32
Micro-Macro Modelling and Simulation of Liquid-Vapour Flow DFG - CNRS Project RO 2222/4-1 Sharp Interface Approach for Liquid-Vapour Flow with Phase Transition Christoph Zeiler Institute for Applied Analysis and Numerical Simulation February 2014

Sharp Interface Approach for Liquid-Vapour Flow with Phase … · 2014. 2. 28. · Micro-MacroModellingand SimulationofLiquid-VapourFlow DFG - CNRS Project RO 2222/4-1 Sharp Interface

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Micro-Macro Modelling andSimulation of Liquid-Vapour FlowDFG - CNRS Project RO 2222/4-1

    Sharp Interface Approach for Liquid-Vapour Flowwith Phase Transition

    Christoph Zeiler

    Institute for Applied Analysis and Numerical Simulation

    February 2014

  • Free Boundary Value Problem in Rd

    [Binninger et al.]

    Bulk Phases%t + div(% v) = 0,

    (% v)t + div (% v ⊗ v + p(%) I ) = 0.

    Phase BoundaryJ%(v · n − σ)K = 0,J%(v · n − σ) v + p(%) nK = (d − 1)γκn,qg(%) + 0.5 (v · n − σ)2

    y= −k j.

    Local Well-Posedness Results_ for k = 0 see

    [Benzoni-Gavage, Freistühler 2004]_ for k > 0 see

    [Kabil, Rohde 2013]

    Christoph Zeiler Sharp Interface Approach for Liquid-Vapour Flow with Phase Transition 1/21

  • Outline

    Cut Cell Method

    Exact Riemann Solver

    Numerical Results

    Christoph Zeiler Sharp Interface Approach for Liquid-Vapour Flow with Phase Transition 2/21

  • Cut Cell Method (joint work with C. Chalons)Basic Steps

    Γ(t) Domain Ω ∈ Rd with fluid in two

    phases at time t > 0_ liquid Ωliq(t),_ vapour Ωvap(t),_ curved phase boundary

    Γ(t) = ∂Ωliq(t) ∩ ∂Ωvap(t).

    We consider physical quantities inEuler coordinates (x, t)_ density %(x, t) > 0,_ velocity v(x, t) ∈ Rd .

    Christoph Zeiler Sharp Interface Approach for Liquid-Vapour Flow with Phase Transition 3/21

  • Cut Cell Method (joint work with C. Chalons)Basic Steps

    Γ(t) Domain Ω ∈ Rd with fluid in two

    phases at time t > 0_ liquid Ωliq(t),_ vapour Ωvap(t),_ curved phase boundary

    Γ(t) = ∂Ωliq(t) ∩ ∂Ωvap(t).

    Cut (and Merge) Cell Approach:_ approximate Γ(t)→ Γh(t),

    _ cut cells_ and merge, when cells are to

    small.

    Christoph Zeiler Sharp Interface Approach for Liquid-Vapour Flow with Phase Transition 3/21

  • Cut Cell Method (joint work with C. Chalons)Basic Steps

    Domain Ω ∈ Rd with fluid in twophases at time t > 0_ liquid Ωliq(t),_ vapour Ωvap(t),_ curved phase boundary

    Γ(t) = ∂Ωliq(t) ∩ ∂Ωvap(t).

    Cut (and Merge) Cell Approach:_ approximate Γ(t)→ Γh(t),_ cut cells

    _ and merge, when cells are tosmall.

    Christoph Zeiler Sharp Interface Approach for Liquid-Vapour Flow with Phase Transition 3/21

  • Cut Cell Method (joint work with C. Chalons)Basic Steps

    Domain Ω ∈ Rd with fluid in twophases at time t > 0_ liquid Ωliq(t),_ vapour Ωvap(t),_ curved phase boundary

    Γ(t) = ∂Ωliq(t) ∩ ∂Ωvap(t).

    Cut (and Merge) Cell Approach:_ approximate Γ(t)→ Γh(t),_ cut cells_ and merge, when cells are to

    small.

