sdomain

Embed Size (px)

Citation preview

  • 8/3/2019 sdomain

    1/25

    MAE140 Linear Circuits165

    s-Domain Circuit Analysis

    Operate directly in the s-domain with capacitors,inductors and resistors

    Key feature linearity is preserved

    Ccts described by ODEs and their ICs

    Order equals number of C plus number of L

    Element-by-element and source transformationNodal or mesh analysis for s-domain cct variables

    Solution via Inverse Laplace Transform

    Why?

    Easier than ODEsEasier to perform engineering design

    Frequency response ideas - filtering

  • 8/3/2019 sdomain

    2/25

    MAE140 Linear Circuits166

    Element Transformations

    Voltage sourceTime domain

    v(t) =vS(t)

    i(t) = depends on cct

    Transform domain

    V(s) =VS(s)=L(vS(t))

    I(s) = L(i(t)) depends on cct

    Current source

    I(s) =L(iS(t))

    V(s) = L(v(t)) depends on cct

    +_

    i(t)

    vS

    iS

    v(t)

  • 8/3/2019 sdomain

    3/25

    MAE140 Linear Circuits167

    Element Transformations contd

    Controlled sources

    Short cct, open cct, OpAmp relations

    Sources and active devices behave identically

    Constraints expressed between transformed variables

    This all hinges on uniqueness of Laplace Transforms andlinearity

    )()()()(

    )()()()(

    )()()()(

    )()()()(

    2121

    2121

    2121

    2121

    sgVsItgvti

    srIsVtritv

    sIsItiti

    sVsVtvtv

    =!=

    =!=

    =!=

    =!=

    ""

    )()()()(

    0)(0)(

    0)(0)(

    sVsVtvtv

    sIti

    sVtv

    PNPN

    OCOC

    SCSC

    =!=

    =!=

    =!=

  • 8/3/2019 sdomain

    4/25

    MAE140 Linear Circuits168

    Element Transformations contd

    Resistors

    Capacitors

    Inductors

    )()()()(

    )()()()(

    sGVsIsRIsV

    tGvtitRitv

    RRRR

    RRRR

    ==

    ==

    iR

    vR

    s

    isV

    sLsILissLIsV

    idvL

    tidt

    tdiLtv

    LLLLLL

    t

    LLL

    L

    L

    )0()(

    1)()0()()(

    )0()(

    1

    )(

    )(

    )(0

    +=!=

    +==

    "##

    RsYRsZ RR

    1)()( ==

    sCsYsC

    sZ CC== )(

    1)(

    sLsYsLsZ LL

    1)()( ==

    vC

    iC

    vL

    iL+ + +

    s

    vsI

    sCsVCvssCVsI

    vdiC

    tvdt

    tdvCti

    CCCCCC

    C

    t

    CC

    C

    C

    )0()(

    1)()0()()(

    )0()(

    1

    )(

    )(

    )(0

    +=!!=

    +==

    "##

  • 8/3/2019 sdomain

    5/25

    MAE140 Linear Circuits169

    Element Transformations contd

    Resistor

    Capacitor

    Note the source transformation rules apply!

    IR(s)

    VR(s)

    +

    -

    vR(t)

    +

    -

    vC(t)

    +

    -

    iR(t)

    iC(t)

    R R

    CsC

    1

    )0(CCvVC(s)

    +

    -

    IC(s)

    VC(s)

    +

    -

    IC(s)

    +_s

    vC )0(

    sC

    1

    )()( sRIsVRR

    =

    s

    v

    sIsCsVCvssCVsIC

    CCCCC

    )0(

    )(

    1

    )()0()()( +=

    =

  • 8/3/2019 sdomain

    6/25

    MAE140 Linear Circuits170

    Element Transformations contd

    Inductors sisVsLsILissLIsV LLLLLL )0()(1)()0()()(+==

    iL(t)

    +_

    vL(t)

    -

    +

    sL

    LiL(0)

    IL(s)

    +

    VL(s)

    -

    IL(s)

    VL(s)

    +

    -

    sL s

    iL )0(

  • 8/3/2019 sdomain

    7/25

    MAE140 Linear Circuits171

    Example 10-1, T&R, 5th ed, p 456

    RC cct behaviorSwitch in place since t=-, closed at t=0. Solve for vC(t).

