60
MAE 4421 – Control of Aerospace & Mechanical Systems SECTION 8: FREQUENCYRESPONSE DESIGN

Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

  • Upload
    others

  • View
    13

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

MAE 4421 – Control of Aerospace & Mechanical Systems

SECTION 8: FREQUENCY‐RESPONSE DESIGN

Page 2: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

Introduction2

Page 3: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

3

Introduction

In a previous section of notes, we saw how we can use root‐locus techniques to design compensators

Two primary objectives of compensation Improve steady‐state error Proportional‐integral (PI) compensation Lag compensation

Improve dynamic response Proportional‐derivative (PD) compensation Lead compensation

In this section of notes, we’ll learn to design compensators using a system’s open‐loop frequency response We’ll focus on lag and lead compensation

Page 4: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

Improving Steady‐State Error4

Page 5: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

5

Improving Steady‐State Error

Consider the system above with a desired phase margin of 50°

According to the Bode plot: 130° at             

3.46 /

Gain is  12.1at 

Set  12.1 4for desired phase margin

Page 6: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

6

Improving Steady‐State Error

Can read the position constant directly from the Bode plot: 

Note that , as 

desired

Gain margin is 

Page 7: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

7

Improving Steady‐State Error

Steady‐state error to a constant reference is1

1 0.154 → 15.4%

Page 8: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

8

Improving Steady‐State Error

Let’s say we want to reduce steady‐state error to 

Required position constant

10.05 1 19

Increase gain by 4x Bode plot shows desired position constant

But, phase margin has been degraded significantly

Page 9: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

9

Improving Steady‐State Error

Step response shows that error goal has been met But, reduced phase margin results in significant overshoot and ringing 

Error improvement came at the cost of degraded phase margin

Would like to be able to improve steady‐state error without affecting phase margin Integral compensation Lag compensation

Page 10: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

Integral Compensation10

Page 11: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

11

PI Compensation

Proportional‐integral (PI) compensator:

1 1

Low‐frequency gain increase Infinite at DC System type increase

For  ≫ 1/ Gain unaffected Phase affected little PM unaffected

Susceptible to integrator overflow Lag compensation is often 

preferable 

Page 12: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

Lag Compensation12

Page 13: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

13

Lag Compensation

Lag compensator11 , 1

Objective: add a gain of  at low frequencies without affecting phase margin

Lower‐frequency pole:  1/ Higher‐frequency zero:  1/ Pole/zero spacing determined by  For  ≪ 1/

Gain: ~20 log Phase: ~0°

For  ≫ 1/ Gain: ~0 Phase: ~0°

Page 14: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

14

Lag Compensation vs. 

Gain increased at low frequency only Dependent on  DC gain: 20log

Phase lag added between compensator pole and zero 0° 90° Dependent on 

Lag pole/zero well below crossover frequency Phase margin unaffected

11

Page 15: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

15

Lag Compensator Design Procedure

Lag compensator adds gain at low frequencies without affecting phase margin

Basic design procedure: Adjust gain to achieve the desired phase margin Add compensation, increasing low‐frequency gain to achieve desired error performance

Same as adjusting gain to place poles at the desired damping on the root locus, then adding compensation Root locus is not changed Here, the frequency response near the crossover frequency is not changed 

Page 16: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

16

Lag Compensator Design Procedure

1. Adjust gain,  , of the uncompensated system to provide the desired phase margin plus 5°…10° (to account for small phase lag added by compensator)

2. Use the open‐loop Bode plot for the uncompensated system with the value of gain set in the previous step to determine the static error constant

3. Calculate  as the low‐frequency gain increase required to provide the desired error performance

4. Set the upper corner frequency (the zero) to be one decade below the crossover frequency: 1/ /10 Minimizes the added phase lag at the crossover frequency

5. Calculate the lag pole: 1/6. Simulate and iterate, if necessary

Page 17: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

17

Lag Example – Step 1

Design a lag compensator for the above system to satisfy the following requirements 2% for a step input % 12%

First, determine the required phase margin to satisfy the overshoot requirement

lnln

0.559

100 55.9° Add ~10° to account for compensator phase at 

65.9°

Page 18: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

18

Lag Example – Step 1

Plot the open‐loop Bode plot of the uncompensated system for  1

Locate frequency where phase is180° 114.1°

This is  , the desired crossover frequency

2.5 /

Gain at  is  8.4 → 0.38

Increase the gain by 1/ 8.4 → 2.63

Page 19: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

19

Lag Example – Step 2

Gain has now been set to yield the desired phase margin of 65.9°

Use the new open‐loop bode plot to determine the static error constant

Position constant of the uncompensated system given by the DC gain:

11.14 → 3.6

Page 20: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

20

Lag Example – Step 3

Calculate  to yield desired steady‐state error improvement Steady‐state error:

11 0.02

The required position constant:

11 49 → 50

Calculate  as the required position constant improvement

13.9 → 14

Page 21: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

21

Lag Example – Steps 4 & 5

Place the compensator zero one decade below the crossover frequency,  2.5 /

1/ 0.25 /4

The compensator pole:

1/ .