    Christoph Zeiler Sharp Interface Approach for Liquid-Vapour Flow with Phase Transition 3/21

  • Cut Cell MethodMacroscale

    MacroscaleDynamics of the bulk phases Ωliq and Ωvap.Model: Isothermal Euler equation

    %t + div(% v) = 0,(% v)t + div (% v ⊗ v + p(%) I ) = 0,

    with a pressure function p that covers liquidand vapour phase.

    Van-der-Waals like Pressure p

    %︸ ︷︷ ︸vapour

    ︸ ︷︷ ︸liquid

    Christoph Zeiler Sharp Interface Approach for Liquid-Vapour Flow with Phase Transition 4/21

  • Cut Cell MethodMicroscale

    n

    MicroscaleDynamics at the phase boundary.

    We assume that it is sufficient to consider1D Riemann type problems normal to Γh._ sharp interface models_ exact (Liu) solver [Jägle, Rohde, Z 2012]_ approximate (KinRel) solver

    [Rohde, Z 2013]_ exact (KinRel) Riemannsolver [today]

    _ diffuse interface models_ molecular dynamic models

    Christoph Zeiler Sharp Interface Approach for Liquid-Vapour Flow with Phase Transition 5/21

  • Cut Cell MethodTransfer Operator

    n

    Macro- to microscale_ initial states for Riemann type

    problems

    Micro- to macroscale_ fluxes for phase boundary edges

    Christoph Zeiler Sharp Interface Approach for Liquid-Vapour Flow with Phase Transition 6/21

  • Cut Cell Method

    Bulk: Euler equation_ liquid phase_ vapour phase

    Phase Boundary:_ Riemann type problem_ sharp/diffuse interface model

    Bulk:_ curvature reconstruction_ interface tracking

    Reconstruction: Compression:

    initial states

    mean curvature κ

    flux atthe phaseboundary

    speed ofthe phaseboundary

    The cut cell method with Godunov type two phase flux is conservative.

    Christoph Zeiler Sharp Interface Approach for Liquid-Vapour Flow with Phase Transition 7/21

  • Exact Riemann SolverSharp Interface Model

    For each macro time step and any interface segmentthere is a Riemann problem to solve:_ Initial condition (

    %, v)(x, 0) : =

    {(%l, vl) for x ≤ 0,(%r, vr) for x > 0,

    w.l.o.g. %l in the liquid phase, %r in the vapour phase._ x = x · n, v = v · n._ Curvature is fixed._ "Bubble case" with κ > 0

    "Droplet case" with κ < 0

    Γhx

    liquid(%l, vl)

    vapour(%r, vr)

    0

    Christoph Zeiler Sharp Interface Approach for Liquid-Vapour Flow with Phase Transition 8/21

  • Exact Riemann SolverSharp Interface Model(

    %%v

    )t

    +(

    %v%v2 + p(%)

    )x

    =(

    00

    )in R× (0,∞).

    Riemann Problem_ Classical entropy solution in the bulk phases._ There exists one phase boundary that satisfies

    −σ J%K + J% vK = 0−σ J% vK+J% v2 + p(%)K=(d − 1)γκ.

    _ The phase boundary satisfies the kinetic relationqg(%) + 0.5 (v − σ)2

    y= −k j.

    σ speed of the phase boundary J%K := %vap − %liqj = %(v − σ) mass flux τ = 1/% specific volume

    p̃(τ) := p(τ−1) pressure (d − 1)γκ (const.) surface tensiong̃(τ) := g(τ−1) chemical potential ψ Helmholz free energy

    Exact solvers are available ([LeFloch et al. (≥ 1991)], [Hantke et a. 2013]. . . , [Jägle, Rohde, Z 2012]), but only for simplified models or kinetic re-lations.

    Christoph Zeiler Sharp Interface Approach for Liquid-Vapour Flow with Phase Transition 9/21

  • Exact Riemann SolverSharp Interface Model

    Exact Riemann Solver_ Classical entropy solution in the bulk phases._ There exists one phase boundary that satisfies

    −σ J%K + J% vK = 0−σ J% vK+J% v2 + p(%)K=(d − 1)γκ.

    _ The phase boundary satisfies the kinetic relationqg(%) + 0.5 (v − σ)2

    y= −k j.