    R

    VA

    t=0

    C

    R

    sC

    1)0(CCv

    I2(s)

    I1(s)

    vC+

    -

  • 8/3/2019 sdomain

    8/25

    MAE140 Linear Circuits172

    Example 10-1 T&R, 5th ed, p 456

    RC cct behaviorSwitch in place since t=-, closed at t=0. Solve for vC(t).

    Initial conditions

    s-domain solution using nodal analysis

    t-domain solution via inverse Laplace transform

    R

    VA

    t=0

    C

    R

    sC

    1)0(CCv

    I2(s)

    I1(s)

    vC+

    -

    )(1

    )()(

    )()( 21 ssCV

    sC

    sVsI

    R

    sVsI C

    CC===

    AC Vv =)0(

    )()(1

    )( tueVtv

    RCs

    VsV RC

    t

    AcA

    C

    !

    =

    +

    =

  • 8/3/2019 sdomain

    9/25

    MAE140 Linear Circuits173

    Example 10-2 T&R, 5th ed, p 457

    Solve for i(t)

    +_

    R

    VAu(t) Li(t) +_

    +_

    R

    sLI(s)s

    VA

    LiL(0)

    )(sVL

    +

    -

  • 8/3/2019 sdomain

    10/25

    MAE140 Linear Circuits174

    Example 10-2 T&R, 5th ed, p 457

    Solve for i(t)

    KVL around loop

    Solve

    Invert

    +_

    R

    VAu(t) Li(t) +_

    +_

    R

    sLI(s)s

    VA

    LiL(0)

    )(sVL

    +

    -

    0)0()()( =++! LA

    LisIsLRs

    V

    i(t) =VA

    R"VA

    Re"Rt

    L+ iL (0)e

    "RtL

    #

    $%

    &

    '(u(t) Amps

    I(s) =

    VAL

    s s+ R

    L( )

    +

    iL (0)

    s+ RL

    =

    VAR

    s+

    iL(0)"VA

    R

    #$%

    &'(

    s+ RL

  • 8/3/2019 sdomain

    11/25

    MAE140 Linear Circuits175

    Impedance and Admittance

    Impedance (Z) is thes

    -domain proportionalityfactor relating the transform of the voltage acrossa two-terminal element to the transform of thecurrent through the element with all initialconditions zero

    Admittance (Y) is the s-domain proportionalityfactor relating the transform of the current througha two-terminal element to the transform of thevoltage across the element with initial conditionszero

    Impedance is like resistance

    Admittance is like conductance

    V(s)= Z(s)I(s)

    I(s)=Y(s)V(s)

  • 8/3/2019 sdomain

    12/25

    MAE140 Linear Circuits176

    Circuit Analysis in s-Domain

    Basic rulesThe equivalent impedance Zeq(s) of two impedances Z1(s)

    and Z2(s) in series is

    Same current flows

    The equivalent admittance Yeq(s) of two admittances Y1(s)and Y2(s) in parallel is

    Same voltage

    )()()( 21 sZsZsZeq +=

    I(s)

    V(s) Z2

    Z1+

    -( ) ( )sIsZsIsZsIsZsV eq )()()()()( 21 =+=

    )()()( 21 sYsYsYeq +=

    I(s)

    V(s) Y1

    +

    -

    Y2)()()()()()()( 21 sVsYsVsYsVsYsI eq=+=

  • 8/3/2019 sdomain

    13/25

    MAE140 Linear Circuits177

    Example 10-3 T&R, 5th ed, p 461

    Find ZAB(s) and then find V2(s) by voltage division

    +_

    L

    v1(t) RC

    A

    B

    v2(t)

    +

    -

    +_

    sL

    V1(s) R

    A

    B

    V2(s)

    +

    -

    sC

    1

    +

    ++=

    +

    +=+=

    11

    11)(

    2

    RCs

    RLsRLCs

    sCR

    sLsC

    RsLsZeq

    )()()(

    )()( 1211

    2 sVRsLRLCs

    RsV

    sZ

    sZsV

    eq!"

