data transfercontroller

RWMtimer

Por

t 5P

ort 6

Por

t 7

Port 8Port 9Port 10

Serialcommunicationinterface

10bitA/D convertor

Por

t 12

Por

t 11

Dat

a bu

s (L

ower

)

Dat

a bu

s (U

pper

)

Add

ress

bus

11 – 3

Page 46: Sharp Sf 2040 Copier Sm

5 CPU (IC116) pin signal

Pin No. Port Signal name I/O H/L Specifications

1 P90 LEMT0 OUT H Lens motor drive signal A

2 P91 LEMT1 OUT H Lens motor drive signal B

3 P92 LEMT2 OUT H Lens motor drive signal -A

4 P93 LEMT3 OUT H Lens motor drive signal -B

5 P94 CLK OUT H Clock signal for data output to BL.OPPWB

6 P95 DATA OUT H Serial data output to BL.OPPWB

7 P96 BSPWM OUT H High voltage unit bias level control pulse

8 P97 CLPWM OUT H Copy lamp light quantity control pulse

9 VCC +5V2 Power source (5V)

10 P100 FWS IN H Power frequency detection signal (AC waveform zero cross timing)

11 P101 KEY IN H Operation PWB key input signal (Serial data)

12 P102 TP2071 (NC)

13 P103 RE IN H Pulse signal generated by mirror motor rotation

14 P104 MHPS IN L Optical unit home position sense signal

15 P105 TP2068 (NC)

16 P106 R-TXD OUT L Serial data output to RIC

17 P107 R-RXD IN L Serial data input from RIC

18 P80 PAM1-0 OUT H ADU side plate motor drive signal A

19 P81 PAM1-1 OUT H ADU side plate motor drive signal B

20 P82 PAM1-2 OUT H ADU side plate motor drive signal -A

21 P83 PAM1-3 OUT H ADU side plate motor drive signal -B

22 P84 MBMT0 OUT H Mirror base motor drive signal A

23 P85 MBMT1 OUT H Mirror base motor drive signal B

24 P86 MBMT2 OUT H Mirror base motor drive signal -A

25 P87 MBMT3 OUT H Mirror base motor drive signal -B

26 VSS VSS Power source (GND)

27 P120 PAM2-0 OUT H ADU rear plate motor drive signal A

28 P121 PAM2-1 OUT H ADU rear plate motor drive signal B

29 P122 PAM2-2 OUT H ADU rear plate motor drive signal -A

30 P123 PAM2-3 OUT H ADU rear plate motor drive signal -B

31 P124 RRC OUT H Resist roller clutch drive signal

32 P125 DCH OUT H CPU reset signal

33 P126 TRCL OUT H Transport roller clutch (low speed)

34 P127 TRCH OUT H Transport roller clutch (high speed)

35 VSS VSS Power source (GND)

36 D0 D0 Data signal

37 D1 D1 Data signal

38 D2 D2 Data signal

39 D3 D3 Data signal

40 D4 D4 Data signal

41 D5 D5 Data signal

42 D6 D6 Data signal

43 D7 D7 Data signal

44 VCC VCC Power source (5V)

45 A0 A0 Address signal

46 A1 A1 Address signal

47 A2 A2 Address signal

48 A3 A3 Address signal

49 A4 A4 Address signal

50 A5 A5 Address signal

51 A6 A6 Address signal

52 A7 A7 Address signal

53 VSS VSS Power source (GND)

54 A8 A8 Address signal

55 A9 A9 Address signal

56 A10 A10 Address signal

11 – 4

Page 47: Sharp Sf 2040 Copier Sm

Pin No. Port Signal name I/O H/L Specifications

57 A11 A11 Address signal

58 A12 A12 Address signal

59 A13 A13 Address signal

60 A14 A14 Address signal

61 A15 A15 Address signal

62 A16 A16 Address signal

63 A17 A17 Address signal

64 A18 A18 Address signal

65 A19 A19 Address signal (Not used)

66 P13 R-DSR IN Data set ready signal from RIC

67 P12 APHPS2 IN L ADU rear plate sense (L at HP) (Sensor pin, H at HP)

68 P11 APHPS1 IN L ADU width sense (L at HP) (Sensor pin, H at HP)

70 RES RESET IN L Reset state at LOW (0V).

71 NMI POFA IN H Low with stable power voltage.

72 VSS GND Power source (GND)

73 EXTAL EXTAL IN Clock (8MHz)

74 XTAL XTAL IN Clock (8MHz)

75 VCC VCC Power source (5V)

76 AS TP2074 (NC)

77 RD RD OUT L ROM, RAM, I/O data read signal

78 WR WR OUT L ROM. RAM, I/O data write signal

79 P17 U2 IN U2 trouble cancel short signal

80 MD0 VSS IN L Operation mode, control signal

81 MD1 MD1 IN H Operation mode, control signal

82 MD2 MD2 IN H Operation mode, control signal

83 STBY STBY IN H Hardware standby mode signal

84 AVCC AVCC IN IN A/D convertor reference voltage

85 P70 AN0 IN Analog input signal (AE sensor)

86 P71 AN1 IN Analog input signal (Thermistor)

87 P72 AN2 IN Analog input signal (Manual feed paper width sense)

88 P73 AN3 IN Analog input signal (Toner concentration sensor)

89 P74 AN4 IN Analog input signal (NC)

90 P75 AN5 IN Analog input signal (Process control sensor)

91 P76 AN6 IN Analog input signal (Manual feed paper length sense)

92 P77 AN7 IN Analog input signal (Process control sensor)

93 AVSS AVSS A/D convertor ground

94 VSS VSS Power source (GND)

95 P57 SMDIR OUT L Mirror motor feed return select signal

96 P56 TP2072 (NC)

97 P54 TP2075 (NC)

98 P60 SMPWM OUT H Mirror motor speed control pulse

99 P61 MBHPS IN L No. 4/5 mirror home position sense signal (L at HP)

100 P62 LHPS IN L Lens home position sense signal (L at HP)

101 P63 TXD OUT L Serial data output to each slave CPU

102 P64 RXD IN L Serial data input from each slave CPU

103 P65 TP2078 (NC)

104 VSS VSS Power source (GND)

105 P110 IN0 IN L Switch detection strobe signal

106 P111 IN1 IN L Switch detection strobe signal

107 P112 IN2 IN Switch detection strobe signal

108 P113 IN3 IN Switch detection strobe signal

109 P114 IN4 IN Switch detection strobe signal

110 P115 IN5 IN Switch detection strobe signal

111 P116 PPD1 IN Paper transport sensor 1

112 P117 PPD2 IN Paper transport sensor 2

11 – 5

Page 48: Sharp Sf 2040 Copier Sm

(2) I/O (IC118) TE7750

1 GeneralThe I/O converts output data of the CPU into the control signals.The TE7750 is a versatile-use interface element. Nine sets (8 bit) of I/O ports are provided to set I/O operations ofparallel data by the program or the hardware.

2 Features8 bit parallel I/O ports (x 9 ports)

3 Pin arrangement

90

120

91

1 30

31

60

61

TELTE7750Top View

Pin I/O Pin name

1 — VSS

2 — NC

3 I MS

4 I/O P10

5 I/O P11

6 I/O P12

7 I/O P13

8 I/O P14

9 I/O P15

10 I/O P16

11 I/O P17

12 I/O P40

13 I/O P41

14 — VDD

15 — VSS

16 I/O P42

17 I/O P43

18 I/O P44

19 I/O P45

20 I/O P46

21 I/O P47

22 I/O P20

23 I/O P21

24 I/O P22

25 I/O P23

26 I/O P24

27 I/O P25

28 — NC

29 — NC

30 — NC

Pin I/O Pin name

31 — VSS

32 — NC

33 I/O P26

34 I/O P27

35 I/O P50

36 I/O P51

37 I/O P52

38 I/O P53

39 I/O P54

40 I/O P55

41 I/O P56

42 I/O P57

43 I/O P30

44 — VDD

45 — VSS

46 I/O P31

47 I/O P32

48 I/O P33

49 I/O P34

50 I/O P35

51 I/O P36

52 I/O P37

53 I/O P70

54 I/O P71

55 I/O P72

56 I/O P73

57 — NC

58 — NC

59 — NC

60 P74

Pin I/O Pin name

61 — VSS

62 — NC

63 I/O P75

64 I/O P76

65 I/O P77

66 I/O P60

67 I/O P61

68 I/O P62

69 I/O P63

70 I/O P64

71 I/O P65

72 I/O P66

73 I/O P67

74 — VDD

75 — VSS

76 I/O P90

77 I/O P91

78 I/O P92

79 I/O P93

80 I/O P80

81 I/O P81

82 I/O P82

83 I/O P83

84 I/O P84

85 I/O P85

86 I/O P86

87 I/O P87

88 — NC

89 — NC

90 — NC

Pin I/O Pin name

91 — VSS

92 — NC

93 I/O P94

94 I/O P95

95 I/O P96

96 I/O P97

97 I RW0

98 I RW1

99 I RW2

100 I/O D0

101 I/O D1

102 I/O D2

103 I/O D3

104 – VDD

105 – VSS

106 I/O D4

107 I/O D5

108 I/O D6

109 I/O D7

110 I A0

111 I A1

112 I A2

113 I A3

114 I RD

115 I WR

116 I CS

117 — NC

118 — NC

119 — NC

120 I RESET

11 – 6

Page 49: Sharp Sf 2040 Copier Sm

4 Internal block diagram

DataBus

Buffer

AddressDecoder

CWR(3)

ModeSelector

ControlLogic

CWR(0)

CWR

I/OPort(1)

I/OPort

I/OPort

I/OPort

I/OPortCWR

(2)

I/OPort

I/OPort

I/OPort

I/OPort

(8)

(9)

(1)(2)

(3)

(4)

(5)

(6)

(7)

8

D0~D7

A0

A1

A2

A3

Reset

CS

RD

WR

R/W0

R/W1

R/W2

MS

P10~P17

P20~P23

P24~P27

P30~P37

P40~P47

P50~P53

P54~P57

P60~P67

P70~P77

P80P81P82P83P84P85P86P87

P90~P97

11 – 7

Page 50: Sharp Sf 2040 Copier Sm

5 I/O (IC114) pin signal

Pin No. Port Signal name I/O H/L Specifications1 VSS VSS Power source (GND)2 NC TP2052 (NC)3 MS +5V2 IN H Mode select (Hard mode (2) at H)4 P10 LATCH-OP OUT H Latch signal of output data to the operation PWB5 P11 LATCH-BL OUT H Latch signal of output data to BL PWB6 P12 ASEL0 OUT TXD, DTR output select signal7 P13 ASEL1 OUT TXD, DTR output select signal8 P14 NC OUT (NC)9 P15 BEO-BL OUT H BL PWB output driver ON/OFF control signal10 P16 NC (NC)11 P17 NC (NC)12 P40 AEG0 OUT H AE GAIN select signal13 P41 AEG1 OUT H AE GAIN select signal14 VDD VDD Power source (5V)15 VSS VSS Power source (GND)16 P42 AEG2 OUT H AE GAIN select signal17 P43 SRES OUT H Slave PWB reset signal (Not used)18 P44 TMa OUT H Toner supply motor drive signal19 P45 TMb OUT H Toner supply motor drive signal20 P46 CV-START OUT H Coin vendor start signal21 P47 CV-CA OUT H Coin vendor clear signal22 P20 DTR OUT Data transmit ready signal23 P21 DPFC OUT H Duplex tray paper feed clutch drive signal24 P22 CLE OUT H Copy lamp enable signal (ON at H)25 P23 AUDCL OUT H Auditor time-out clear26 P24 AUDCP OUT H Auditor during copy cycle27 P25 PNC OUT H Personal counter control signal28 NC TP2048 (NC)29 NC TP2047 (NC)30 NC TP2050 (NC)31 VSS GND Power source (GND)32 NC TP2051 (NC)33 P26 LED0 OUT H Original size sense LED lighting signal34 P27 LED1 OUT H Original size sense LED lighting signal35 P50 MHV OUT H Main corona high voltage output control signal36 P51 THV OUT H Transfer corona high voltage output control signal37 P52 SHV OUT H Separation corona high voltage output control signal38 P53 EX1 OUT H Reserved.39 P54 GR SEL0 OUT H Grid bias control signal 040 P55 GR SEL1 OUT H Grid bias control signal 141 P56 DDC OUT H Duplex drive connection clutch42 P57 PR OUT H Power relay control signal43 P30 VFM1 OUT H Ventilation fan motor control signal 144 VDD VDD Power source (5V)45 VSS VSS Power source (GND)46 P31 VFM2 OUT H Ventilation fan motor control signal 247 P32 DRRC OUT H Duplex reversion roller clutch48 P33 MM OUT H Main motor control signal49 P34 SFM OUT H Suction fan motor control signal50 P35 MPFS OUT H Manual paper feed solenoid control signal51 P36 CPFS1 OUT H Upper cassette paper feed solenoid control signal52 P37 CPFS2 OUT H Lower cassette paper feed solenoid control signal53 P70 IDSEL2 OUT H Image density sensor control signal54 P71 CPFC1 OUT H Upper cassette paper feed clutch control signal55 P72 CPFC2 OUT H Lower cassette paper feed clutch control signal56 P73 MMPR OUT H Main motor power relay control signal57 NC TP2045 (NC)58 NC TP2044 (NC)59 NC TP2046 (NC)60 P74 HL OUT H Heater lamp control signal61 VSS VSS Power source (GND)