    Then, for k > 0, follows for the total energy e = ψ + 12 v2:

    −σ(J%eK + (d − 1)γκ

    )+ J(%e + p) vK = −k j2 ≤ 0

    Exact solvers are available ([LeFloch et al. (≥ 1991)], [Hantke et a. 2013]. . . , [Jägle, Rohde, Z 2012]), but only for simplified models or kinetic re-lations.

    Christoph Zeiler Sharp Interface Approach for Liquid-Vapour Flow with Phase Transition 9/21

  • Exact Riemann SolverGibbs-Thomson based Kinetic Relation

    Admissible Phase Boundary Wave_ connects liquid state (τliq, vliq) and vapour state (τvap, vvap),_ satisfies

    J%(v − σ)K = 0,j JvK + Jp̃(τ)K=(d − 1)γκ

    }⇒ j = ±

    √(d − 1)γκ− Jp̃(τ)K

    JτK

    _ and the kinetic relationqg̃(τ) + 0.5 j2 τ2

    y= −k j.

    σ speed of the phase boundary J%K := %vap − %liqj = %(v − σ) mass flux τ = 1/% specific volume

    p̃(τ) := p(τ−1) pressure (d − 1)γκ (const.) surface tensiong̃(τ) := g(τ−1) chemical potential ψ Helmholz free energy

    Christoph Zeiler Sharp Interface Approach for Liquid-Vapour Flow with Phase Transition 10/21

  • Exact Riemann SolverGibbs-Thomson based Kinetic Relation

    Example: Stationary Phase Boundary_ connects liquid state (τmwliq , vmwliq ) and vapour state (τmwvap , vmwvap ),_ satisfies

    j = 0,Jp̃(τ)K = (d − 1)γκ

    _ and the kinetic relationJg̃(τ)K = 0.

    σ speed of the phase boundary J%K := %vap − %liqj = %(v − σ) mass flux τ = 1/% specific volume

    p̃(τ) := p(τ−1) pressure (d − 1)γκ (const.) surface tensiong̃(τ) := g(τ−1) chemical potential ψ Helmholz free energy

    Christoph Zeiler Sharp Interface Approach for Liquid-Vapour Flow with Phase Transition 10/21

  • Exact Riemann Solver

    Admissible phase boundaries for k = 1 (without surface tension)

    6 8 10 12 14 16 180.4645

    0.465

    0.4655

    0.466

    0.4665

    0.467

    0.4675

    0.468

    0.4685

    volume vapour phase

    volu

    me

    liqui

    d ph

    ase

    complex jcondensation (j < 0)evaporation (j > 0)maxwell states (j = 0)

    0 5 10 15

    pressure

    volume

    Christoph Zeiler Sharp Interface Approach for Liquid-Vapour Flow with Phase Transition 11/21

  • Exact Riemann Solver

    Admissible phase boundaries for k → 0 (without surface tension)

    6 8 10 12 14 16 180.4645

    0.465

    0.4655

    0.466

    0.4665

    0.467

    0.4675

    0.468

    0.4685

    volume vapour phase

    volu

    me

    liqui

    d ph

    ase

    complex jcondensation (j < 0)evaporation (j > 0)maxwell states (j = 0)

    0 5 10 15

    pressure

    volume

    Christoph Zeiler Sharp Interface Approach for Liquid-Vapour Flow with Phase Transition 11/21

  • Exact Riemann Solver

    Admissible phase boundaries for k = 1 (without surface tension)

    6 8 10 12 14 16 180.4645

    0.465

    0.4655

    0.466

    0.4665

    0.467

    0.4675

    0.468

    0.4685

    volume vapour phase

    volu

    me

    liqui

    d ph

    ase

    complex jcondensation (j < 0)evaporation (j > 0)maxwell states (j = 0)

    0 5 10 15

    pressure

    volume

    Christoph Zeiler Sharp Interface Approach for Liquid-Vapour Flow with Phase Transition 11/21

  • Exact Riemann Solver

    Admissible phase boundaries for k = 2 (without surface tension)

    6 8 10 12 14 16 180.4645

    0.465

    0.4655

    0.466

    0.4665

    0.467

    0.4675

    0.468

    0.4685

    volume vapour phase

    volu

    me

    liqui

    d ph

    ase

    complex jcondensation (j < 0)evaporation (j > 0)maxwell states (j = 0)

