37
Semi conductor detectors Semi conductor detectors for soft gamma for soft gamma - - ray astrophysics ray astrophysics François Lebrun François Lebrun APC (UMR 7164), APC (UMR 7164), CEA CEA - - Saclay Saclay ISGRI PI ISGRI PI IWORID 2005 Grenoble

Semi conductor detectors for soft gamma-ray astrophysics · Semi conductor detectors for soft gamma-ray astrophysics ... pulsars X X X Supernovae XXX X XX SNRs XX XXX XX GRBs X X

  • Upload
    vothuan

  • View
    231

  • Download
    1

Embed Size (px)

Citation preview

Semi conductor detectors Semi conductor detectors for soft gammafor soft gamma--ray astrophysicsray astrophysics

François LebrunFrançois LebrunAPC (UMR 7164), APC (UMR 7164), CEACEA--SaclaySaclay

ISGRI PIISGRI PI IWORID 2005 Grenoble

HighHigh--energy astronomy energy astronomy specific telescopesspecific telescopes

XX--rays and gamma raysrays and gamma rays

radio, IR, visible, UVradio, IR, visible, UV

F. Lebrun IWORID 2005 Grenoble 2

Atmospheric absorption Atmospheric absorption space experimentsspace experimentsA

tmos

pher

icO

paci

ty

Wavelength

γ-rays

F. Lebrun IWORID 2005 Grenoble 3

internal background internal background minimization of the minimization of the detector and surrounding material massdetector and surrounding material mass

F. Lebrun IWORID 2005 Grenoble 4

The SIGMA gamma camera problem

• Anger camera: NaI + PMTs• Detector: NaI 1.2 cm thick• 1 GeV P+ energy loss: ~ 10 MeV saturation• Area: 3200 cm2 a proton every 300 µs

(eccentric orbit)• Recovery time > 300 µs• Performance degradation (imaging)

• Solutions:– several smaller cameras unacceptable dead zone

increase– Pixellated camera

F. Lebrun IWORID 2005 Grenoble 5

INTEGRAL: an ESA gamma-ray observatory

SPI – The gamma-ray Spectrometer of INTEGRAL. Excellent spectra, good images

IBIS – The gamma-ray Imager onboard the INTEGRAL satellite. Excellent Imaging, good spectra

ISGRI – the IBIS low energy camera (CdTe)

Operations funded till end 2008

Launch: October 2002

Perigee: 10,000 km, Apogee: 150,000 km

F. Lebrun IWORID 2005 Grenoble 6

16 CdTeplanar detectors

ASIC (LETI/DSM)

FEE Polycell

ISGRI

F. Lebrun IWORID 2005 Grenoble 7

Modular Detection Unit

From SIGMA to IBIS/ISGRI

SIGMA IBIS/ISGRI

Energy range (keV) 40 – 1300 15 - 1000

Angular resolution 18’ 12’

Spectral resolution ∆E/E (100 keV) 13% 8%

Field of view (FWHM) 9.4° x 9.7° 19° x 19°

Timing accuracy 4 s 64 µs

Broad-band sensitivity (100 keV)∆E=E, 3σ, 106s (cm-2 s-1 keV-1)

4 10-6 4 10-7

F. Lebrun IWORID 2005 Grenoble 8

Noisy pixels (CdTe detectors)

• Testing thousands of detectors hundreds of them sometime noisy

• A noisy pixel can trigger continuously blind camera !

• What can be done ?– Switch off the noisy pixel– Switch on again the off-pixel after a while– Raise its low threshold

• The Noisy Pixel Handling System (NPHS)implemented on board does all that

F. Lebrun IWORID 2005 Grenoble 9

ISGRI in flight behaviour: unexpected effects

• Many pixels automatically disabled– Likely origin: preamp overload multiple triggers

detected as noisy– Problem solved after tuning the Noisy Pixel Handling

system

• Events with zero rise-time (10%)– preamp saturation (E>5 MeV)– Capacitive coupling Trigger

of neighbouring detectors– Easy correction

F. Lebrun IWORID 2005 Grenoble 10

ISGRI in flight behaviour: detector stability

F. Lebrun IWORID 2005 Grenoble 11

ISGRI in flight behaviour: background

F. Lebrun IWORID 2005 Grenoble 12

ISGRI in flight behaviour: degradation

November 2003Solar flare

-0.7%

-2.6% / year

F. Lebrun IWORID 2005 Grenoble 13

The ISGRIThe ISGRI

340°

20°

40°

10°

20°

-10°

-20°

Milky WayMilky Way

F. Lebrun IWORID 2005 Grenoble 14

SPI: in-flight annealings

1778,96 keV line

2.88

2.98

3.08

3.18

3.28

3.38

3.48

3.58

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185

Revolution number

Resolution in keV

ANNEALING-1

ANNEALING-2

ANNEALING-3

90 K 85 K 85 K 85 K

36 H

36 H

126 H

F. Lebrun IWORID 2005 Grenoble 15

Soft gammaSoft gamma--ray astrophysicsray astrophysicsscientific needs for the futurescientific needs for the future