    #$%

    &

    ++

    =

    !!"

    #

    $$%

    &=

  • 8/3/2019 sdomain

    14/25

    MAE140 Linear Circuits178

    Superposition in s-domain ccts

    The s-domain response of a cct can be found as thesum of two responses

    1. The zero-input response caused by initial conditionsources, with all external inputs turned off

    2. The zero-state response caused by the external sources,

    with initial condition sources set to zeroLinearity and superposition

    Another subdivision of responses

    1. Natural response the general solution

    Response representing the natural modes (poles) of cct2. Forced response the particular solution

    Response containing modes due to the input

  • 8/3/2019 sdomain

    15/25

    MAE140 Linear Circuits179

    Example 10-6, T&R, 5th ed, p 466

    The switch has been open for a long time and is closedat t=0.

    Find the zero-state and zero-input components of V(s)

    Find v(t) for IA=1mA, L=2H, R=1.5K, C=1/6 F

    IA

    v(t)

    t=0

    R CL

    +

    -

    V(s)

    RsL

    +

    -s

    IA

    sC

    1

    RCIA

  • 8/3/2019 sdomain

    16/25

    MAE140 Linear Circuits180

    Example 10-6, T&R, 5th ed, p 466

    The switch has been open for a long time and is closedat t=0.

    Find the zero-state and zero-input components of V2(s)

    Find v(t) for IA=1mA, L=2H, R=1.5K, C=1/6 F

    IA

    v(t)

    t=0

    R CL

    +

    -

    V(s)

    RsL

    +

    -s

    IA

    sC

    1

    RCIA

    RLsRLCs

    RLs

    sCRsL

    sZeq++

    =

    ++

    =211

    1)(

    LCs

    RCs

    sRIRCIsZsV

    LCs

    RCs

    C

    I

    sIsZsV

    AAeqzi

    A

    Aeqzs

    11)()(

    11)()(

    2

    2

    ++

    ==

    ++

    ==

  • 8/3/2019 sdomain

    17/25

    MAE140 Linear Circuits181

    Example 10-6 contd

    Substitute values

    LCs

    RCs

    sRIRCIsZsV

    LCs

    RCs

    C

    I

    s

    IsZsV

    AAeqzi

    A

    Aeqzs

    11)()(

    11)()(

    2

    2

    ++

    ==

    ++

    ==

    Vzs(s) =6000

    (s+1000)(s+ 3000)=

    3

    s+1000+

    "3

    s+ 3000

    vzs(t) = 3e"1000t

    " 3e"3000t[ ]u(t)

    Vzi (s) =1.5s

    (s+1000)(s+ 3000)=

    "0.75s+1000

    +2.25

    s+ 3000

    vzi (t) = "0.75e"1000t

    + 2.25e"3000t[ ]u(t)

    V(s)

    RsL

    +

    -s

    IA

    sC

    1

    RCIA

    What are the natural and forced responses?

  • 8/3/2019 sdomain

    18/25

    MAE140 Linear Circuits182

    Example

    Formulate node voltage equations in the s-domain

    +_

    R1

    v1(t)+-

    R2C2

    C1 R3 vx(t)

    +

    -

    vx(t) v2(t)

    +

    -

  • 8/3/2019 sdomain

    19/25

    MAE140 Linear Circuits183

    Example

    Formulate node voltage equations ins

    -domain

    +_

    R1

    v1(t)+-

    R2C2

    C1 R3 vx(t)

    +

    -

    vx(t) v2(t)

    +

    -

    +_

    R1

    V1(s)+-

    R2

    C2vC2(0)

    R3 Vx(s)

    +

    -

    Vx(s) V2(s)