11 – 8

Page 51: Sharp Sf 2040 Copier Sm

Pin No. Port Signal name I/O H/L Specifications62 NC TP2039 (NC)63 P75 LUM1 OUT H Lift up motor control signal (upper stage)64 P76 LUM2 OUT H Lift up motor control signal (lower stage)65 P77 PSPS OUT H Paper separation solenoid control signal66 P60 W0 OUT H Switch sense strobe signal67 P61 W1 OUT H Switch sense strobe signal68 P62 W2 OUT H Switch sense strobe signal69 P63 W3 OUT H Switch sense strobe signal70 P64 W4 OUT H Switch sense strobe signal71 P65 W5 OUT H Switch sense strobe signal72 P66 W6 OUT H Switch sense strobe signal73 NC TP2038 (NC)74 VDD VDD Power source (5V)75 VSS VSS Power source (GND)76 P90 DGS OUT H Duplex gate solenoid control signal77 P91 CFM OUT H Cooling fan motor control signal78 P92 SSEL OUT OP.BL select signal79 P93 CV-COUNT OUT H Coin vendor count signal80 P80 IDSEL1 OUT H Image density sensor control signal81 P81 R-RTS OUT RTS for RIC82 P82 R-DTR OUT DTR for RIC83 P83 SME OUT L Mirror motor enable signal (ON at L)84 P84 DMSEL0 OUT H Drum marking sensor control signal85 P85 DMSEL1 OUT H Drum marking sensor control signal86 P86 DMSEL2 OUT H Drum marking sensor control signal87 P87 IDSEL0 OUT H Image density sensor control signal88 NC TP2033 (NC)89 NC TP2032 (NC)90 NC TP33 (NC)91 VSS GND Power source (GND)92 NC TP2040 (NC)93 P94 PDSEL0 OUT L Original sense photo transistor select signal94 P95 PDSEL1 OUT L Original sense photo transistor select signal95 P96 PDSEL2 OUT L Original sense photo transistor select signal96 P97 DL OUT H Discharge lamp control signal97 PW0 GND (L) IN L Read/write set signal98 RW1 GND (L) IN L Read/write set signal99 RW2 GND (L) IN L Read/write set signal100 D0 D0 IN Data signal101 D1 D1 IN Data signal102 D2 D2 IN Data signal103 D3 D3 IN Data signal104 VDD VDD Power source (5V)105 VSS VSS Power source (GND)106 D4 D4 IN Data signal107 D5 D5 IN Data signal108 D6 D6 IN Data signal109 D7 D7 IN Data signal110 A0 A0 IN Address signal111 A1 A1 IN Address signal112 A2 A2 IN Address signal113 A3 A4 IN Address signal114 RD RD IN L Data read signal115 WR WR IN L Data write signal116 CS I/O CS IN L Chip select signal117 NC TP2043 (NC)118 NC TP2041 (NC)119 NC TP2042 (NC)120 RESET RESET IN L Reset signal. Reset to initial state at LOW level

11 – 9

Page 52: Sharp Sf 2040 Copier Sm

(3) RAM (IC119) X28C64

1 GeneralThe RAM stores various set data necessary for the SF-2040 systemoperations and counter data such as paper jam causes or troublecodes (without batteries). After turning on/off the power, data aretransmitted between the RAM and the main CPU. The X28C64 is an 8KByte EEPROM (Electrically Erasable PROM)and operates on a single power of 5V.

2 FeaturesLow power CMOS operating current: Max. 60mAAll memory write time: Average 0.625sec

3 Pin arrangement

4 Internal block diagram

28

27

26

25

24

23

22

21

20

19

18

17

16

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

NC

A13

A7

A6

A5

A4

A3

A2

A1

A0

I/O0

I/O1

I/O2

VSS

VCC

WE

NC

A8

A9

A11

OE

A10

CE

I/O7

I/O6

I/O5

I/O4I/O3

AT28C64B

PLASTICCERDIP

FLAT PACK

XBUFFERSLATCHES

ANDDECODER

YBUFFERSLATCHES

ANDDECODER

CONTROLLOGICAND

TIMING

65.536-BITE²PROMARRAY

I/O BUFFERSAND LATCHES

A0~A12ADDRESSINPUTS

CE

OE

WE

VCC

VSS

I/O0~I/O7DATA INPUTS/OUTPUTS

5 RAM (IC115) pin signal

Pin No. IN/OUT Signal name Function

1 — NC

2 IN A12 Address signal

3(

10IN

A7(

A0

Address signal

11(

13IN/OUT

I/O0(

I/O2

Data signal

14 — GND GND (0V)

15(

19IN/OUT

I/O3(

I/O7

Data signal

20 IN CS RAM chip select signal. RAM is selected at LOW (0V).

21 IN A10 Address signal

22 IN RD Read signal. RAM data are read into CPU at LOW level.

23 IN A11 Address signal

24 IN A9 Address signal

25 IN A8 Address signal

26 IN NC

27 IN WR Write signal. Data are written from CPU to RAM at LOW level (0V).

28 — 5V Power source

11 – 10

Page 53: Sharp Sf 2040 Copier Sm

6 Backup data list

Item Set program No. Content

Counter 21-01——————————

Maintenance preset counter settingMaintenance counterJAM memory (Max. 50 pcs.)Total JAM counterTotal counterDeveloper counterStaple counterRADF (ADF) counterADU counterDeveloper correction counterDrum correction counter

Simulation set value 25-0225-03 26-01 26-0326-0626-07 26-0826-0941-02

4344-0144-11 46-01

4748-0148-0250-0150-02 51-02 52-0152-0252-03

* 53-01 ** 53-02 ** 53-03 ** 53-04 ** 53-05 *

Automatic developer adjustment valueSetting of toner control ignoring time when warming upOption settingCounter mode setting/Timer automatic clear settingDestination settingDrum sensitivity settingLens focus settingNo. 4/5 mirror characteristics settingOriginal size sensor adjustmentFusing temperature settingCorrection mode settingEnters the copy aging mode to allow the following operation and settingExposure level adjustmentAE sensor characteristics measurementFront/rear magnification ratio adjustmentPaper transport direction magnification ratio adjustmentLead edge image position adjustmentLead edge image position adjustmentResist quantity adjustmentADU alignment plate adjustment value settingADU rear plate adjustment value settingADU drive clutch OFF time settingRADF stop position adjustment (normal paper, one side)RADF stop position adjustment (normal paper, both sides)RADF stop position adjustment (thin paper)RADF resist sensor adjustmentRADF reverse sensor adjustment

* 53-01, 02, 03, 04, 05 The data in the memory of RADF main control PWB.

11 – 11

Page 54: Sharp Sf 2040 Copier Sm

(4) Decoder (IC141, IC135)

1 GeneralIC141 and IC135 are two sets of independent binary-quaternarydecoders.

IC141:

Enable Select Output

GND A17 A18 ROMCS I/OCS EEPROMCS SRAMCS

LLLL

LHLH

LLHH

LHHH

HLHH

HHLH

HHHL

Chip select signal is outputted with address data (A17, 18).

IC135:

Enable Select Output

DTR ASEL0 ASEL1 A-DTR D-DTR S-DTR O-DTR

LLLL

LHLH

LLHH

LHHH

HLHH

HHLH

HHHL

Data receive enable signal from the slave CPU is outputted byaddress selector (ASEL0, 1).

A-DTR: Data send enable from RADF/ADF

D-DTR: Data send enable from the desk unit

S-DTR: Data send enable from the sorter unit

O-DTR: Data send enable from the operation PWB unit

IC141:

Enable Select Output

CLK SSEL GND CLK-BL

LL

LH

LL

HL

With select signal (SSEL), clock signal is outputted to the driver ICin the blank lamp PWB.

IC135:

Enable Select Output

TXD ASEL0 ASEL1 A-TXD D-TXD S-TXD O-TXD

LLLL

LHLH

LLHH

LHHH

HLHH

HHLH

HHHL

With address selector (ASEL0, 1), the destination of the CPUoutput data is selected and the data are outputted.

2 Internal logic diagram

3 Pin connection

4 OperationsWhen this is used as a decoder, if input 1A and 1B are specified with2-bit binary codes, one of the outputs corresponding to the valuebecomes LOW and the other three outputs become HIGH. At thattime, enable input E (15 pin, 1 pin) is kept at LOW. When E (15 pin, 1pin) is HIGh, all outputs become HIGH regardless of DA and DB.

1G 1B 1A 1Y0 1Y1 1Y2 1Y3

H X X H H H H

L L L L H H H

L H L H H L H

L H H H H H L

Note 1: X: HIGH or LOW.

(4) 1Y0

(5) 1Y1

(6) 1Y2

(7) 1Y3

(1)

(2)

(3)1A

1B

1GENABLE

SELECTINPUT

(12) 2Y0

(11) 2Y1

(10) 2Y2

(9) 2Y3

(15)

(14)

(13)

2A

2B

2GENABLE

SELECTINPUT

DATAOUTPUTS

16 15 14 13 12 11 10 9

1 2 3 4 5 6 7 8

G A B Y0 Y1 Y2Y3

GA B Y0 Y1 Y2 Y3

VCC 2G 2A 2B 2Y0 2Y1 2Y2 2Y3

1G 1A 1B 1Y0 1Y1 1Y2 1Y3 GND

SELECT DATA OUTPUTENABLE

SELECT DATA OUTPUTENABLE

11 – 12

Page 55: Sharp Sf 2040 Copier Sm

(5) Start/stop control circuit

1 GeneralThe circuit senses ON/OFF state of the power source to controlstart/stop of the circuits. The DC power PWB supplies power voltages (VB=+24V, VC=+10V,VD1=5V, VD2=5V). After the power voltage reaches the specified level, the circuit opera-tion is started. Before the power voltage falls below the specifiedlevel, the circuit operation is stopped, preventing against malfunc-tions.

2 OperationA POFA generating circuit (Power voltage sense circuit)

This circuit senses ON/OFF of the power source and the powervoltage. The DC power voltage is unstable immediately after turn-ing on the power, or when the AC input voltage is abnormally low,or in the transition period after turning off the power. When the DC voltage falls below the specified level, the circuitsdo not work properly. Especially when the power is turned on/off,data transmission is performed between the EEPROM (IC119)and the CPU (IC116). If, in this case, VD (+5V) power voltage iflow, data transmission is not performed properly. To protect against this malfunction, on/off of the power is sensedby this circuit and informed to the CPU so that the CPU starts datatransmission with the RAM and the operations of each circuit andthat it completes data transmission with the EEPROM and stopsthe operations of each circuit before the DC power voltage fallsbelow the machine operation disable level. (Data transmissionbetween the CPU and the EEPROM is allowed if only VD2 (+5V2)does not fall.)Signal POFA is used to inform the CPU of on/off of the power andthe DC power voltage state. POFA is driven HIGH to turn off thepower when the DC power voltage becomes higher than thespecified level. POFA is driven LOW just before the DC powervoltage becomes low (0V).

9

814 11

1013

5

6 7

5

4 2

3

12

7

6 1

POFA1-6C

TP126

+5V2

R1212.2KJ

R1245.6KJ

+10V1

TP72

D1171SS133

D1161SS133

+24V

R12391KJ

+10V1

TP74C18222000PF

+10V1

R13739KJ

R134910J

L-8FW

Q108DTC114YK

R140

150J

TP75IC136C

NJM2901

R128

300J

C1231uF

ZD106HZ6A1

+5V2

C1293.3uF

D115

1SS133

R12536KJ

IC136D

NJM2901

3

12

-DCH3-3C

Q107DTC114YK

R13139KJ

C1771000PF

R130

300J +5V2

C17622000PF

+10V1

IC142B

NJM2903

R16822KJ

R16710KJ

+5V2

R1262.2KJ

R17110KJ

R17010KJ

TP73

TP31

FWS1-8C

R127

10KJ

R1291.5KF

R132

15KF

IC136A

NJM2901

R1331.5KF

R1361.5KF

R13910KJ

R138

20KJ

C1250.01uF

C1811000PF

IC136B

NJM2901

C1303.3uF

R13510KJ

-RESET1-6C,1-3D

C17922000PF

11 – 13

Page 56: Sharp Sf 2040 Copier Sm

B RESET generating circuitRESET signal is formed with the power voltage sense signal(POFA) and the data transmission complete signal (DCH) out-putted from the CPU, and is used to operate each circuit in thestable range of the DC power voltage. RESET signal is set (operation enabled) when POFA becomesHIGH (+5V), and is reset (operation stopped) when DCH be-comes LOW (0V). When POFA becomes LOW, data are transmitted from the CPUto the EEPROM. After completion of the data transmission, DCHbecomes LOW.

C Operation at power on

• When the power is turned on, FW rises to turn on the collectorand the emitter of Q108 so that IC136 8 pin voltage becomesabout 0.736V which is lower than 9 pin voltage (ZD106 5.2 ~5.5V). As a result, 14 pin is opened.

• 24V rises about 16msec after FW rising. C129 is chargedthrough R123 and D115. IC133 5 pin voltage becomes higherthan the reference voltage IC136 10 pin (ZD106 5.2 ~ 5.5V) inabout 95msec so that 13 pin (POFA) becomes high.

D Operation at power off

• When the power is turned off, FW rises to open the collectorand the emitter of Q108. C123 is charged through R137. IC1368 pin voltage becomes higher than 9 pin (ZD106 5.2 ~ 5.5V) inabout 30msec. As a result, 14 pin becomes low.