1/ 0.018 /

Lag compensator transfer function

11

144 156 1

Page 22: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

22

Lag Example – Step 6

Bode plot of compensated system shows:

Page 23: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

23

Lag Example – Step 6

Lag compensator adds gain at low frequencies only

Phase near the crossover frequency is nearly unchanged

Page 24: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

24

Lag Example – Step 6

Steady‐state error requirement has been satisfied

Overshoot spec has been met Though slow tail makes overshoot assessment unclear

Page 25: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

25

Lag Compensator – Summary

11

Higher‐frequency zero:   / Place one decade below crossover frequency, 

Lower‐frequency pole:   / sets pole/zero spacing

DC gain:  20 log

Compensator adds low‐frequency gain Static error constant improvement Phase margin unchanged

Page 26: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

Improving Dynamic Response26

Page 27: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

27

Improving Dynamic Response

We’ve already seen two types of compensators to improve dynamic response Proportional derivative (PD) compensation  Lead compensation

Unlike with the lag compensator we just looked at, here, the objective is to alter the open‐loop phase

We’ll look briefly at PD compensation, but will focus on lead compensation

Page 28: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

Derivative Compensation28

Page 29: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

29

PD Compensation

Proportional‐Derivative (PD) compensator:1

Phase added near (and above) the crossover frequency Increased phase margin Stabilizing effect

Gain continues to rise at high frequencies Sensor noise is amplified Lead compensation is usually preferable 

Page 30: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

Lead Compensation30

Page 31: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

31

Lead Compensation

With lead compensation, we have three design parameters: Crossover frequency,  Determines closed‐loop bandwidth,  ; risetime,  ; peak time, 

; and settling time, 

Phase margin, PM Determines damping,  , and overshoot

Low‐frequency gain Determines steady‐state error performance

We’ll look at the design of lead compensators for two common scenarios, either Designing for steady‐state error and phase margin, or Designing for bandwidth and phase margin

Page 32: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

32

Lead Compensation

Lead compensator11 , 1

Objectives: add phase lead near the crossover frequency and/or alter the crossover frequency

Lower‐frequency zero:  1/ Higher‐frequency pole:  1/ Zero/pole spacing determined by  For  ≪ 1/

Gain: ~0 Phase: ~0°

For  ≫ 1/ Gain: ~20 log 1/ Phase: ~0°

Page 33: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

33

Lead Compensation vs. 

11 , 1

determines: Zero/pole spacing

Maximum compensator phase lead, 

High‐frequency compensator gain

Page 34: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

34

Lead Compensation –

, zero/pole spacing, determines maximum phase lead

sin11

Can use a desired  to determine 

1 sin1 sin

occurs at 1

1

Page 35: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

35

Lead Compensation – Design Procedure

1. Determine loop gain,  , to satisfy either steady‐state error requirements or bandwidth requirements:a) Set  to provide the required static error constant, orb) Set  to place the crossover frequency an octave below the desired 

closed‐loop bandwidth

2. Evaluate the phase margin of the uncompensated system, using the value of  just determined

3. If necessary, determine the required PM from  or overshoot specifications. Evaluate the PM of the uncompensated system and determine the required phase lead at the crossover frequency to achieve this PM. Add ~10° additional phase – this is 

4. Calculate  from 5. Set  . Calculate  from  and 

6. Simulate and iterate, if necessary

Page 36: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

36

Double‐Lead Compensation

A lead compensator can add, at most,  of phase lead

If more phase is required, use a double‐lead compensator

11

For phase lead over  ,  / must be very large, so typically use double‐lead compensation

Page 37: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

37

Lead Compensation – Example 1

Consider the following system

Design a compensator to satisfy the following for a ramp input

Here, we’ll design a lead compensator to simultaneously adjust low‐frequency gain and phase margin

Page 38: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

38

Lead Example 1 – Steps 1 & 2

The velocity constant for the uncompensated system islim→

lim→ 1

Steady‐state error is1

0.1

10 Adding a bit of margin

12 Bode plot shows the resulting 

phase margin is  16.4°

Page 39: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

39

Lead Example 1 – Step 3

Approximate required phase margin for  Design for 13%

First calculate the required damping ratioln

ln0.545

Approximate corresponding PM, and add  correction factor

100 10° 64.5°

Calculate the required phase lead

Page 40: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

40

Lead Example 1 – Steps 4 & 5

Calculate  from 1 sin1 sin 0.147

Set  , as determined from Bode plot, and calculate 

3.4 /1 1

3.4 0.1690.7687

The resulting lead compensator transfer function is

11 12

0.7687 10.1130 1

Page 41: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

41

Lead Example 1 – Step 6

120.7687 10.1130 1

The lead compensator Bode plot

Page 42: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

42

Lead Example 1 – Step 6

Lead‐compensated system: 48.5° 7.2 /

High‐frequency compensator gain increased the crossover frequency Phase was added at the 

previous crossover frequency PM is below target

Move lead zero/pole to higher frequencies Reduce the crossover 

frequency increase Improve phase margin

Page 43: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

43

Lead Example 1 – Step 6

As predicted by the insufficient phase margin, overshoot exceeds the target % 20.9% 15%