    +

    -1

    1

    sC

    C1vC1(0)

    2

    1

    sC

    A B C D

  • 8/3/2019 sdomain

    20/25

    MAE140 Linear Circuits184

    Example contd

    Node A: Node D:

    Node B:

    Node C:

    +_

    R1

    V1(s) +-

    R2

    C2vC2(0)

    R3 Vx(s)

    +

    -

    Vx(s) V2(s)

    +

    -1

    1

    sC

    C1vC1(0)

    2

    1

    sC

    A B C D

    VB (s) "VA (s)

    R1

    +

    VB (s) "VD(s)

    R2

    +

    VB(s)

    1sC1

    +

    VB(s) "VC(s)

    1sC2

    "C1vC1(0)"C2vC2(0) = 0

    )()( 1 sVsVA = )()()( sVsVsV CxD ==

    "sC2VB (s) + sC2 +G3[ ]VC(s) = "C2vC2(0)

  • 8/3/2019 sdomain

    21/25

    MAE140 Linear Circuits185

    Example

    Find vO(t) when vS(t) is a unit step u(t) and vC(0)=0

    Convert to s-domain

    +_

    R1vS(t) +

    -C

    R2 vO(t)+

    A B C D

  • 8/3/2019 sdomain

    22/25

    MAE140 Linear Circuits186

    Example

    Find vO(t) when vS(t) is a unit step u(t) and vC(0)=0

    Convert to s-domain

    +_

    R1vS(t) +

    -C

    R2 vO(t)+

    A B C D

    +_

    R1

    VS(s) +-

    R2

    VO(s)

    +

    sC

    1

    CvC(0)

    VA(s)VB(s) VC(s) VD(s)

  • 8/3/2019 sdomain

    23/25

    MAE140 Linear Circuits187

    Example

    Nodal AnalysisNode A:

    Node D:

    Node C:

    Node B:

    Node C KCL:Solve for VO(s)

    Invert LT

    +_

    R1

    VS(s) +-

    R2

    VO(s)+

    sC

    1

    CvC(0)

    VA(s)VB(s) VC(s) VD(s)

    )()( sVsV SA =

    )()( sVsV OD =

    )0()()()( 11 CSB CvsVGsVsCG =!+

    0)( =sVC

    )0()()( 2 COB CvsVGssCV!

    =

    !!

    VO(s) = "

    sG1C

    G2

    G1 +

    sC

    #

    $

    %%%

    &

    '

    (((

    VS(s) = "

    R2

    R1

    )s

    s+ 1R

    1C

    #

    $

    %%

    &

    '

    ((VS(s)

    = "R

    2

    R1

    )s

    s+ 1R

    1C

    #

    $

    %%

    &

    '

    ((1

    s=

    "R2

    R1

    )1

    s+ 1R

    1C

    )()( 1

    1

    2 tueR

    Rtv

    CR

    t

    O

    =

  • 8/3/2019 sdomain

    24/25

    MAE140 Linear Circuits188

    Features of s-domain cct analysis

    The response transform of a finite-dimensional,lumped-parameter linear cct with input being asum of exponentials is a rational function and itsinverse Laplace Transform is a sum of exponentials

    The exponential modes are given by the poles of the

    response transformBecause the response is real, the poles are either

    real or occur in complex conjugate pairs

    The natural modes are the zeros of the cct

    determinant and lead to the natural responseThe forced poles are the poles of the input transform

    and lead to the forced response

  • 8/3/2019 sdomain

    25/25

    MAE140 Linear Circuits189

    Features of s-domain cct analysis

    A cct is stable if all of its poles are located in theopen left half of the complex s-plane

    A key property of a system

    Stability: the natural response dies away as t

    Bounded inputs yield bounded outputs

    A cct composed of Rs, Cs and Ls will be at worstmarginally stable

    With Rs in the right place it will be stable

    Z(s) and Y(s) both have no poles in Re(s)>0

    Impedances/admittances of RLC ccts are PositiveReal or energy dissipating