• When IC136 14 pin becomes low, C129 is discharged and 11pin voltage becomes about 0.8V which is lower than 10 pin(ZD106 5.2 ~ 5.5V). As a result, 13 pin (POFA) becomes low.

E Operations at an instantaneous service interruptionSince POFA signal is outputted by IC136, it may be erroneouslyoutput by discrepancy of resign times of 5V and 10V. To preventagainst this, power voltages of 5V and 10V are monitored byR167, 168, 170, 171, and IC142.

• When the power is turned off, POFA should be driven low (0V)at the early stage. If it is driven low too early, however, themachine stops its operation even at an instantaneous serviceinterruption (less than 30msec) which will not obstruct machineoperation in normal cases. Therefore, off state of AC power formore than 30msec is judged as power OFF in this circuit andPOFA is driven low.

• In normal operations, IC136 8 pin is at LOW level. At an instan-taneous service interruption, FW becomes LOW to open thecollector and the emitter of Q108, charging C123 throughR137. So it takes more than 30msec for IC136 8 pin voltage torise above the reference voltage (IC136 9 pin, 5.2V ~ 5.5V),and the machine does not stop at an instantaneous serviceinterruption of 30msec or less.

F Operations when the power voltage falls

• When the AC power voltage falls below a certain level, the DCpower voltage also falls though the DC power circuit is aregulator circuit. Therefore, 24V is monitored and when it falls to 19V, POFA isdriven low (0V). (When it falls below 19V, IC136 11 pin voltagebecomes lower than 10 pin reference voltage because of volt-age division by R123 and R125. As a result, the output ofcomparator (IC136) becomes low.)

20ms

19V(38ms)

30ms

207.03ms

ON OFF

VB

VD2

POWER

VB

VC

VD

0V

FW

POFA

RESET

DCH

CPU, ROM, I/O and EEPROMoperation start

Data transmission betweenCPU and EEPROM

Circuit operationstop

<30ms

(6) Heater lamp control circuit

1 GeneralThe heater lamp control circuit detects the heat roller surfacetemperature with the thermistor, converts it into voltage level, andoutputs it to the CPU analog input pin.

The CPU converts the analog voltage into digital signal level, com-pares it with the value set by test commands, turns on/off the heaterlamp according to the level, and maintain the heat roller surfacetemperature at a constant level. When a paper jam occurs in the SF-2040, this control circuit operatesfor max. 3 min to shorten the jam recovery time (8 sec).

5

4 2

3

12

R1445.8KF

VAREF 2-7B

R1501KF

R14656KJ

R15210KF

D114

MA700

TP53-FTH

+10V1

C18922000PF

IC137A

NJM2901

R1423.3KF

RTH

RTH

3-5C

I-23

2-6D

HL 7 10

IC124

-HL

R116430J(1\2W)

2.2K10K

Q106DTA123YS

+10V

ULN-2003

HL

11 – 14

Page 57: Sharp Sf 2040 Copier Sm

When the heat roller surface temperature is low, the thermistor resis-tance increases. When the surface temperature is high, the resis-tance decreases. The thermistor terminal voltage, therefore, in-creases when the heat roller surface temperature is low, anddecreases when the temperature is high. The thermistor terminalvoltage is inputted to the CPU analog port, and the CPU controlson/off of the heater lamp with the input voltage level.

[High temperature protecting circuit in wild run of theCPU]The voltage at IC137 4 pin (reference voltage) is divided by R144 andR142, and the thermistor terminal voltage is applied to IC137 2 pin. When 5 pin voltage is lower than 4 pin voltage (the heat roller surfacetemperature: about 230 degree C), IC133 2 pin becomes LOW. As aresult, HL signal is pulled to the GND level and the heater lamplighting signal is not generated. (IC137 output 2 pin is normally HIGH(Open state).)

[When the heat roller surface temperature is lower thanthe set temperature]a. Since the thermistor pin voltage is higher than the set level, output

signal HL from the CPU becomes HIGH.

b. HL signal is passed through IC124, and Q106 to the solid staterelay. When, therefore, HL signal is LOW, the internal triac turns on.

c. When the internal traic turns on, a pulse is applied to the gate ofthe external triac to allow a current to flow from the power sourcethrough the heater lamp to the triac, thus lighting the heater lamp.

[When the heat roller surface temperature is higher thanthe set temperature]a. Since the thermistor pin voltage is lower than the set level, output

signal HL from the CPU becomes low.

b. HL becomes low, SSR is turned off, the external triac is turned off,and the heater lamp is turned off.

[Q106]Q301 protects the heater lamp from lighting due to trouble in theharness of the heater lamp drive signal.

(7) Driver circuit (Solenoid, magnetic clutch)

1 GeneralThe control signals of each load outputted from the CPU and I/Ocannot drive the load directly. The output, therefore, is delivered tothe load through the driver IC.

2 OperationThe driver circuit forms a Darlington circuit with two transistors toobtain a large drive current (load current) from a small input current(I/O output current). When the driver input voltage is HIGH (+5V), thetransistor is turned on to flow a current in the arrow direction, operat-ing the load. When the driver is turned on, the driver output pinvoltage is 0V.

(8) Stepping motor drive circuit

1 GeneralThe driver circuit drives the lens drive motor, the mirror base drivemotor, the automatic duplex copy tray, the side plate motor, and therear plate motor.

A: Stepping motor phase A coil drive signalB: Stepping motor phase B coil drive signalA: Stepping motor phase A coil drive signalB: Stepping motor phase B coil drive signal

Drivesignal

Lensdrive

Mirror basedrive

For Sideplate

For rearplate

A LEMT0 MBMT0 PAM1-0 PAM2-0B LEMT1 MBMT1 PAM1-1 PAM2-1A LEMT2 MBMT2 PAM1-2 PAM2-2B LEMT3 MBMT3 PAM1-3 PAM2-3

LOAD

+24V

I/OOutput

B B+24V

Phase B Phase B

A

A

+24V

Phase A

Phase A

A

A

B

B

Stepping motor time chart

11 – 15

Page 58: Sharp Sf 2040 Copier Sm

(9) AE (Auto Exposure) sensor circuitThe AE circuit is composed of the AE sensor PWB which is com-posed of the photo diode, the I-V convertor circuit, and the amplifiercircuit, and the amplifier circuit on the control PWB.

Operation amplifier A performs I-V conversion of the original densitylevel (minute current) from the sensor. Operation amplifiers B and Camplify the output of operation amplifier A to a suitable level forinputting to the CPU. The amplifying level is automatically set by selecting the AE gainsignal (AEG0 ~ AEG2) outputted from the I/O chip when test com-mand SIM 47 is executed. AE operation is performed by the software in the control PWB. Whena reflected ray enters the sensor, a voltage corresponding to the lightquantity is inputted to the CPU. The CPU compares the input voltageand the copy lamp application voltage and controls the copy lampvoltage so that the exposure level corresponds to the original density.

(10) Toner supply motor drive circuitIC104 is the motor control IC which drives the toner supply motor withthe pulse signals (TMa, TMb) outputted from the I/O chip.

Internal circuit

Truth value table

Input OutputMode

TMa TMb TMa TMb

L L ∞ ∞ Stop

H L H L CW/CCW

L H L H CCW/CW

H H L L Brake

∞: High impedance

3. Operation circuit

General• The operation circuit is composed of the key matrix circuit and the

display circuit.

<Key circuit>(1) Block diagram

(2) Key detectionKey detection is performed by the key detection IC (LR3717M) withmatrix of S0 ~ S7 and K0 ~ K6. Information is set to the CPU by serialdata transmission. (8 x 8 matrix available)

The transmission system is PPM (Pulse Position Modulation) systemusing 15 bit data pulse signals. The PPM transmission makes distinction of pulse width as logic "1" orlogic "0."

+-

+-

U1BS500B

R6100KF

R1

100KF

IC1B

LM358

756

123

4

8

+10V

LM358

+10V

R2 AES

R410KF

R3

100KF

3

2

1GND

R5

10KF

TMa

TMb

R21647KJ

R22847KJ

2

9

1

5

+5V2

IC104

TA7291S

IN1

IN2

GND

6

8

7

3

+C101

10UF35V

TMa

TMb

+24V

C-1

C-3

1-4C

1-4C

2 8

9 1 5

6

7

3

M

REG

GND

Protectioncircuit(Heat insulated)

+5V +24V

TMa

TMb

+24V

TMa

TMb

4Pin is NC.

OUT

S0~S7,K0~K6

ICLR3717M

To CPU

LCDMaincontrol

Keymatrixsection

CPUNJM2901

5V 5V

ICLR3717M

S7 S0

K0

K6LCD Main control

Serial data

Output

Matrix section

11 – 16

Page 59: Sharp Sf 2040 Copier Sm

As shown above, when the pulse interval is T, the pulse is judged aslogic "1," and when the pulse interval is T/2, it is judged as logic "0."Pulse signals of 15 bits are serially sent. PPM signal is judged from pulse interval "t" as shown below:

When t < 0.4 m : AbnormalWhen 0.4 ms < t < 1.6 ms : "0"When 1.6 ms < t < 3.2 ms : "1"When 3.2 ms < t : Abnormal

When any abnormal signal enters the circuit, all the bits are cleared.Then the operation starts from the first bit again. When data of more than 16 bits (17 pulse or more) are inputted, it isjudged as an abnormal signal and all the bits are cleared. Then theoperation begins from the first bit again. The 15 bit data assignment is as shown below:

A System address (Refer to *1.) C1, C2, C3, C4, C5These data are set with the switches and assigned dependingon the system. 56 channels and 2 bit expansion are availablefor sending commands for one system.

*1: System addressThis bit is set to prevent against malfunction in wireless com-munication with other devices (VTR, TV, etc.). For this time,communication is made through wires and there is no need toset this bit. Set to "0."

B Data C6, C7, C8, C9, C10, C11These data are assigned with the key input. Commands cor-responding to C6 ~ C11 are as shown below:

T

T/2

Logic "1"

Logic "0"

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 K

CheckJudge

System adress Data Expansion

C6 C7 C8 C9 C10 C11 CH C6 C7 C8 C9 C10 C11 CH C6 C7 C8 C9 C10 C11 CH C6 C7 C8 C9 C10 C11 CH

1 0 0 0 0 0 1 0 0 0 0 1 0 16 1 1 1 1 1 0 31 0 1 1 1 0 1 46

0 1 0 0 0 0 2 1 0 0 0 1 0 17 0 0 0 0 0 1 32 1 1 1 1 0 1 47

1 1 0 0 0 0 3 0 1 0 0 1 0 18 1 0 0 0 0 1 33 0 0 0 0 1 1 48

0 0 1 0 0 0 4 1 1 0 0 1 0 19 0 1 0 0 0 1 34 1 0 0 0 1 1 49

1 0 1 0 0 0 5 0 0 1 0 1 0 20 1 1 0 0 0 1 35 0 1 0 0 1 1 50

0 1 1 0 0 0 6 1 0 1 0 1 0 21 0 0 1 0 0 1 36 1 1 0 0 1 1 51

1 1 1 0 0 0 7 0 1 1 0 1 0 22 1 0 1 0 0 1 37 0 0 1 0 1 1 52

0 0 0 1 0 0 8 1 1 1 0 1 0 23 0 1 1 0 0 1 38 1 0 1 0 1 1 53

1 0 0 1 0 0 9 0 0 0 1 1 0 24 1 1 1 0 0 1 39 0 1 1 0 1 1 54

0 1 0 1 0 0 10 1 0 0 1 1 0 25 0 0 0 1 0 1 40 1 1 1 0 1 1 55

1 1 0 1 0 0 11 0 1 0 1 1 0 26 1 0 0 1 0 1 41 0 0 0 1 1 1 56

0 0 1 1 0 0 12 1 1 0 1 1 0 27 0 1 0 1 0 1 42

1 0 1 1 0 0 13 0 0 1 1 1 0 28 1 1 0 1 0 1 43

0 1 1 1 0 0 14 1 0 1 1 1 0 29 0 0 1 1 0 1 44

1 1 1 1 0 0 15 0 1 1 1 1 0 30 1 0 1 1 0 1 45

11 – 17

Page 60: Sharp Sf 2040 Copier Sm

C Data expansion C12, C13These are set with the switches and used to expand com-mands.

D Data judgment K (Refer to *2.)The last bit is for judgement of data transmission system.Date are transmitted as follows by using this bit.

*2: Data judgmentThe data are not reversed in this case.

(a) Normal signals

(b) Reverse signals

When the data judgment bit is "0," normal signals are trans-mitted. When it is "1," the reverse signals of C0 ~ C14 and K aretransmitted.

As shown above, normal signals and reverse signals arerepeated in series in a certain cycle. In the receiver side, judg-ment between normal and reverse signals is performed with thedata judgement bit to form data properly.

E Check bit C14C14 is fixed to GND in the LSI and no pin is provided in thepackage.