    0 5 10 15

    pressure

    volume

    Christoph Zeiler Sharp Interface Approach for Liquid-Vapour Flow with Phase Transition 11/21

  • Exact Riemann Solver

    Admissible phase boundaries for k = 3.5 (without surface tension)

    6 8 10 12 14 16 180.4645

    0.465

    0.4655

    0.466

    0.4665

    0.467

    0.4675

    0.468

    0.4685

    volume vapour phase

    volu

    me

    liqui

    d ph

    ase

    complex jcondensation (j < 0)evaporation (j > 0)maxwell states (j = 0)

    0 5 10 15

    pressure

    volume

    Christoph Zeiler Sharp Interface Approach for Liquid-Vapour Flow with Phase Transition 11/21

  • Exact Riemann Solver

    Admissible phase boundaries for k = 1 with surface tension

    6 7 8 9 10 11 12 13 14 15 16 170.4645

    0.465

    0.4655

    0.466

    0.4665

    0.467

    0.4675

    0.468

    0.4685

    volume vapour phase

    volu

    me

    liqui

    d ph

    ase

    0 5 10 15

    pressure

    complex jcondensation (j < 0)evaporation (j > 0)maxwell states (j = 0)planar

    Christoph Zeiler Sharp Interface Approach for Liquid-Vapour Flow with Phase Transition 11/21

  • Exact Riemann SolverKinetic Relation based on the Generalized Gibbs-Thomson LawThere ex. kinetic functions fc (condensation), fe (evaporation) such that

    fc(τvap) = τliq∨ fe(τliq) = τvap

    }⇔

    qg̃(τ) + 0.5 j2 τ2

    y= −k j.

    k = 0 Reversible process fc(fe(τliq)) = τliq.0 ≤ k < k∗ Monotone functions τvap 7→ fc and τliq 7→ fe.

    k > k∗ Phase transition in metastable region.Loss of monotonicity → uniqueness?

    Monotone Kinetic Functions with Maximal Entropy DissipationDefine f mc (τvap) := τmwliq and f me (τliq) = τmwvap .Observation:_ The Liu entropy criterion applied on a modified pressure based on

    the Maxwell equal area rule leads to f mc , f me .

    Christoph Zeiler Sharp Interface Approach for Liquid-Vapour Flow with Phase Transition 12/21

  • Exact Riemann Solver

    Monotone Kinetic Functions with Maximal Entropy Dissipation

    6 8 10 12 14 16 18 20 220.4645

    0.465

    0.4655

    0.466

    0.4665

    0.467

    0.4675

    0.468

    0.4685

    volume vapour phase

    volu

    me

    liqui

    d ph

    ase

    complex jcondensation (j < 0)evaporation (j > 0)maxwell states (j = 0)

    0 5 10 15

    pressure

    volume

    Christoph Zeiler Sharp Interface Approach for Liquid-Vapour Flow with Phase Transition 13/21

  • Exact Riemann Solver

    Based on fc and fe we construct the full wave fan. Phase boundaries ofLax type are allowed but undercompresive waves are "preferred".

    Theorem [Z 2014]The Riemann problem for |κ| < C and the kinetic relation based on thegeneralized Gibbs-Thomson law with 0 ≤ k < k∗ or has a unique entropysolution. The solution consist of elementary waves and exactly one phaseboundary satisfying

    −σ(J%eK + (d − 1)γκ

    )+ J(%e + p) vK ≤ 0

    for e = ψ + 12 v2.

    For the construction, we follow [LeFloch 2002].

    Christoph Zeiler Sharp Interface Approach for Liquid-Vapour Flow with Phase Transition 14/21

  • Exact Riemann SolverExample

    Density of examples with varying surface tension:

    −0.2 0 0.2 0.4 0.6 0.8 1 1.20.12

    0.13

    0.14

    0.15−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5

    2.12

    2.14

    2.16

    2.18

    κ0

    Christoph Zeiler Sharp Interface Approach for Liquid-Vapour Flow with Phase Transition 15/21

  • Numerical Results

    Benchmark Problem for Surface Tension

    Cut cell method for radially symmetric solutionson Ω =

    {x ∈ Rd

    ∣∣ 0 < |x| = r < 1 } with phaseboundary Γ(t) =

    {x ∈ Rd

    ∣∣ |x| = rΓ(t) }. x1x2

    rΓ(t)

    _ Bulk system:(%% v

    )t

    +(

    % v% v2 + p(%)

    )r

    = 1−dr

    (% v% v2

    )for r ∈ (0, rΓ) ∪ (rΓ, 1),t > 0.