Redesign compensator for higher  Improve phase margin Reduce overshoot

Page 44: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

44

Lead Example 1 – Step 6

The steady‐state error requirement has been satisfied

Will not change with compensator redesign Low‐frequency gain will not be changed

Page 45: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

45

Lead Example 1 – Step 6

Iteration yields acceptable value for  5.5rad/sec Maintain same zero/pole spacing,  , and, therefore, same 

Recalculate zero/pole time constants:1 1

5.5 0.1470.4742

0.147 ⋅ 0.4742 0.0697

The updated lead compensator transfer function:

120.4742 10.0697 1

Page 46: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

46

Lead Example 1 – Step 6

Crossover frequency has been reduced 5.58 /

Phase margin is close to the target 58.2°

Dip in phase is apparent, because  is now placed at point of lower open‐loop phase

Page 47: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

47

Lead Example 1 – Step 6

Overshoot requirement now satisfied

% 14.7% 15%

Low‐frequency gain has not been changed, so error requirement is still satisfied

Design is complete

Page 48: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

48

Lead Compensation – Example 2

Again, consider the same system

Design a compensator to satisfy the following ( )

Now, we’ll design a lead compensator to simultaneously adjust closed‐loop bandwidth and phase margin

Page 49: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

49

Lead Example 2 – Step 1

The required damping ratio for 10% overshoot is

0.5912

Given the required damping ratio, calculate the required closed‐loop bandwidth to yield the desired settling time

. 1 2 4 4 2

7.52 /

We’ll initially set the gain,  , to place the crossover frequency,  , one octave below the desired closed‐loop bandwidth

/2 3.8 /

Page 50: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

50

Lead Example 2 – Step 1

Plot the Bode plot for  Determine the loop gain at the desired crossover frequency 

23.3

Adjust  so that the loop gain at the desired crossover frequency is 

123.3 14.7

Page 51: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

51

Lead Example 2 – Steps 2 & 3

Phase margin for the uncompensated system:

14.9°

Required phase margin to satisfy overshoot requirement:

100 59.1°

Add 10° to account for crossover frequency increase

69.1°

Required phase lead from the compensator

54.2°

Generate a Bode plot using the gain value just determined

Page 52: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

52

Lead Example 2 – Steps 4 & 5

Calculate zero/pole spacing,  , from required phase lead, 1 sin1 sin 0.1040

Calculate zero and pole time constants

0.8228

0.0855 The resulting lead compensator transfer 

function:11

14.70.8228 10.0855 1

Page 53: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

53

Lead Example 2 – Step 6

Bode plot of the compensated system

Substantially below target

Crossover frequency is well above the desired value /

Iteration will likely be required

Page 54: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

54

Lead Example 2 – Step 6

Overshoot exceeds the specified limit % 19.1° 10%

Settling time is faster than required 0.98 1.2

Iteration is required Start by reducing the target 

Page 55: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

55

Lead Example 2 – Step 6

Must redesign the compensator to meet specifications Must increase PM to reduce overshoot Can afford to reduce crossover,  , to improve PM

Try various combinations of the following Reduce crossover frequency,  Increase compensator zero/pole frequencies,  Increase added phase lead,  , by reducing 

Iteration shows acceptable results for: 2.4 / 3.4 / 52°

Page 56: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

56

Lead Example 2 – Step 6

Redesigned lead compensator:

6.270.8542 10.1013 1

Phase margin:62°

Crossover frequency:4.84 /

Page 57: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

57

Lead Example 2 – Step 6

Dynamic response requirements are now satisfied

Overshoot:% 8%

Settling time:1.09

Page 58: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

58

Lead Compensation – Example 2

Lead compensator adds gain at higher frequencies Increased crossover frequency

Faster response time

Phase added near the crossover frequency Improved phase margin

Reduced overshoot

Page 59: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

59

Lead Compensation – Example 2

Step response improvements: Faster settling time Faster risetime Significantly less overshoot and ringing

Page 60: Section 8 Frequency Response Designweb.engr.oregonstate.edu/~webbky/MAE4421_files... · Plot the open‐loop Bode plot of the uncompensated system for -L1 Locate frequency where phase

K. Webb MAE 4421

60

Lead‐Lag Compensation

If performance specifications require adjustment of: Bandwidth Phase margin Steady‐state error

Lead‐lag compensation may be used11

11

Many possible design procedures – one possibility:1. Design lag compensation to satisfy steady‐state error and 

phase margin2. Add lead compensation to increase bandwidth, while 

maintaining phase margin