(3) System configuration

When command [3] is sent, for example, press the key at the inter-section between K0 and S2. The 15 bit data at that time is as follows:

[3] 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0System address bit Data bit

67.5ms

64ms

67.5ms

64ms(When f=455KHz)(When f=480KHz)

Normal signal Reverse signal Normal signal

C12

C 1

C 2C 3

C 4

1 4

1 51 6

1 7

1 8C 5

2 52 6

614

S 0S 1S 2S3S4S5S 6S 7

K 0

K 1

K 2

K 3

K 4

K 5

K 6

7

8

9

1 1

1 2

1 3

1 2 3 4 5 6 7 8

9 10 1 1 1 2 1 3 1 5 1 6

1 7 18 1 9 2 0 2 1 22 2 3 2 4

2 5 26 2 7 2 8 2 9 30 3 1 3 2

3 3 34 3 5 3 6 3 7 38 3 9 4 0

4 1 42 4 3 4 4 4 5 46 4 7 4 8

4 9 50 5 1 5 2 5 3 54 5 5 5 6

2 1 3 0 3 5 3 4 3 3 3 2 31

CIIU OSCI OSCO OU T

C13

YDD

2 2 2 0 2 1 24Key matrix

Systemaddressset circuit

Dataexpansionset circuit

0 0 0 0 0 0 01 1 1 0 0 0 01

0 0 0 0 0 0 01 1 1 0 10 1 1

11 – 18

Page 61: Sharp Sf 2040 Copier Sm

<Display circuit>This circuit is controlled with the data signal and the control signalfrom the main control circuit.

(1) Block diagram

32 bit driver block diagram (2) Operational description

Data signals (8 bit) sent from the main control PWB are shifted at therising timing of the clock and retained at the resign timing of the latchsignal. The retained data are outputted when STROBE signal becomesHIGH (5V), lighting the LED.

VD CLK LATCH

S INOUT

VD (+5V)

VD (+10V)

LED

DATA

CLK

LATCH

BEO

S OUT

STROBE

LCDMaincontrolcircuit

BEO

DC powercircuit

VD (+5V) VD (+10V)

DATASout

CLK

LATCH

BEO

GND

32 bit Shift Register

32 bit Latch

Driver ON/OFF Control

Driver

01 032

VD

GND

1

5V

5V

5V

1

2

3

4

Clock

Data signal

Latch signal

Strobe signal

Output LED

51

52

LED lightup at LOWlevel (0V)

8

11 – 19

Page 62: Sharp Sf 2040 Copier Sm

4. LCD display circuit

(1) Block diagram

(2) CPU (IC222) µPD78213G-AB8

1 GeneralThe CPU sends and receives date to/from the main circuit and theoperation PWB through the serial data communication line, and con-trols the display system.

2 Pin arrangement

IC205IC209IC212

IC214IC215

IC202IC204IC207

A-RAMV-RAM

VR201

A0 ~ A12

CPU

IC222

RDA0 ~ A19D0 ~ D7

MCLK

-19V

+10V -19VREM

5VREM

MD ~ MD15

IC235

IC216IC226IC227IC234

MCLKDCLK

A17CS

ASTBLC-RES

MCLK

IC229IC231

G-ROM

IC203IC206

IC228IC230IC232

IC210IC211

WRCS

LCD

IC213

D0 ~ D7

A0 ~ A15

DATAROMIC218

IC219

IC237IC236

PRO-GRAMROM

MC

PNCAUDCLAUDCPAUDO

AUDRD

RXD-OPDSR-OPTXD-OPDTR-OPRES-OP

LATCHCLKBEODATALED1LED2LED3LED4LED16

KEY IN

PTH B

PTH A

CCFT

PTHAVRA+5VLCD-19VLCD

SCP1CP2D0D1D2D3

AUDRDAUDO

MCPNCAUDCL

AUDCP

IC238

+10V+5VGND2-10V+24VGND1

IC223

CS

CS

Counter

Auditor

Invertor

Buffer

Driver controller

Timingsection

Latch Latch

Buffer

Buffer Buffer

Decoder

MainPWB

OPPWB

DriverIC221

IC224IC225

LCDunit

Q203Q204

IC201Q202

CC-ROM

Copiermain circuit

Displaydata output

Key inputdata input

LCD control PWB

CPU

LCD controller LCD display

Operation PWBLED display data inputKey input/data output

1P64/RD2P63/A193P62/A184P61/A175P60/A166RESET7X28X19VSS10P57/A1511P56/A1412P55/A1313P54/A1214P53/A1115P52/A1016P51/A9

48 P71/AN147 P72/AN246 P73/AN345 P74/AN444 P75/AN543 AVREF42 AVSS41 VDD40 EA39 P33/SO/SB038 P32/SCK37 P31/TXD36 P30/RXD35 P27/SI34 P26/INTP533 P25/INTP4

/ASCK17P

50/A

818

P47

/AD

719

P46

/AD

620

P45

/AD

521

P44

/AD

422

P43

/AD

323

P42

/AD

224

VS

S25

P41

/AD

126

P40

/AD

027

AS

TB

28P

20/N

MI

29P

21/IN

TP

030

P22

/INT

P1

31P

23/IN

TP

2/C

I32

P24

/INT

P3

64P

65/W

R63

P66

/WA

IT/A

N6

62P

67/R

EF

RQ

/AN

761

P07

60P

0659

P05

58P

0457

P03

56P

0255

P01

54P

0053

P37

/TO

352

P36

/TO

251

P35

/TO

150

P34

/TO

049

P70

/AN

0

µPD78213GC-AB8

11 – 20

Page 63: Sharp Sf 2040 Copier Sm

3 CPU (IC310) pin signals

PinNo.

Signalname

IN/OUT Description

1 RD OUT Data read signal

2 A19 Address signal

3 A18 Address signal

4 A17 Address signal

5 A16 Address signal

6 RESET INReset signal input from the mainPWB

7 X2 — CPU clock

8 X1 — CPU clock

9 VSS GND

10 A15 Address signal

11 A14 Address signal

12 A13 Address signal

13 A12 Address signal

14 A11 Address signal

15 A10 Address signal

16 A9 Address signal

17 A8 Address signal

18 AD7 Address data signal

19 AD6 Address data signal

20 AD5 Address data signal

21 AD4 Address data signal

22 AD3 Address data signal

23 AD2 Address data signal

24 VSS GND

25 AD1 Address data signal

26 AD0 Address data signal

27 ASTB OUT Address latch signal

28 P20 NC

29 P21 NC

30 KEYIN IN Key input data

31 P23 NC

32 P24 NC

PinNo.

Signalname

IN/OUT Description

33 DTP-OP Main communication

34 P26 NC

35 P27 NC

36 TXD-OP IN Main communication

37 RXD-OP IN Main communication

38 SCK OUT LED clock

39 DATA OUT LED data

40 EA NC

41 VDD 5V

42 AVSS For analog port (GND)

43 AVREF For analog port (5V)

44 P75 NC

45 P74 NC

46 P73 NC

47 P72 NC

48 P71 NC

49 AN0 IN Analog data input signal

50 LED3 OUT (MSL) additional LED

51 LATCH OUT LED latch

52 BE0 OUT LED ON/OFF

53 LED17 IN (CRCL) Additional LED

54 LED16 OUT Ready display lamp

55 LED1 OUT Trimas display lamp

56 LED2 OUT Cover insertion display lamp

57 (DSR-OP) OUT Main communication

58 CCFT OUT Invertor ON/OFF

59 –19VREM OUT LCD -19V ON/OFF

60 5VREM OUT LCD 5V ON/OFF

61 LC-RES OUT LCD reset signal

62 LED4 OUT Edge erase function display lamp

63 WAIT OUT

64 WR OUT

11 – 21

Page 64: Sharp Sf 2040 Copier Sm

(3) ROM

1 GeneralA. Program ROM (IC307)B. Data ROM (IC308)C. G ROM (IC301) For storing graphic data.D. C.G ROM (IC302) For storing character data.

2 Pin arrangment

1

2

3

4

5

6

7

8

9

10

11

12

13

14

28

27

26

25

24

23

22

21

20

19

18

17

16

15

27C512

3 ROM pin signals (IC307/308)

PIN No. IN/OUT Signal name Description

1 IN A15 Address signal

2 IN A12 Address signal

3(

10IN

A7(

A0Address signal

11(

13OUT

D0(

D2Data signal

14 — GND GND (0V)

15(

19OUT

D3(

D7Data signal

20 IN CE ROM chip enable signal. When LOW, ROM data output enabled.

2122

INA10OD

Address signalData output enable signal. When LOW, ROM data are sent to CPU.

232425

INININ

A11A9A8

Address signalAddress signalAddress signal

26 IN A13 Address signal

27 IN A14 Address signal

28 — 5V Power source

(4) Operation 1 The CPU receives image data from the main body. (Key data and

LED data are also transmitted.)

2 The received image data (corresponding to DATA-ROM address)are used to read character data (corresponding to CG-ROM ad-dress) and graphic data (corresponding to G-ROM address) in theDATA-ROM.

CG-ROM --- Standard Kanji character storing ROMG-ROM ----- Graphic data storing ROM

3 The upper address and the lower address of CG-ROM and G-ROM corresponding to characters and graphic data respectivelyare written into two V-RAMs (image areas).

4 The LCD controller outputs the specified address of character andgraphic data to be displayed. The CG-ROM outputs the data cor-responding to the specified address through the data bus to thedisplay unit.

5 The image data are transferred to the LCD unit.

6 The LCD contrast is controlled by the thermistor. (Refer to [1]-(5).)

7 Communication with the operation PWB is performed. (Refer to[3].)

8 Signals are sent from the main body through the LCD controlPWB to the counter and the auditor.

11 – 22

Page 65: Sharp Sf 2040 Copier Sm

(5) LCD controller (IC305)

PinNo.

Signalname

IN/OUT H/L Description

1 MD0 INCharacter generator characterdot data

2 MD1 INCharacter generator characterdot data

3 MD2 INCharacter generator characterdot data

4 MD3 INCharacter generator characterdot data

5 MD4 INCharacter generator characterdot data

6 MD5 INCharacter generator characterdot data

7 MD6 INCharacter generator characterdot data

8 MD7 INCharacter generator characterdot data

9 MD8 IN ARAM attribute code data

10 MD9 IN ARAM attribute code data

11 MD10 IN ARAM attribute code data

12 MD11 IN ARAM attribute code data

13 MD12 IN ARAM attribute code data

14 MD13 IN ARAM attribute code data

15 MD14 IN ARAM attribute code data

16 MD15 IN ARAM attribute code data

17 VCC1 Power source (5V)

18 —

19 —

20 —

21 —

22 LU3 OUT LCD upper screen data

23 LU2 OUT LCD upper screen data

24 LU1 OUT LCD upper screen data

25 LU0 OUT LCD upper screen data

26 M OUT HLCD drive output AC convertorsignal

27 FLM OUT HTiming signal to show starting ofone frame

28 CL1 OUT H Display data latch signal

29 CL2 OUT H Display data shift signal

30 SK0 IN HTo use ROM and RAM for largescreen display

31 SK1 IN HTo use ROM and RAM for largescreen display

32 VCC2 Power source (5V)

33 DCLK INReference clock of LCDcontroller internal operation

34 MCLK OUT Clock to show memory cycle

35 —

36 —

37 GND2

38 RES IN L LCD controller reset signal

PinNo.

Signalname

IN/OUT H/L Description

39 CS IN LSignal to access LCD controllerinternal register

40 RS INTo select LCD controller addressregister and data

41 E(WR) IN LStrobe signal for CPU toread/write LCD controller

42 R/W(RD) IN LControls data transmissiondirection between

43 DB0Data transmission line of LCDcontroller and CPU

44 DB1Data transmission line of LCDcontroller and CPU

45 DB2Data transmission line of LCDcontroller and CPU

46 DB3Data transmission line of LCDcontroller and CPU

47 DB4Data transmission line of LCDcontroller and CPU

48 DB5Data transmission line of LCDcontroller and CPU

49 DB6Data transmission line of LCDcontroller and CPU

50 DB7Data transmission line of LCDcontroller and CPU

51 BLE INDetermines enable/disable ofcharacter blank

52 MODE IN Easy mode specifying

53 ON/OFF IN LCD display ON/OFF

54 WIDE IN Display command

55 D/S IN To select the number of screens

56 LS IN To select the large screen

57 AT UB

58 G/C INTo select graphic display andcharacter

59 GND1

60 RA4 OUT Laster address output

61 RA3 OUT Laster address output

62 RA2 OUT Laster address output

63 RA1 OUT Laster address output

64 PA0 OUT Laster address output

65 MA15 OUT Memory address output

66 MA14 OUT Memory address output

67 MA13 OUT Memory address output

68 MA12 OUT Memory address output

69 MA11 OUT Memory address output

70 MA10 OUT Memory address output

71 MA9 OUT Memory address output

72 MA8 OUT Memory address output

73 MA7 OUT Memory address output

74 MA6 OUT Memory address output

75 MA5 OUT Memory address output

76 MA4 OUT Memory address output

77 MA3 OUT Memory address output

78 MA2 OUT Memory address output

79 MA1 OUT Memory address output

80 MA0 OUT Memory address output

11 – 23

Page 66: Sharp Sf 2040 Copier Sm

5. DC power circuit

The DC power circuit directly rectifies AC power. The AC power isswitching-transformed by the DC/DC convertor circuit, and rectifiedand smoothed again to produce DC voltages. The block diagram isas shown below:

Fig. 1 Block diagram

(Circuit description)

(1) Noise filter circuitThe noise filter circuit of the DC power source is composed of L andC as shown below to reduce normal mode noises and common modenoises flowing through the AC line. The normal mode noises are generated in the AC line or the outputline and reduced by L701. The common mode noises are noise voltages generated between theAC line and the ground (GND), and passed through C703 and C704to the ground (GND).