    _Simple interface tracking (rn+1Γ = rnΓ + ∆t σn)and curvature reconstruction (κn = 1/rnΓ ).

    d = 1: Fully conservative [Chalons, Wiebe]d > 1: Mass conservative (multidimensional sence) [Rohde, Z 2013]

    Christoph Zeiler Sharp Interface Approach for Liquid-Vapour Flow with Phase Transition 16/21

  • Numerical ResultsGlobal Energy (cf. [Gurtin 1985])

    E(%, v) =∫

    12% |v|

    2 + %ψ(%) dx + γ |Γ| ,

    Estat = min{

    E(%,0)∣∣ ∫

    Ω % dx = const.}

    Energy

    0 5 10 15−22.95

    −22.9

    −22.85

    −22.8

    −22.75

    −22.7

    −22.65

    Time

    KinRel k=0Mon.Max.Ent.LiuE

    statE

    stat planar

    (Initial conditions %L = %mwliq , %R = %mwvap, vR = 0.1, vL = −0.1, γ = 0.01, d = 2)

    Christoph Zeiler Sharp Interface Approach for Liquid-Vapour Flow with Phase Transition 17/21

  • Numerical Results

    Experimental order of convergence

    Cells Error Order100 1.7e-03200 1.1e-03 0.68500 5.7e-04 0.701000 3.4e-04 0.741500 2.5e-04 0.762000 2.0e-04 0.762500 1.7e-04 0.753000 1.5e-04 0.75

    Velocity (zoom)

    0 0.1 0.2 0.3 0.4 0.5 0.6

    0

    0.05

    0.1

    v

    h

    v

    (Initial conditions %l = 2.1368, %r = 0.0333, v = 0, k = 0.0001, reference solutionfrom exact Riemann solver, d = 1)

    Christoph Zeiler Sharp Interface Approach for Liquid-Vapour Flow with Phase Transition 18/21

  • Numerical ResultsApplication in 2d (with P. Engel)

    Pure Liu Riemannsolver,

    %(x, 0) ={0.319 : inside,1.806 : outside,

    v(x, 0) = 0,γ = 0.001.

    Christoph Zeiler Sharp Interface Approach for Liquid-Vapour Flow with Phase Transition 19/21

  • Summary_ Conservative front tracking scheme._ Exact Riemann solver

    _ based on the generalized Gibbs-Thomson law._ for arbitrary pressure laws

    (Peng Robinson, external library (FPROPS [IAPWS])).

    OutlookApproximative solver for the full Euler system.

    Christoph Zeiler Sharp Interface Approach for Liquid-Vapour Flow with Phase Transition 20/21

  • Literature[Jägle, Rohde, Z 2012] F. Jaegle, C. Rohde, and C. Zeiler.

    A multiscale method for compressible liquid-vapor flow with surface tension.ESAIM: Proc., 38:387–408, 2012.

    [Rohde, Z 2013] C. Rohde and C. Zeiler.A relaxation riemann solver for compressible two-phase flow with phase transitionand surface tension.accepted for publication in Applied Numerical Mathematics, 2013.

    [Wiebe 2014] M. Wiebe.A sharp-interface approach for phase transition problems.Master’s thesis, Universität Stuttgart, 2014.

    [Kabil, Rohde 2013] B. Kabil and C. Rohde.The influence of surface tension and configurational forces on the stability ofliquid-vapor interfaces.

    [Hantke et a. 2013] M. Hantke, W. Dreyer, and G. Warnecke.Exact solutions to the riemann problem for compressible isothermal euler equationsfor two-phase flows with and without phase transition.

    [LeFloch 2002] P.G. LeFloch.Hyperbolic systems of conservation laws.

    Christoph Zeiler Sharp Interface Approach for Liquid-Vapour Flow with Phase Transition 21/21