sensitivity imaging Energyrange

Energyresolution

Field of view

X

XXXXXXXXX

XXXX

XX

XX

Fasttiming

X-ray binaries X XX X X

XX

XX

AGNs XX Xpulsars X X XSupernovae XXX X XXSNRs XX XXX XXGRBs X X Xe+e- X XCR interactions XX XX XXISM radioactivity XX XX XX

F. Lebrun IWORID 2005 Grenoble 16

Compton TelescopesCompton Telescopes

F. Lebrun IWORID 2005 Grenoble 17

Compton telescopeCompton telescope

A basic Compton telescope features twoA basic Compton telescope features two

made of made of scatteringscattering material tomaterial to

layers of position sensitive detectorslayers of position sensitive detectorsθ

11

22

EE11

EE22

scatter the incident gamma rayscatter the incident gamma rayLayer 1:Layer 1:

absorb the scattered photonabsorb the scattered photonmade of made of absorbingabsorbing material tomaterial toLayer 2:Layer 2:

EE00 = E= E11 + E+ E22

cos cos θθ = 1 + m= 1 + meecc22(1/E(1/E00--1/E1/E22))

Both incoming photon energy Both incoming photon energy EE00 and the and the scatter angle scatter angle θθ can be derived from thecan be derived from theEnergy deposits Energy deposits EE11 and and EE22

In addition Compton telescopes allows for polarization studiesIn addition Compton telescopes allows for polarization studies

F. Lebrun IWORID 2005 Grenoble 18

Detectors for Compton telescopes• Scattering layer: low Z material (e.g. Si)

– Maximum scattering efficiency– Minimum absorbing efficiency– Minimum doppler broadening– Possibility to measure the electron recoil

• Absorbing layer: High Z material (e.g. CsI, CdTe, CdZnTe)

• For both layers, the best energy resolution is mandatory to achieve a good angular resolution (e.g. Ge)

• The sensitivity depends on the angular resolution

• In fine the energy resolution is the key parameter

F. Lebrun IWORID 2005 Grenoble 19

MEGA

• Records both Compton scattering and pair creation

• Electron recoil measurement

• Tracker (scattering layer): Si

• Calorimeter (absorbing layer): CsI

F. Lebrun IWORID 2005 Grenoble 20

The advanced Compton telescopeThe advanced Compton telescope

Si(Li) at -40°C or

Ge at -180°C

Wide field Compton instrument dedicated to nuclear astrophysicsWide field Compton instrument dedicated to nuclear astrophysics

Goal: sensitivity < 10Goal: sensitivity < 10--77 cmcm--22 ss--11

F. Lebrun IWORID 2005 Grenoble 21

Steps toward a Compton telescope for the NEXT mission

Angular resolution

Stacks of shottkyCdTe diodes

T. Tanaka et al. 2004, SPIE Glasgow

F. Lebrun IWORID 2005 Grenoble 22

Coded Mask TelescopesCoded Mask Telescopes

F. Lebrun IWORID 2005 Grenoble 23

SWIFTCatching GRBs

Telescope Coded apertureTelescope PSF 17’ FWHMPosition accuracy 1’ – 4’Detector 32k CZT pixelsEnergy resolution 7 keV FWHMTiming resolution 100 µsFOV 2 srEnergy range 15 – 150 keVSensitive area 5200 cm2

Max. trigger rate 195 000 s-1

BAT

XRT

Spacecraft

UVOT

BAT

UVOT

XRT

Barthelmy et al. 2005, AAS

F. Lebrun IWORID 2005 Grenoble 24

Study of GRB prompt emission with Study of GRB prompt emission with ECLAIRsECLAIRsSpace gammaSpace gamma--ray telescope ray telescope

coupled to ground based optical telescopescoupled to ground based optical telescopes

Wide field coded mask camera

• Energy range: 3.5 - 300 keV• Field of view: ~ 2 sr• 1024 cm2 shottky CdTe 4x4 mm• Advanced readout electronics

Cou

nts

100

200

300

0

Energy (keV)10 40 605020 30

3.5 keV

CNES microsatellite (2009)

F. Lebrun IWORID 2005 Grenoble 25

Ultra deep XUltra deep X--ray survey with EXISTray survey with EXIST

HET: 5.6 square meters of pixel CZT detectors (1.25 mm pitch)