Fig. 2 Noise filter circuit

(2) Rush current limiting circuitSince the AC power is directly rectified, if this circuit were notprovided, an extremely large rush current would flow into the smooth-ing capacitor when turning on the power, degrading the switch con-tacts. To prevent against this rush current, the circuit composed as followsis provided between the rectifying diode (D701) and the smoothingcapacitors (C707, C708). When the power is supplied, a chargingcurrent flows through R702 and FR701 to the smoothing capacitor tolimit the current to less than 30uA when turning on the power. (Fig. 4)Then the voltage at the smoothing capacitor rises to operate theinvertor circuit, turning on the triac (TR701) with the voltagegenerated in the convertor transformer (T701). In normal operations,therefore, a current flows through TR701 but does not flow throughR702 and FR701.

Fig. 3 Rush current limiting circuit

AC in

(T701)

(PC702)

(PC701)

(PC703)

38V

24V

5V

-20V

10V

10V

FWFW circuit

Noise filtercircuit

Rush currentlimiting circuit

Rectifying/smoothingcircuit

Invertor circuit(Forward convertor)

Convertortransformer

Rectifying/smoothing

Rectifying/smoothing

Overcurrentprotectioncircuit

Controlcircuit

Overvoltageprotectioncircuit

Choppercircuit

Reguratorcircuit

Choppercircuit

Full-waverectifyingcircuit

F701

L701

C701 C702

C704

C703

GND

TR701

R702 FR701

R703 R704 R705 D702

To smoothing capacitors (C707,C708)

11 – 24

Page 67: Sharp Sf 2040 Copier Sm

Fig. 4 Rush current

(3) Rectifying/smoothing circuit

Fig. 5 Rectifying/smoothing circuit

This circuit is the full-wave rectifying circuit which converts an ACvoltage into a DC voltage. The solid line and the dotted line show thepath of the charging current to the smoothing capacitors (C707,C708)

(4) Invertor circuit (Forward-convertor system)

Fig. 6 Invertor circuit

In the forward-convertor system, the FETs (Q701, Q702) connectedin series to the convertor transformer (T701) perform switching opera-tion and energy is supplied to the secondary side through the conver-tor transformer when turning on the power. A DC voltage of therectifying/smoothing circuit is converted into switching pulses by theFET which is controlled by signals from the control circuit, and a highfrequency power is supplied to the secondary side by the convertortransformer.

The solid line in the circuit diagram shows the path of a currentflowing when the FET is turned on, and the dotted line shows theclose loop of the snubber circuit which absorbs a counter electromo-tive force generated in the convertor transformer when turning off theFET.

(5)Rectifying/smoothing circuit in the secondary side (24V, 38V system)

Fig. 7

The high frequency pulses generated by the invertor circuit aredropped by the convertor transformer (T701) and rectified by the highfrequency diode and smoothed by the choke coil (L719) and theelectrolytic capacitor (C725 for 38V system or C731 and C732 for24V system).

50A

40A

30A

20A

10A

0A

10A

20A

30A

40A

50A

509

500

11

12

13

14

D701 C707C708

+

-

L711

L712

L715

L716

D717

L713 L714

C721 C722R733

C723C724

R734

R736 C72

8

C727

C72

9

C73

0

R737

L718L717

T701

R70

9

C709

C710

D70

3

R710

C711

C712

Q701

L705

L706

L707

R71

3

R71

1

Q702

L70

4R71

2

R708

L709L708

L702

L703

R706C708

+

-

+

-C7071

FR701

3.3/135C˚

R704 R705 D702

R703

R707

0V

0V

0A

Voltage between Q701 (Q702) gate andthe power source (VGS)

Voltage between Q701 (Q702) drain andthe power source (VDS)

Q701 (Q702) drain current (ID)

D717

C721 C722

C723

C724

C72

8

C727

C72

9

C73

0

+

-

PC702

+

-C73

1

C73

2

R73

8D

721

D72

2

L719

B

+

-

A

C725

T701 L711

L712

R733

L715

L716

R736

R737

L717 L718

L713 L714

R734

11 – 25

Page 68: Sharp Sf 2040 Copier Sm

(6) Control circuitThis circuit uses the power MOS FET as the switching element. Itemploys the PWM control (Pulse Width Modulation) system. Thesecondary output (24V system), therefore, is detected by the voltagedetecting circuit and the detection signal is fed back through thephotocoupler (PC701) to the control IC to control the pulse width ofthe switching transistor in the primary side invertor circuit, stabilizingthe output voltage.

(7) Overcurrent protection circuit

Fig. 8 Overcurrent protection circuit

The negative $ line in the primary circuit is connected to the detect-ing resistor of the primary side current. When an overcurrent flows, itis detected by the resistor, which sends a signal to the control IC(IC701) to reduce the ON pulse width of the switching transistor,dropping the output voltage. In this circuit, the switching transistor isoperated intermittently when an overcurrent flows.

(8) Series regulator circuit (–20V system)

Fig. 9 Series regulator circuit

This circuit employs the dropper system, where the high frequencypulses from the choke coil (L723) in the 5V system chopper circuitare rectified by the diode (D728) and rectified by the electrolyticcapacitor (C737) and the voltage is dropped to 20V by the three-ter-minal regulator (IC703), stabilizing the output voltage.

(9) Chopper regulator circuit (10V, 5V system)

Fig. 10 IC704 (IC705) block diagram

The switching frequency is determined by the capacitor and resistorat 5 and 6 pins of IC 704 (IC705), and triangular waves of about50KHz are generated. The output from the output voltage detecting circuit (5V system:R761, VR702, R762; and 10V system: R784, VR703, R785) and thereference voltage (5V) at 14 pin of IC704 (IC705) are inputted to theerror amplifier in the IC, and ON/OFF period of output transistors TR1and TR2 are controlled (PWM control) through the PWM comparatorto drive the switching transistor, stabilizing the output voltage.

Fig. 11

(10) FW system outputThe AC input voltage is full-wave rectified by D704 - D707. By turningon/off Q704, the photocoupler (PC703) is synchronized to turn on/off.The signal synchronized with the AC voltage waveform is sent to thesecondary side by the photocoupler and Q705 is similarly turnedon/off. Thus the FW signal is outputted in synchronization with the ACvoltage waveform.

Fig. 12 FW system output

i

R715

R716

R717 R718

To IC701

(From Q701,Q702)

Page 69: Sharp Sf 2040 Copier Sm

Fig. 13

(11) Overvoltage protection circuitWhen an overvoltage is generated in each output line (except for–20V system), a signal is sent from the overvoltage detection circuitthrough the photocoupler (PC702) to the primary side control circuit,and the invertor operation is stopped by the switching stop function ofIC701 to limit rising of the output voltage. The operation is of the latch system. After removing an overcurrent,the AC power is supplied again to restore the operation.

(Waveform of each section)Conditions: Input 120VAC, 50Hz, rated load

Fig. 14

Fig. 15

Fig. 16

Fig. 17

Fig. 18

Fig. 19

Fig. 20

GND

0V

Voltage waveformat point A

FW system output waveform

270V

0

T1=2.2µS, T2=8.4µST1

T2

25V

0

T1=6µS, T2=22µST1

T2

39V

0

T1=7µS, T2=22µST1

T2

24V

0

T1=0.65mS, T2=10mST1

T2

3.1V

0

T1=22µST1

T1

3.1V

0

T1=22µS

3.2V

0

T1=8.2µST1

11 – 27

Page 70: Sharp Sf 2040 Copier Sm

A. 1

00V

Ser

ies

38V

Fig

.20

1

+ -

+ -

167V

DC

Fig

.14

24V

DC

120VAC

[N]

[L]

F70

115

A/1

25V

L701

SC

-05-

50J

C7010.47[XE]

C7044700P[KC]

C7034700P[KC]

R7020.47[XE]

R701 150K[1/2W]

D70

1S

15W

B40

R70

23.

3/7W

FR70

1

3.3/

135˚

C

C7071500/200V[LQC]

C7081500/200V[LQC]

TR70

1B

CR

16P

MB

LAA

R70

31K

R70

447

[1W

]R

705

47[1

W]

D70

2E

RA

9102

L702

B01

A

L703

B01

A

R70

633

K[3

W]

R70

727

K[2

W]

C70

90.

1/40

0V

C71

047

0P/1

KV

[HR

]

Q70

22S

K72

5Q

701

2SK

725

C70

647

00P

[KC

]

R71

50.

1/5W

R71

60.

1/5W

R71

782

[H]

D704ERA1504

D705ERA1504

D706ERA1504

D707ERA1504

C70

54

700P

[KC

]

R71

810

0[H

]

R71

910

K

D711RD30ESAB2

R72

027

K[1

W]

R72

127

K[1

W]

D70

8R

D6.

2ES

AB

2

C71

40.

01R

722

2.7K

Q70

42S

C18

15R

724

10K

[1/4

W]

PC

703

TLP

621

R72

310

K[1

/4W

]R

725

10[H

]

23

4

87

65

IC70

1F

A53

14P

C7150.1[RPE]

C716 0.001 or 0.001[RPE]

R727 12K

R728 2.2K

C717

0.1[RPE]R7291K

PC702TLP621

C71

30.

047/

400V

PC701

TLP621

C718 0.0068R

708

27[2

W]

L70

8B

01A

L70

9B

01A

R71422[1/4W]

L706B01A

L704B01A

L707

B01A

L705

B01A

R71310K[1/4W]

R71222[1/4W]

R71110K[1/4W]

C7121000P/1KV[HR]

C7111000P/1KV[HR]

R71047[3W]

D703ERB3806

R70922K[3W]

D712 RD10EL1

D713 1SS178

R73

04.

7K

+ -

+ -C

719

47[P

F]

D714ERA9102

C72

047

[PF

]

L710

TS

L111

0-33

2KR

17

D71

6E

RA

910

2

D73

7E

RA

9102

D71

5E

RA

9102

D73

8E

RA

9102

R73

14.

7[1/

4W]

R73

24

.7[1

/4W

]

C72

1 10

00P

/1K

V[H

R]

D71

7E

SA

D92

03

D717ESAD9202

L715

B01

A

L716

B01

A

L712

B01

A

L711

B01

A

R73

633

[2W

]

1000

P/1

KV

[HR

]

L713

B01

AL7

14B

01A

T70

1N

-T00

-710

R73

333

[2W

]C

722

1000

P/1

KV

[HR

]

C72

310

00P

/1K

V[H

R]

C72

4 10

00P

/1K

V[H

R]

R73

422

[3W

]

C7281000P/1KV[HR]

C727 C7301000P/1KV[HR]

C7291000P/1KV[HR]

L717

B01

A

R73

733

[3W

]

L718

B01

A

L719

C-L

00-2

69

RE

T

38V

A

D71

8R

D39

EB

7

D71

91S

S17

8

B

+ -

C7252200[PF]

F70

225

0V/3

A

F70

312

5V/5

A

CN

702-

20

CN

702-

18

C7260.1/50V[RPE]

+ -

+ -

D72

3

D72

4

1SS

178

1SS

178

D72

5

D72

6

RD

5.6E

SA

B2

RD

13E

SA

B2

DC

D72

21S

S17

8

D721RD27ESAB2

R738220[1/4W]

PC

702

C7312200/35V[PF]

C732 2200/35V[PF]

µP

C10

93

R73

92.

2K

R740 2.2KPC701

IC70

2

R74

310

K

C73

410

0P/5

0V

R74

12.

2K

R742 2.2K

C733 0.47[MP]

R74

422

K

R74

5 2.

2KVR7011KB

PC703R74

610

[H]

R74

733

K

D727RD6.2ESAB2

R74

82.

7K

Q7052SC1815

R7494.7K[1/4W]

24V

F70

425

0V/3

A CN

702-

29,3

024

V

C73

50.

1/50

V[R

PE

]

CN

702-

26,2

824

VC

N70

2-22

,24

RE

T

125V

/5A

F70

5

F70

625

0V/3

AFW

CN

702-

16

Fig

.17

• R

esis

tors

are

1/6

W u

nles

s ot

herw

ise

spec

ified

.

• E

lect

roly

tic c

apac

itors

(

) a

re 5

0V u

nles

s ot

herw

ise

spec

ified

.

• T

he o

ther

cap

acito

rs (

)

are

100

V u

nles

s ot

herw

ise

spec

ified

.

11 – 28

Page 71: Sharp Sf 2040 Copier Sm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1615

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1615

1 NC

L

NCN

2

34

CN701

JSTB2P4-VH-B

2 5V15V

4 5V35V

6 -20V55V8 -20V PET75V

10 10V29PET

12 10V1

14 PET

16 FW

18 38V

20 38V

2224

2628

24V

30 24V

11PET

13PET

15PET

17PET

19PET

21PET23PET

25PET27PET

2924V

24V

CN702

HRSDF18-30DP-2.5DSA

PET CN702-8

-20V CN702-6

5V 1,2CN702 3,4

5,7

PET

10V1 CN702-12

10V2 CN702-10

PET

B

A

C

D

-25VDC

Fig.15

Fig.18

Fig.16

5VDC

5VDC

Fig.19

IP701ICPN25

L721B01A

Q7062SA1541

L723C-L00-268

C736470P/1KV[HR]

D728ERB9102

R75

010

K[1/

4W]

R75

110

K[1/

4W]

+

-

C73

722

0/35

V[PF

]

+

-

C73

822

/35V

[PF]

IC703HA178M20P

C7390.1[RPE]

L722PJ8T-8R2M

C7401500/35V[PF]

R77

310

0[1/

4W]

+

-

R754180[1W]

R755180[1W]

R752150

R753150

C741

1000

P/1K

V[HR

]

D729ESAB92M02orYG901C2

R7561.5K

R75739K

R7580.05/2W

R759100[H]

+

-

C742

1000

/35V

[PF]

+

-

C75

068

0/10

V[PF

]

L724L1000511

C74

30.

