24
Search for the electron’s EDM E.A. Hinds PCPV, Mahabaleshwar, 22 February 2013 Centre for Cold Matter Imperial College London Is the electron round?

Search for the electron’s EDM E.A. Hinds PCPV, Mahabaleshwar, 22 February 2013 Centre for Cold Matter Imperial College London Is the electron round?

Embed Size (px)

Citation preview

Search for the electron’s EDM

E.A. Hinds

PCPV, Mahabaleshwar, 22 February 2013

Centre for Cold MatterImperial College London

Is the electron round?

+ +

++

polarisable vacuum with increasinglyrich structure at shorter distances:

(anti)leptons, (anti)quarks, Higgs (standard model)beyond that: supersymmetric particles ………?

How a point electron gets structure

-

point electron

electronspin

+-edm

Electric dipole moment (EDM)

T +-

If the electron has an EDM,nature has chosen one of these,

breaking T symmetry . . . CP

Left -Right

otherSUSY

Multi Higgs

MSSM 10-24

10-22

10-26

10-28

10-30

10-32

10-34

10-36

eEDM (e.cm)

Standard Model 4

The interestingregion of sensitivity

Theoretical estimates of eEDM

Insufficient CPto make universe

of matter

e e

gselectron

electron

de

Suppose de = 5 x 10-28 e.cm(the region we explore)

In a field of 10kV/cm de E _ 1 nHz ~

This is very small

E

= 1 x 10-19 e.a0

When does mB.B equal this ?

B _ 1 fG~

The magnetic moment problem

5

A clever solution

E

electric field

de

amplification

atom or molecule containing electron

(Sandars)

For more details, see E. A. H. Physica Scripta T70, 34 (1997)

Interaction energy

-de E•

F PPolarization factor

Structure-dependent

relativistic factor Z3

6

Our experiment uses a polar molecule – YbF

EDM interaction energy is a million times larger (mHz)

needs “only” nG stray B field control

0

5

10

15

20

0 10 20 30

Applied field E (kV/cm)

Eff

ecti

ve f

ield

E

(G

V/c

m)

Amplification in YbF

15 GV/cm

7

Pulsed YbF beam

Pumplaser

Probelaser

PMT

3K beamrf pulse

HV+

HV-

How it is donerf pulse

B

Measuring the edm

Applied magnetic field

Det

ecto

r co

un

t ra

te

B

-EE

Interferometer phase f = 2(mB + dehE)t/h-

de

-B

9

Modulate everything

• Generalisation of phase-sensitive

detection

• Measure all 512 correlations.

• E·B correlation gives EDM signal

±E±B

±B

±rf2f±rf1f

±rf2a±rf1a

±laser f±rf

spin interferometer signal

9 switches:

512 possible correlations

10

** Don’t look at the mean edm **

• We don’t know what result to expect.

• Still, to avoid inadvertent bias we hide the mean edm.

• An offset is added that only the computer knows.

• More important than you might think.– e.g. Jeng, Am. J. Phys. 74 (7), 2006. 11

2011 Data:6194 measurements (~6 min each) at 10 kV/cm.

bootstrap methoddeterminesprobability distribution

12-5 50

Gaussiandistribution

Distribution ofedm/edm

2

1

0

-1

-2

EDM (10-25 e.cm)

25 million beam shots

Measuring the other 511 correlations

correlation mean s mean/sfringe slope calibrationbeam intensityf-switch changes rf amplitudeE drift

E asymmetry E asymmetryinexact π pulse

• The rest are zero (as they should be) !

13

• Only now remove blind from EDM

Current status

de = (-2.4 5.7 1.5) ×10-28 e.cm

68% statisticalsystematic - limited by statistical noise

de < 1 × 10-27 e.cm with 90% confidence

• Previous result - Tl atoms

de < 1.6 × 10-27 e.cm with 90% confidence

• 2011 result – YbF Hudson et al. (Nature 2011)

Regan et al. (PRL 2002)Dzuba/Flambaum (PRL 2009)Nataraj et al. (PRL 2011)

14

Kara et al. NJP 14, 103051 (2012)

Left -Right other

SUSY

Multi Higgs

MSSM 10-24

10-22

10-26

10-28

10-30

10-32

10-34

10-36

eEDM (e.cm)

We are starting toexplore this region

Standard Model

de < 1 x 10-27 e.cm

New excluded region

15

How we will improvePhase 1 Small upgrades: 3 x improvement

– in progress

Phase 2 Cryogenic source of YbF – almost ready

Phase 3 Laser-cooled molecular fountain – being developed

16

Phase 1:

Now making a210-28 e.cm

EDM measurement

• Longer interferometer• Lower background

2.5sensitivity

6543210

Stray Bx

E direction

E magnitude

Stray By

Pump pol.

Probe pol.

Pump freq

Probe freq

F=1 detect

Max uncertainty (10-29 e.cm)

Systematics emphasised total < 10-28 e.cm

Defects emphasised

Phase 2 - cryogenic buffer gas source of YbF

YbF beam

YAGablationlaser

3K He gas cell

Yb+AlF3

target

18

Cryogenic beam spectrum

Rotational temperature: 4 ± 1 K Translational temperature: 5 ± 1 K

19

10 more molecules/pulse

=> 10 better EDM signal:noise ratio4 longer interaction time (slower beam)

=> access to mid 10-29 e.cm range

3K beamsource

laser cooling

1/2 sec flight time (instead of 1/2 ms)

Phase 3 – a molecular fountain

Laser cooling

=> 610-31 e.cm statistical (in 8 hrs)

detectionguide

HV+ HV-

He

rf pulse

20Tarbutt et al. arXiv:1302.2870

Other eEDM experiments in preparation

WC : 3Δ1 ground stateLeanhardt group, Michigan

Acme collaboration, Harvard/Yale

ThO : 3Δ1 metastable

HfF+ : 3Δ1 ground stateCornel Group JILA

Atom experiments in preparationCs in optical lattice: Weiss group, Penn State (next year?)

Heinzen group, Texas (2 years?)

Fr in a MOT: Tohoku/Osaka (starting 2014)

d(muon) < 1.9×10-19

10-20

10-22

10-24

d e.cm

1960 1970 1980 1990 2000 2010 2020 2030

Current status of EDMs

d(proton) < 5×10-24

d(electron) < 1×10-27

neutron:

Left-Right

MSSM

Multi

Higgs

electron:

10-28

10-29

d(neutron) < 3×10-2610-26

YbF

22

Summary

Atto-eV molecular spectroscopytells us about TeV particle physics:

specifically probes CP violation

(how come we’re here?)

23the electron is too round for MSSM!

e- EDM is a direct probe of physics beyond SM

Left -Right other

SUSY

Multi Higgs

MSSM 10-24

10-22

10-26

10-28

10-30

we see a way to reach <10-30

Thanks to my colleagues...

EDM measurement:Joe Smallman

Jack Devlin

Dhiren Kara

Buffer gas cooling:Sarah Skoff

Nick Bulleid

Rich Hendricks

Laser cooling:Thom Wall

Aki Matsushima

Valentina Zhelyazkova

Anne Cournol

Jony Hudson Ben SauerMike Tarbutt