F. Lebrun IWORID 2005 Grenoble 26

Detectors for coded-mask soft gamma-ray telescopes

• GRANAT/SIGMA: single large NaI disk + PMTs• INTEGRAL/ISGRI: planar CdTe• INTEGRAL/PICsIT: CsI+PIN-diodes• INTEGRAL/SPI: Cooled HPGe detectors• SWIFT/BAT: planar CZT• ECLAIRS: planar CZT• EXIST: pixel CZT

F. Lebrun IWORID 2005 Grenoble 27

GammaGamma--ray Lensesray Lenses

F. Lebrun IWORID 2005 Grenoble 28

Towards a gammaTowards a gamma--ray lensray lensA plane parallel crystal intercepting a beam of very A plane parallel crystal intercepting a beam of very short wavelength radiation λ act as a 3short wavelength radiation λ act as a 3--D D Diffraction array. When entering such a crystal Diffraction array. When entering such a crystal under an angle θ a beam of highunder an angle θ a beam of high--energy photons is energy photons is therefore diffracted under the same angle θ therefore diffracted under the same angle θ defined by the Bragg condition: defined by the Bragg condition: 2 2 d d sin(θ) = sin(θ) = nn λ

diffractedbeam

d

transmittedbeam

λ

A gammaA gamma--ray concentrator (gammaray concentrator (gamma--ray “lens”) could ray “lens”) could then be build in mounting hundreds of such crystals then be build in mounting hundreds of such crystals onto concentric ringsonto concentric rings

Detectors at the focus could be Detectors at the focus could be GeGe, CdTe or CZT, CdTe or CZT

Because of their long focal distance (Because of their long focal distance (> 10 m> 10 m) ) gammagamma--ray concentrators would require two ray concentrators would require two satellites in close formation as in the satellites in close formation as in the MAXMAX mission mission under investigation in France under investigation in France

F. Lebrun IWORID 2005 Grenoble 29

The ISGRIThe ISGRI

340°

20°

40°

10°

20°

-10°

-20°

Milky WayMilky Way

Confusion !

F. Lebrun IWORID 2005 Grenoble 30

Grazing Incidence Telescopes: Grazing Incidence Telescopes: extending the mirror domainextending the mirror domain

F. Lebrun IWORID 2005 Grenoble 31

The Galactic NucleusThe Galactic Nucleus

As seen with INTEGRAL in the As seen with INTEGRAL in the 2020--60 keV60 keV bandbandAs will be seen with SIMAs will be seen with SIMBOLBOL--XX in in 2020--60 keV60 keV bandband

G0.9+0.1

F. Lebrun IWORID 2005 Grenoble 32

IBISISGRI

XMMEPIC

SIMBOL-X (CNES-ASI 1-60 keV)

-1000 0 1000 2000 3000 4000 5000 6000 7000 80000

50

100

150

200

250

energy (eV)

coun

ts /

AD

C c

hane

l

T=22 oC

FWHM = 71.5 eV

ENC = 8.43 el r.m.s

FWHM =151.1 eV

DEPFET : 8x8 « macro pixel » 1mm² matrix

256 pixels CdTe

Schottkyarrays,

0.5 mm thick (ACRORAD)

Spectrum withIDeF-X V0

ASIC

F. Lebrun IWORID 2005 Grenoble 33

SIMBOLSIMBOL--X SensitivityX Sensitivity

XMM INTEGRALSIMBOL-X

Min

imum

det

ecta

ble

flux

(pho

tons

cm

-2s-1

keV

-1)

Energy (keV)

F. Lebrun IWORID 2005 Grenoble 34

HEFT (balloon) - NuSTAR (SMEX 6-80 keV)Detector: pixel CZTPixel size: 500mThickness: 2 mmUnit dimension: 1.3 x 1.3 cmUnits/focal plane: 4∆E/E = 1.4% (FWHM, 70 keV)Elect. noise (rms, leakage incl.) 40 e-

F. Lebrun IWORID 2005 Grenoble 35

Focusing telescope for the NEXT mission (1-80 keV)

Caltech – ISAScollaboration

Detector: pixel CdTePixel size: 500µmThickness: 0.5 mmUnit dimension: 2.4 x 1.3 cm

F. Lebrun IWORID 2005 Grenoble 36

Conclusions

• Planar Semiconductor detectors such as CdTe, CZT, Ge are currently observing the soft gamma-ray sky from space

• Thanks to their satisfactory in-orbit behaviour (stability, background, degradation) it is now established that they can be safely operated and that they can maintain their performance over long periods of time in space

• More and more projects plan to use semiconductor detectors

• Both focusing and Compton telescope will take advantage of pixel detectors (CdTe, CZT) with their– Fine imaging capability– Enhanced spectral performance

F. Lebrun IWORID 2005 Grenoble 37