1/50

V[R

PE]

C7441[MP]

R7612.7K

R7601K

R7622.2K

VR7021KB

+-

D730 1SS178

R76510K

R76610[H] R

767

2.2K

R76427K

R763

1K

C74522/35V[PF]

IC704MB3759M

R7682.2K

C7470.022

R76

9 4.

7K

C74

60.

001

or

0.00

1/50

V[R

PE]

R77

0 27

K

C7480.022 or0.022/50V[RPE]

R77112K

+

-

V749

22/3

5V[P

F]

R7722.2K

L725PJ8T-8R2M

R77

4 2.

2K[1

/4W

]

R77

515

[1/4

W]

R77

64.

7K[1

/4W

]

Q7072SC1959

Q7082SJ176

L726N-L00-046

D7311SS178

D732ERC9102

R7771.2K[1/4W]

R7781.2K[1/4W]

+

-

C7520.022

C75

1 15

00[P

F]

R7810.1/2W

R779820

R78039K

R782100[H]

+

-

C75

415

00/1

6V[P

F]

C75

50.

1/50

V[R

PF]

R7831K

VR7031KB

R7852.2K

C7564.7[MP]

R7842.7K

C76

410

00/1

6V[P

F]

D736ERC81004

D733RD5.6ESAB2

IC705MB3759M

+-

C757 22[PF] R787

1KR788

68K

+

-

D735RD5.6ESAB2

D7341SS178

R7866.8K

R78910[H]

R790

2.2K

R7912.2K

C7580.022

R79

2 4.

7K

C759

0.00

1 or

0.00

1/50

V[R

PE]

R79

3 27

K

C7600.1 or0.1/50V[RPE]

R79412K

C76122[PF]

• Resistors are 1/6W unless otherwise specified.

• Electrolytic capacitors ( ) are 50V unless otherwise specified.

• The other capacitors ( ) are 100V unless otherwise specified.

11 – 29

Page 72: Sharp Sf 2040 Copier Sm

Fig. 21

Fig. 22

Fig. 23

Fig. 24

Fig. 25

Fig. 26

Fig. 27

440V

0

T1=2.8µS, T2=8.4µST1

T2

25V

0

T1=6µS, T2=22µST1

T2

39V

0

T1=7µS, T2=22µST1

T2

24V

0

T1=0.5mS, T2=10mST1

T2

3.1V

0

T1=22µST1

3.1V

0

T1=22µST1

3.2V

0

T1=8.2µST1

11 – 30

Page 73: Sharp Sf 2040 Copier Sm

B. 2

00V

Ser

ies

38V

Fig

.27

1

+ -

+ -

297V

DC

Fig

.21

24V

DC

220VAC

[N]

[L]

F70

1F

6.3A

H/2

50V

L701

SC

-05-

50J

C7010.47[XE]

C7044700P[KC]

C7034700P[KC]

R7020.47[XE]

R701 330K[1/2W]

D70

1S

15W

B40

R70

26.

8/7W

FR

701

6.8/

135˚

C

C707390/400V[LQC]

C708390/400V[LQC]

TR

701

BC

R10

PM

12LA

AR

703

1K

R70

447

[1W

]R

705

47[1

W]

D70

2E

RA

9102

L702

B01

A

L703

B01

A

R70

656

K[3

W]

R70

768

K[2

W]

C70

90.

1/40

0V

C71

047

0P/1

KV

[HR

]

Q70

22S

K15

11Q

701

2SK

1511

C70

633

00P

[KC

]

R71

50.

1/5W

R71

756

[H]

D704ERA1504

D705ERA1504

D706ERA1504

D707ERA1504

C70

533

00P

[KC

]

R71

810

0[H

]

R71

910

K

D711RD30ESAB2

R72

047

K[1

W]

R72

147

K[1

W]

D70

8R

D13

ES

AB

2

C71

40.

01R

722

2.7K

Q70

42S

C18

15R

724

10K

[1/4

W]

PC

703

PC

111

R72

310

K[1

/4W

]R

725

10[H

]

23

4

87

65

IC70

1F

A53

14P

C7150.1[RPE]

C716 0.001 or 0.001[RPE]

R727 12K

R728 2.2K

C717

0.1[RPE]R7291K

PC702PC111

C71

30.

047/

400V

PC701

PC111

C718 0.0082R

708

68K

[2W

]

L708

B01

AL7

09B

01A

R71427[1/4W]

L706B01A

L704B01A

L707

B01A

L705

B01A

R71310K[1/4W]

R71227[1/4W]

R71110K[1/4W]

C7121000P/1KV[HR]

C7111000P/1KV[HR]

R71068[5W]

D703PG1C

R70947K[3W]

D712 RD10EL1

D713 1SS178

R73

04.

7K

+ -

+ -C

719

47[P

F]

D714ERA9102

C72

047

[PF

]

L710

TS

L111

0-33

2KR

17

D71

6E

RA

9102

D73

7E

RA

9102

D71

5E

RA

9102

D73

8E

RA

9102

R73

14.

7[1/

4W]

R73

24.

7[1/

4W]

C72

1 10

00P

/1K

V[H

R]

D71

7E

SA

D92

03

D717ESAD9202

L715

B01

A

L716

B01

A

L712

B01

A

L711

B01

A

R73

633

[2W

]

1000

P/1

KV

[HR

]

L713

B01

AL7

14B

01A

T70

1N

-T00

-717

R73

333

[2W

]C

722

1000

P/1

KV

[HR

]

C72

310

00P

/1K

V[H

R]

C72

4 10

00P

/1K

V[H

R]

R73

422

[3W

]

C7281000P/1KV[HR]

C727 C7301000P/1KV[HR]

C7291000P/1KV[HR]

L717

B01

A

R73

733

[3W

]

L718

B01

A

L719

C-L

00-2

69

RE

T

38V

A

D71

8R

D39

EB

7

D71

91S

S17

8

B

+ -

C7252200[PF]

F70

225

0VT

3.15

AL

F70

325

0VT

5AL

CN

702-

20

CN

702-

18

C7260.1/50V[RPE]

+ -

+ -

D72

3

D72

4

1SS

178

1SS

178

D72

5

D72

6

RD

5.6E

SA

B2

RD

13E

SA

B2

DC

D72

21S

S17

8

D721RD27ESAB2

R738220[1/4W]

PC

702

C7312200/35V[PF]

C732 2200/35V[PF]

µP

C10

93

R73

92.

2K

R740 2.2KPC701

IC70

2

R74

310

K

C73

410

0P/5

0V

R74

12.

2K

R742 2.2K

C733 0.47[MP]

R74

422

K

R74

5 2.

2KVR7011KB

PC703R74

610

[H]

R74

733

K

D727RD6.2ESAB2

R74

82.

7K

Q7052SC1815

R7494.7K[1/4W]

24V

CN

702-

29,3

024

V

C73

50.

1/50

V[R

PE

]

CN

702-

26,2

824

VC

N70

2-22

,24

RE

T

F70

5

F70

6

FWC

N70

2-16

Fig

.24

C76

233

00P

[KC

]

C76

333

00P

[KC

]

F70

425

0VT

3.15

AL

250V

T3.

15A

L

250V

T3.

15A

L

• R

esis

tors

are

1/6

W u

nles

s ot

herw

ise

spec

ified

.

• E

lect

roly

tic c

apac

itors

(

) a

re 5

0V u

nles

s ot

herw

ise

spec

ified

.

• T

he o

ther

cap

acito

rs (

)

are

100

V u

nles

s ot

herw

ise

spec

ified

.

11 – 31

Page 74: Sharp Sf 2040 Copier Sm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1615

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1615

1

NC

L

NC

N

23

4

CN701

JSTB2P4-VH-B

2 5V15V

4 5V35V6 -20V55V

8 -20V PET75V

10 10V29PET

12 10V1

14 PET

16 FW

18 38V

20 38V222426

2824V

30 24V

11PET

13PET

15PET

17PET

19PET21PET23PET25PET

27PET

2924V

24V

CN702

HRSDF1B-30DP-2.5DSA

PET CN702-8

-20V CN702-6

5V 1,3CN702 2,4

5,7

PET

10V1 CN702-12

10V2 CN702-10

PET

B

A

C

D

-25VDC

Fig.22

Fig.25

Fig.23

5VDC

5VDC

Fig.26

IP701ICPN25

L721B01A

Q7062SA1541

L723C-L00-268

C736470P/1KV[HR]

D728ERB9102

R75

010

K[1/

4W]

R75

110

K[1

/4W

]

+

-

C73

722

0/35

V[PF

]

+

-

C73

822

/35V

[PF]

IC703HA178M20P

C7390.1[RPE]

L722PJ8T-8R2M

C7401500/35V[PF]

R77

310

0[1/

4W]

+

-

R754180[1W]

R755180[1W]

R752150

R753150

C74

110

00P/

1KV[

HR

]

D729ESAB92M02orYG901C2

R7561.5K

R75739K

R7580.05/2W

R759100[H]

+

-

C74

210

00/3

5V[P

F]

+

-

C75

068

0/10

V[PF

]

L724L1000511

C74

30.

1/50

V[R

PE]

C7441[MP]

R7612.7K

R7601K

R7622.2K

VR7021KB

+-

D730 1SS178

R76510K

R76610[H] R

767

2.2K

R76427K

R763

1K

C74522/35V[PF]

IC704MB3759M

R7682.2K

C7470.022

R76

9 4.

7K

C74

60.

001

or

0.00

1/50

V[R

PE]

R77

0 27

K

C7480.022 or0.022/50V[RPE]

R77112K

+

-

V749

22/3

5V[P

F]

R7722.2K

L725PJ8T-8R2M

R77

4 2.

2K[1

/4W

]

R77

515

[1/4

W]

R77

64.

7K[1

/4W

]

Q7072SC1959

Q7082SJ176

L726N-L00-046

D7311SS178

D732ERC9102

R7771.2K[1/4W]

R7781.2K[1/4W]

+

-

C7520.022

C75

1 15

00[P

F]

R7810.1/2W

R779820

R78039K

R782100[H]

+

-

C75

415

00/1

6V[P

F]

C755

0.1/

50V[

RPF

]

R7831K

VR7031KB

R7852.2K

C7564.7[MP]

R7842.7K

C76

410

00/1

6V[P

F]

D736ERC81004

D733RD5.6ESAB2

IC705MB3759M

+-

C757 22[PF] R787

1KR788

68K

+

-

D735RD5.6ESAB2

D7341SS178

R7866.8K

R78910[H]

R790

2.2K

R7912.2K

C7580.022

R79

2 4.

7K

C75

90.

001

or0.

001/

50V

[RPE

]

R79

3 27

K

C7600.1 or0.1/50V[RPE]

R79412K

C76122[PF]

• Resistors are 1/6W unless otherwise specified.

• Electrolytic capacitors ( ) are 50V unless otherwise specified.

• The other capacitors ( ) are 100V unless otherwise specified.

11 – 32

Page 75: Sharp Sf 2040 Copier Sm

6. Desk circuit

(1) Block diagram

SF-D23

PP

C b

ody

Com

mun

icat

ion

circ

uit

Res

et c

ircui

t

Lift

mot

ordr

ive

circ

uit

Lift

mot

or

rota

tion

sens

or in

put c

ircui

t

Tra

nspo

rt m

otor

driv

e ci

rcui

t

Tra

nspo

rt m

otor

spee

d co

ntro

l pul

sege

nera

ting

circ

uit

Tra

nsp

ort m

oto

rsp

eed

con

trol

sig

nal

inp

ut/o

utpu

t circ

uit

Osc

illat

ion

circ

uit

12M

Hz

Latc

h

Res

ist s

enso

rin

put/o

utpu

tci

rcui

t

Siz

e se

nsor

inpu

t/out

put

Left

am

ount

sen

sor

inpu

t/out

put

circ

uit

5VD

C h

oppe

rm

otor

out

put

circ

uit

500C

clu

tch

sole

noid

driv

eci

rcui

t

Inpu

t por

tex

tens

ion

IC

Par

alle

l in

Pap

er p

ass

sens

orin

put c

ircui

t

Pap

er p

ass

sens

orcl

ock

outp

ut c

ircui

t

Leve

l sen

sor/

limit

sens

or in

put c

ircui

t

Clu

tch

driv

eci

rcui

t

500-

shee

t ca

sse

ttese

nsor

/sw

itch

inp

ut c

ircui

t

RO

M

HM

OT

DP

OD

1

DP

OD

2

SIZ

ES

W

RE

ST

R

RE

ST

F

E1M

OT

E1C

LK

E2C

LK

E2M

OT

Ope

n/cl

ose

switc

hci

rcui

t

LUM

1

CP

FC

1

CP

FS

1

LUD

1

PE

D2

UC

SS

1

UC

SS

2

UC

SS

3

UC

SS

4

PF

NU

D

VD

C h

oppe

rm

otor

driv

eci

rcui

t

F/L

SW

DD

OP

DLP

D1

DLP

D2

DLP

D3

DP

E2

DLU

D1

DLU

D2

LMS

1

LMS

2

P1C

L

P2C

L

BLC

RC

L

11 – 33

Page 76: Sharp Sf 2040 Copier Sm

A. Sensors and switches

Signal name Name Type Function/operation Contact/output

SIZESW Size switch Microswitch Size (A4, B5, Letter) selection

F/LSW Front loading open/closeswitch

Microswitch Desk open/close detection H level when open.

DPE2 Empty sensor Reflection type sensor Cassette 2 original presencedetection

H level when paper isdetected.

DLPD3 Paper pass sensor 2 Reflection type sensor Turns to H level when the paper leadedge is transported to the front ofpickup roller 1.

H level when paper isdetected.

DLPD2 Paper pass sensor 1 Reflection type sensor Turns to H level when the paper leadedge is transported to the back ofpickup roller 1.

H level when paper isdetected.

DDOP Side open/close sensor Photo interrupter Side cover open/close detection H level when open.

DLUD1 Level sensor 1 Photo interrupter Cassette 1 paper height control H level when interrupted.

LMS1 Limit sensor 1 Photo interrupter Prevention against excessive heightof cassette 1 paper

H level when interrupted.

DPOD1 Resist sensor 1 Photo interrupter Paper pass detection Paper in: L level

DLPD1 Paper pass sensor 0 Reflection type sensor Turns to H level when the paper leadedge is transported to the front ofseparation roller.

H level when paper isdetected.

DLUD2 Level sensor 2 Photo interrupter Cassette 2 paper height control H level when interrupted.

LMS2 Limit sensor 2 Photo interrupter Prevention against excessive heightof cassette 2 paper

H level when interrupted.

DPOD2 Resist sensor 2 Photo interrupter Paper pass detection Paper in: L level

E2CLK Elevator motor 2 clocksensor

Photo interrupter Elevator motor 2 encoder clockdetection

Pulse output

E1CLK Elevator motor 1 clocksensor

Photo interrupter Elevator motor 1 encoder clockdetection

Pulse output

B. Electromagnetic clutches

Signal name Name Type Function/operation Contact/output

P2CL Pick 2 clutch Electromagnetic clutch Links/releases the transport motordrive and the pick roller 2.

Links the drive when ON.

P1CL Pick 1 clutch Electromagnetic clutch Links/releases the transport motordrive and the pick roller 1.

Links the drive when ON.

BCL Separation clutch Electromagnetic clutch Links/releases the transport motordrive and the separation roller.

Links the drive when ON.

RCL Resist clutch Electromagnetic clutch Links/releases the transport motordrive and the resist roller.

Links the drive when ON.

C. Motors

Signal name Name Type Function/operation

E1MOT Elevator motor 1 DC motor Drives the lifting mechanism of cassette 1 paper bundle.

E2MOT Elevator motor 2 DC motor Drives the lifting mechanism of cassette 2 paper bundle.

HMOT Transport motor DC brushless motor Drives the whole mechanism of paper transport.

11 – 34

Page 77: Sharp Sf 2040 Copier Sm

(2) Operating principle

A. Sensor and detector input circuits(a) Paper pass sensor (DLPD1 ∼ DLPD3, DPE2) input circuitThe paper pass sensor is a reflection type and is installed on the sheet feed path in the 3000-sheet LCC disk. It consists of an LED and phototransistor. The LED emits infrared light. The light is reflected by the paper (if any) and the reflected light enters the photo transistor to increase thephotocurrent of photo transistor, thus making it possible to detect the passage and reach of the paper.The paper sensors 0, 1, and 2, and the empty sensor have the same circuit configuration. Hereafter, the paper sensor 0 (DLPD1) will be explainedas an example.The sensor LED is pulse operated. The pulses are generated by the CPU’s timer and open collector outputted by Q13.1. R9 is an LED current limitresistance. The infrared light pulse-emitted is reflected by the paper if there is a sheet of paper under the sensor, and enters the photo transistor.The incident light increases the photocurrent of the photo transistor and the photocurrent flows through R18. Therefore, the voltage at part @ variesproportionately with the magnitude of incident light. IC10.5 converts this voltage into digital signal according to the threshold voltage (about 3 V).When the input voltage to IC10.5 is less than the threshold level, it is regarded as no paper; when more, it is regarded as the presence of paper.However, since the signal is reversed at IC10, the presence of paper is recognized at the low level (0 V) and the absence of paper at the high level(5 V) as to the CPU input port. The input signal is entered in pulses because the LED pulse-emits infrared light. The CPU incorporates this signal,synchronizing with the On and Off timing of the LED.

(b) Level sensor and limit sensor (DLUD1, 2 and LMS1, 2) input circuitsThe bundle of sheets of paper is lifted up by the lift-up motor to make the paper height in the 3000-sheet LCC disk suitable for sheet feeding. Twophoto interrupters serve as level sensors which detect the paper height. The limit sensors detect the upper limit of the height of the paper lifted up.The screen plate, located at the arm of the pick-up roller which comes in contact with the paper surface, operates synchronously with theup-and-down motion of the paper. The photo interrupters sense the position of the screen. The machine is equipped with two lift-up mechanisms,each of which has a level sensor and a limit sensor. The limit sensor not only sends the signal to the CPU but controls the stopping of the lift-upmotor. (For details, see the explanation of the lift-up motor driving circuit.)Both the level sensor and limit sensor have almost the same circuit configuration. To illustrate their circuit, the level sensor 1 (DLUD1) will bedescribed below.The photo interrupter consists of an LED and photo transistor (open collector output). The LED always emits light using the current limited by R1inside the relay board. When the screen enters the slit in the interrupter, the infrared light emitted from the LED is shut out to turn the phototransistor off (output high impedance). At this time, the signal at DLUD1 is made at the high level (5 V) by R1 in the control board. With the screencoming out of the slit, the photo transistor turns on and the signal at DLUD1 becomes the low level (0 V), R5 is an input protection resistance ofIC8.1 pin. IC8-1 shapes the waveform from the input signal. The shaping of the waveform is performed only at the level sensors 1 and 2. The signalat the limit sensors 1 and 2 enters from the protection resistance directly into the CPU.

DC5V

DLPD1-SIG

LED-A

CN.3

CN.2

CN.1

DLPD1

CN7.1

CN7.2

CN7.3

DC5V

DLPD1-SIG

LED-A

DC5V

DLPD1-SIG

LED-A

CN1.7

CN1.9

CN2.1R9

Interfeice PWB

CN1.7

CN1.9

CN2.1

DC5V

DLPD1-SIG

LED-A

2

9

1

+5V

R18

GROUND

1

45KR15 11

IC10.5

10 74

5116Q13.1

P23

P36

Control PWB

SG

DLUD1

CN3.1

CN3.2

CN3.3

CN1-7

CN2.7

CN1.8

R1

Interfeice PWB

CN1.10

CN2.7

CN1.1

10

7

1

+5V

R115K

GROUND

R5 1

IC8.1

2 60P74

Control PWB

CN-3

CN-2

CN-1

DLUD1-A

DLUD1-SIG

DC5V

DLUD1-SIG

SG

DLUD1-SIG

SG

+5V

100DLUD1-SIG

DLUD1-A

SG

DC5V

11 – 35

Page 78: Sharp Sf 2040 Copier Sm

(c) Lift motor speed sensor (E1CLK, E2CLK), paper quantity sensor (RESTR, F), and side sensor (DDOP) input circuitsThe lift motor speed sensor detects the rotation of the lift motor and consists of a slit disk and a photo interrupter. When the motor begins rotating,the sensor sends pulse signals. The paper quantity sensor detects the remaining quantity of paper inside the 3000-sheet LCC by checking theheight of the lifter plate of the 3000-sheet LCC. It consists of a screen and a photo interrupter. The truth table of the paper quantity sensor is shownbelow. The side sensor detects the opening of the cover which is opened to remove a paper jam in the longitudinal sheet feed path. The speedsensor, paper quantity sensor and side sensor have the same circuit configuration as the limit sensor as shown in (b).

Table 1 Remaining amount sensor

Remaining quantity of sheets: 0 - 750 sheets Remaining quantity of sheets: 750 - 1500 sheets

RESTR, FScreen plate ON Screen plate OFF

Signal level Lo (0 V) Signal level Hi (5 V)

(d) Resist sensor (DPOD1, 2) input circuitThe resist sensors are photo interrupters located just in front of the roller in the sheet feed path to the PPC, to which the paper is discharged fromthe 3000-sheet LCC and the 500-sheet cassette. Each resist sensor has a lever. The reach of the paper transported can be detected by pushing thelever to displace it out of the slit. DPOD1 and DPOD2 have the same circuit configuration. Here, DPOD1 is used to explain their circuit configuration.Inside the photo interrupter, an LED and a photo transistor (open collector output) are contained. The LED always emits light by using the currentlimited by R25. When the lever enters the photo interrupter’s lit, the infrared light emitted from the LED is shut out to turn the photo transistor off(output high impedance). At this time, the signal at DPOD1 is made at the high level (5 V) by R69. When the lever comes out of the slit, the phototransistor turns on to make the signal at DPOD1 at the low level (0 V). R70 and C15 are noise filters and IC8.4 shapes the input waveform.

(e) Size switch (SIZESW) input circuitThe size switch is a 3-contact slide switch which switches over the paper sizes (A4, B5, and LTR) to be used for the 3000-sheet LCC. It is locatedon the front left frame. Three types of signals are used. When turned on, the signals become a high level (5 V). The three signals are converted into2-bit ones by IC6.2 and 6.3. R16, 17 and 21 are pull-down resistances, and R22, 23 and 24 are input protection resistances. Table 3.2 shows thetruth table of this circuit.

Table 2 Truth table

P67 P66 CN9-2 CN9-3 CN9-4

B5 Hi Lo Hi Lo Lo

A4 Hi Hi Lo Hi Lo

Letter Lo Hi Lo Lo Hi

R6915K

+5V

LED-A

SG

DPOD1

CN-3

CN-1

CN-2

DC5V

DPOD1

SG

CN8.4

CN8.6

CN8.5

Control PWB

GROUNDGROUND

+5V

R25390

4

6

5

R70

1.0K

C152100pF

9877

IC8.4

P26 DPOD1

3Pin+5V CN9.1

Control PWB

GROUND

+5V

47KR23

B5 CN9.2

A4 CN9.3

LETTER CN9.4

1Pin

2Pin

4Pin

7Pin

5Pin

6Pin

8Pin

SIZESW

R2110K

GROUND

R1710K

GROUND

R1610K

47KR22 1

2

3

4

4

5

9

10

IC6.2

IC6.3

620

821

P67

P66

11 – 36

Page 79: Sharp Sf 2040 Copier Sm

(f) Opening and closing switch (F/LSW) input circuitThe opening and closing switch consists of a micro switch which detects the opening and closing of the 3000-sheet LCC disk, and a mechanicaldevice used to press the switch. The switch turns on when the disk is closed and turns off when it is opened. When the switch turns on, +24 V isapplied on the cathode of ZD2 to let the current flow to the base of Q9, which in turn Q9 turns on to make the F/LSW signal at the low level (0 V).

(g) 500-sheet cassette sensor, switch input circuit (UCSS1 ∼ 4, LUD1, PED2, PFNUD) and input port expansion IC (IC11)The paper size selector switches (UCSS1 ∼ 4) detect the size of the paper fed from the 500-sheet cassette. The paper surface sensor (LUD1) is aphoto interrupter which forms to signal to control the hopper motor until the paper surface is lifted to the sheet feed position. The sensor (PED2) is aphoto interrupter which detects the presence of the paper. Both LUD1 and PED2 consist of a lever and a photo interrupter and are arranged in the500-sheet cassette. The pull-up resistance establishes the logic of the signal. The serial resistance is used to protect IC11.These signals (excluding PFNUD), side sensor (SIDE), and disk opening and closing sensor (F/LSW) are incorporated into the input port of IC11.IC11 converts the entered parallel signal into the serial signal, and outputs it synchronously with CLK. CLK is outputted from the P32 of the CPUand incorporated into the CLK input terminal of IC11. IC10-4 matches the CLK logic. IC11 latches the parallel input signal at the fall at the S/Lterminal and outputs each sensor signal serially from the Oh terminal by synchronizing with CLK. This serial signal is incorporated into the inputterminal of the CPU where it is used for each sensor.

B. Drive system control circuit(a) Sheet feed motor speed control circuit (HMOT)This circuit controls DC brush motor which is used to feed the paper. It consists of a sub-circuit which generates pulses by which the CPUrecognizes the motor speed, and a sub-circuit which drives the motor by PWM output corresponding to the pulse (PLS). The motor is composed of arotor and a board on which the pulse (PLS) generating circuit and driving circuit are mounted. The PWM output is delivered from the CPU. The CPUboard and the motor board are interfaced by the power supply (24 V, 5 V), GND, PLS and PWM signals.

1 Coil switching sensorH1, 2, and 3 are magnet sensitive devices (hole devices) and judge the polarity of the main magnetic flux when the rotor rotates. They generate thesignal by which the conduction of the coil is changed over.

2 Coil switching control circuitThis circuit converts the coil switching signal (weak analog signals around 2.5 V) generated by H1. 2 and 3 into the high and low level judgementsignals inside IC1, thus generating another coil switching signal. The logic diagram of IC1 is Table 3.3.

3 Motor driver circuit sectionA 3-phase bridge circuit is composed of Q1 ∼ 6, to feed current to the motor coil (U, V and W phases). Q7 ∼ 9 are pre-drivers for Q4 ∼ 6. The On/Offtiming of Q1 ∼ 6 are indicated by the output area of the logic diagram of 2 , with H showing the ON timing. IC3-1 ∼ 3 pins are ORed with the outputsignal from IC1 and the PWM signal from the CPU to turn on and off Q4 ∼ 6 for speed control. IC3.4 is a protective circuit which stops the motorwhen the connector’s connection is defective.

4 Pulse signal (PLS) generating circuitA sine-wave-like induced voltage is generated at both ends of the board pattern under the rotor when the magnet inside the rotor passes thepattern. This micro voltage of sine wave is amplified by IC2.2 and its waveform is shaped into the pulse wave by IC2.1.

5 PWM signal generating circuitThe PWM signal is generated by the CPU comparing the PLS signal and the reference CLK which is generated inside the CPU. If the PLS signal isfaster than the reference CLK, the motor is regarded as rotating faster than the specified speed and thus the PWM signal’s duty ratio is suppressedto decelerate the motor.If the PLS signal is slower than the reference CLK, the motor is considered to be rotating slower than the specified speed, the PWM signal’s dutyratio is accelerated to speed up the motor.

GROUND

CN-1

CN-2

F/LSW

CN6.5

CN6.4

DC24V

F/L_I/L

CN1.1

CN2.4

Interfeice PWB

DC24V

F/L_I/L

CN1.1

CN2.4

DC24V

F/L_I/L

Control PEB

IC11

PI14

R4710K

+5V

Q9

ZD212V

DC24V

1

4

11 – 37

Page 80: Sharp Sf 2040 Copier Sm

Table 3 Logic Diagram

Symbol Pin No. 1 2 3 4 5 6

Input

HA+ 18 H H L L L L

HA– 17 L L H H H L

HB+ 16 L H H L L L

HB– 15 H L L L H H

HC+ 14 L L L H H H

HC– 13 H H H L L L

Output

UH 7 L L H H L L

VH 8 L L L L H H

WH 9 H H L L L L

UL 12 H L L L L H

VL 11 L H H L L L

WL 10 L L L H H L

(b) Lift motor driving circuitThe bundle of sheets of paper is lifted up by the lift-up motor to make the paper height in the 3000-sheet LCC disk suitable for sheet feeding. Thelift-up motor is driven by the lift motor driving circuit. There are two sets of lift-up mechanisms, each of which has a motor (E1MOT, E2MOT) anddriving circuit. The two sets of mechanisms have the same design. Below is the explanation of the E1MOT.The lift motor is turned on and off by theCPU. When the level sensor 1 (LS1) described previously turns off during the passage of paper, the CPU turns on the lift motor (E1MOT) to try toturn on the sensor. The ON signal (low level) is outputted from the IC1-15 pin. This signal is ORed with the limit sensor 1 (LMS1, high level at limit)so that it is outputted from the IC6-3 pin only when the limit sensor 1 is off (low level). When the IC6-3 pin is at the low level, no current is suppliedto the base of Q4 to turn it off. This supplies current from R79 to the base of Q5 to turn it on, so that CN6.1 pin becomes about 0 V, thus producingvoltage differential across both poles of the motor to supply current to the motor. When the paper surface is detected by the level sensor, the IC1-15pin become a high level to turn Q5 off. At this instance, there occurs a potential difference between the base and emitter of Q1 to turn Q1 on, thusapplying regeneration brake. D1 is also a flywheel diode which operates when it is off.

Control PWB

GROUND

GROUND GROUND

DC24V CN5.1

PG CN5.2

CN5.3

DC5V CN5.4

HMOT_CLK CN5.5

HMOT_SIG

1

2

3

4

5

DC24V

C1010µF

++ C91µF

C81000pF

R62

1.0K

72P21

47P10

+5V

R6110K

13 12 1 2

IC8.6 IC13.1

+5V

+5V

R6310K

GROUND

Q4

DC24V CN6.2

E2MOT CN6.1

CN-1

CN-2

E1MOT

Control PWBAGROUND

2

1 IC6.13

15P03

+5V

R81 10K

LMS1

R791.0K

Q5

+5VR194.7K

D4

Q11

D1

DC24V

2

1

11 – 38

Page 81: Sharp Sf 2040 Copier Sm

(c) Pick-up clutch (P1CL, P2CL), break-up clutch (BCL), and resist clutch (RCL) driving circuitsThe pick-up clutch transmits the power of the sheet feed motor (HMOT) to each roller. The pick-up clutch (P1CL, P2CL), break-up clutch and resistclutch (RCL) have the same type of circuit. The pick-up clutch 1 (P1CL) driving circuit is explained as an example.Q13 (TD62003) is a Darlington driver containing 7 circuits, one of which is used for driving. When the IC1-19 pin becomes a high level, the transistorat the Q13.4’s output stage turns on and the IC13-13 pin becomes about 0 V, to supply current to the clutch to turn it on, thus transmitting the powerfrom the sheet feed motor.

C. Other circuits

(a) Reset circuitThe reset circuit generates the reset signal for the CPU, and consists of an IC5 and its peripheral circuit. IC5 integrates reset functions, such aspower-on reset when the power is turned on, CPU reset when an abnormal drop of +5V occurs, and watch dog timer. When the power line (+5V) is at about 0.8 V after the power is turned on, IC5 begins to operate. The IC5-8 pin becomes a low level to reset theCPU and hold this state for a specified duration (about 100 ms) which is determined by C13’s capacity after the power line reaches about 4.3 V.When the specified reset holding time has passed, the IC5-8 pin becomes a high level to release the reset, thus putting the CPU in action. When the power line drops to about 4.2 V, the IC5-8 pin becomes a low level to reset the CPU. This state is released at 100 ms after the power linereaches 4.3 V.The IC5-3 pin is a clock input terminal for the watch dog timer, into which regular pulse signals of 10 ms cycle are entered. If this signal stops due toa hung-up CPU or for any other reason, the IC5-8 pin becomes a low level a specified time later to reset the CPU. The clock watch time is set forabout 100 ms based on the capacity of C13.It is also possible to hardware reset through the communication cable from the PPC. In this case, hardware resetting is achieved by putting theCN3.6 pin at a high level or opening it. IC9.1 and 2 are logical pairs, and IC13.3 is an open collector element which synthesizes the reset output and hardware reset signal for IC5.

DC24V

P1CL

CN1.2

CN1.6

DC24V

P1CL

DC24V

P1CL

Interfeice PWB

DC24V

P1CL

CN1.2

CN1.6

CN1.2

CN1.6

Control PEB

DC24V

2

6 P1CL13419P07

Q13.4

GROUND

C121000pF

7

VS

+C131µF

C280.1µF

+5v

5

4

2

3

8

1

6

D3

RKS

CK

*RES

CT

VREF

VCC

GND

IC5MB3773

+5v+5v

R7110K

R7310K

GROUND

C141000pF

1 2

IC9.1

3 4

IC9.2

5 6

IC13.3

GROUND

C30.022µF

6

+5v

R3510K

D-RESCN3.6I/F coble

7 25

RESET P62

11 – 39

Page 82: Sharp Sf 2040 Copier Sm

[12] Functions of PPC communication system (Option)

1. General description

The system is designed to improve efficiency in servicing, customers control, and working rate of machines by remotecontrol of meter reading, remote diagnosis, read/write of various adjustment values by the host computer usingtelephone lines. The communication unit systems are largely classified into two: system A and system B. In system A, counting of thecounter based on the pulse signal output from the copier for every copy. In system B, a wider range of information canbe controlled such as counter totalizing, troubles, jam, remote maintenance, and marketing data.

2. System A

[Fig. 1] Block diagram

In system A, the personal counter signal (count up pulse) output from the copier is sensed and counted up. The dataare written into the RAM which is backed up by a battery. Since in internal RTC (Real Time Clock) is provided, thecount data are transmitted (usually at night) through the telephone line to the host computer when the time set in theRAM is reached. System A can be used even with a low cost copier machine and a telephone line which has already been installed bythe user, the communication is one way from the terminal to the host.

(1) Functions of System A

System A provides the following functions:(1) Meter reading by periodic transmission(2) Sense switch of start and end time of servicing

ROM(1MB)

RAM(32KB)

RTC

PPC

SW

SW

CPU

NCU

LIN

TEL

AC/DC

Telephone Line

Telephone

Count input

Copierinterface

Communi-cationcontrolsection

Power control

AC adapter

12 – 1

Page 83: Sharp Sf 2040 Copier Sm

3. System B

[Fig. 2] Block diagram

System B is designed for medium class or high class copiers. Communication in system B is performed with the linespecially provided for this system or by sharing the existing telephone line. When the special line is provided, thebi-directional communication is allowed, where either the host or the terminal can start communication. When theexisting telephone line is used, communication is made only from the terminal similar to system A.The communication unit process and stores information sent from the copier every time copy is completed or a jam ora trouble occurs. The data are sent to the host computer when an access is made from the host computer. It is alsopossible to make an access to the host computer to transmit information by using trouble data transmission from thecopier as a trigger.

ROM(1MB)

RAM(32KB)

RTC

SW

SW

CPU

NCU

LIN

TEL

AC/DC

Telephone Line

Telephone

RS-232CCopierinterface

Communi-cationcontrolsection

Power control

AC adapterPPC

(1) Functions and applications of system B

Function UserServiceengineer

Dealer Subsidiary

1 Automatic billing (meter reading) F F

2 Automatic service call F F k

3 Jam history read F F k

4 Trouble history read F F k

5 Read/write of simulation data F F k

6 Supply parts stock control F F k

7 Machine status check F F F k

8 Copy inhibition when PC/modem is not installed F k

: Not applicable F: Applicable k: Applicable if required

12 – 2

Page 84: Sharp Sf 2040 Copier Sm

All the functions of system B are listed in the table below:

Function Data content

1 Automatic billing (meter reading)

Cou

nter

by

func

tion

Total

• The counter value of each data listed in the rightcolumn can be automatically read through thetelephone line, and also can be read by theperiodic transmission started by the terminal.

Maintenance

Duplex

Staple

ADF

Tray 1

Tray 2

Trouble

Jam in PPC body

Manual feed tray counter

Desk tray 1 counter

Desk tray 2 counter

Desk tray 3 counter

DV

cou

nter

DV counter (Black)

2 Automatic service call

S

tatu

s da

ta

At initializing after power ON or cancellation ofsimulation.• When a trouble occurs or in the case of

maintenance, a trouble code and the status dataimmediately before occurrence of the trouble orthe service code are automatically transmitted. Forthe trouble codes, refer to the Service Manual ofthe copier. For status data and service codes,refer to the column in the right.

Simulation No. input wait state.

During execution of simulation .

Trouble state

Jam state

Door open state

Warm up state

During copying

Wait state

Power OFF state

Ser

vice

cal

l Maintenance

Developer replacement

K

ey o

pera

tor

call Toner empty

Waste toner full

Toner low (Little toner left)

12 – 3

Page 85: Sharp Sf 2040 Copier Sm

Function Data content

3 Jam history read

J

am p

ositi

on c

ode

Desk

• Data on sensor names and sensor positions,document size, paper size, and the paper feed unitwhen jams occurred can be read.

Main body cassette

Separation

Paper exit

Sorter

Duplex

ADF

4 Trouble history read

Sta

tus

data

At initializing when power ON or after cancellation ofsimulation• When a trouble occurs, the trouble code and the

status code just before the occurrence can beread.For the trouble codes, refer to the Service Manualof the copier. For the status data just before theoccurrence of the trouble, refer to the right column.

Simulation No. input wait state

During execution of simulation

Trouble state

Jam state

Door open state

Warm up state

During copying

Wait state

Power OFF state

5 Read/write of simulation data For the contents of data for simulation, refer to theService Manual of the copier.• Simulation data (set values, etc.) of each copier

can be read and simulation can be executed. Forthe contents of simulations, refer to the Servicemanual of the copier.

12 – 4

Page 86: Sharp Sf 2040 Copier Sm

Function Data content

6 Supply parts stock control

Toner empty

• Information on the total copy quantity and tonerempty state are sent from the copier to checksupply parts history information every time copyingis completed.

K

ey o

p. c

all

T

otal

cop

y

Copy quantity

Cop

y m

ode

Orig

inal

han

dlin

g un

its

OC

Dup

lex

mod

e S to S

S to D

D to S

D to D

(R) ADF

Dup

lex

mod

e S to S

S to D

D to S

D to D

RDH

Dup

lex

mod

e S to S

S to D

D to S

D to D

CFFD

uple

x m

ode S to S

S to D

D to S

D to D

UDH

Dup

lex

mod

e S to S

S to D

D to S

D to D

7 Machine status check

Sta

tus

data

At initializing when power ON or after cancellation ofsimulation• Machine status data listed in the right column can

be checked. Simulation No. input wait state

During execution of simulation

Trouble state

Jam state

Door open state

Warm up state

Copy state

Wait state

Power OFF state

12 – 5

Page 87: Sharp Sf 2040 Copier Sm

Function Data content

8 Copy inhibition when PC/modem is not installed

Cop

y en

able

/ Cop

y in

hibi

tion

Copy stop• As shown in the right, selection can be made

between copy inhibition and copy enable.

• Copy inhibition (PF trouble) mode can becancelled with simulation of the copier.

• When PC/modem is not installed or in case ofcommunication trouble between PC/modem andthe copier, selection between copy inhibition andcopy enable can be made with the copiersimulation.

Copy stop cancel

4. Communication system I/F PWB

In the SF-2040, the communication system I/F PWB is attached to the copier as required. Communication system I/F PWB unit ass’y: SF-23IA (CPLTM4130FC53) Fixing screw (M4-10) : XHBSD40P10000

(Installing procedure)

1 Remove the rear cabinet of the copier body.

2 Install the I/F PWB unit to the main body frame.

3 Connect the 15-pin connector.

4 Simulation 27-01 settingIn case of communication trouble trouble code U7-00 is display (YES/NO)Factory setting: Display NO

5 Attach the rear cabinet.

12 – 6