16
VISHVESHWARAIAH TECHNOLOGICAL UNIVERSITY S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY A seminar report on Submitted by Sanket.B.Radder 2SD06CS087 8th semester DEPARTMENT OF COMPUTER SCIENCE ENGINEERING 2009-10

S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY

VISHVESHWARAIAH TECHNOLOGICAL UNIVERSITY

S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY

A seminar report on

Submitted by

Sanket.B.Radder2SD06CS0878th semester

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING 2009-10

Page 2: S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY

VISHVESHWARAIAH TECHNOLOGICAL UNIVERSITY

S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

CERTIFICATE

Certified that the seminar work entitled “CHALLENGES IN MOBILE AD-HOC NETWORKS” is a bonafide work presented by Sanket.B.Radder bearing USN NO: 2SD06CS087 in a partial fulfillment for the award of degree of Bachelor of Engineering in Computer Science and Engineering of the Vishveshwaraiah Technological University, Belgaum during the year 2009-10. The seminar report has been approved as it satisfies the academic requirements with respect to seminar work presented for the Bachelor of Engineering Degree.

Staff in charge H.O.D CSE

Name: Sanket.B.RadderUSN: 2SD06CS087

Page | 2

Page 3: S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY

CONTENTS

1. Abstract

2. Introduction

3. Related Background

3.1 MANET Concept

3.2 MANET Features

3.3 MANET Status

4. MANET Applications

5. Challenges In MANETs

5.1 Routing in MANETS

5.2 Intrusion Detection

5.3 Quality of Service (QoS)

5.4 Internetworking

5.5 Power Consumption

6. KEY RESEARCH ISSUES

7. Conclusion

8. References

Page | 3

Page 4: S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY

1. Abstract

In the near future, a pervasive computing environment can be expected based on the recent progresses and advances in computing and communication technologies. Next generation of mobile communication will include both popular infrastructured wireless networks and novel infrastructure less mobile ad-hoc networks (MANETs). A MANET is a collection of wireless nodes that can dynamically form a network to exchange information without using any pre-existing fixed network infrastructure. Wireless ad-hoc networks are increasingly being used in the battlefield, emergency search, and rescue missions. The special features of MANET bring great opportunities together with severe challenges.

This report describes the concept, features, status, applications and fundamental problems of ad hoc networking. Special attention is paid on network layer routing strategy and intrusion detection in MANETs. Some of the technical challenges MANET poses are also presented based on which the report points out the related kernel barrier. Some of the key research issues for ad hoc networking technology are discussed in detail that are expected to promote the development and accelerate the commercial applications of the MANET technology.

2. Introduction

Our future living environments are likely to be based upon information resources provided by the connections of various communication networks for users. New small devices like Personal Digital Assistants (PDAs), mobile phones, and laptops enhance the information processing and accessing capabilities with mobility. To cater the needs of such devices, modern technologies should adopt new model of pervasive computing including new architectures, standards, devices, services, tools and protocols.

Mobile computing is the one of the most important technology supporting pervasive computing. Advances in both hardware and software techniques have enabled the spread of mobile hosts and wireless networking to masses. Generally, there are two modes in which wireless mobile nodes can communicate:

1. Infrastructured:

In this mode, all the communication among the mobile nodes goes through a base station. A Base station is also known as access point. These base stations are connected to the fixed infrastructure or wired networks.

2. Infrastructure less:

This mode of communication is known as Mobile Ad-hoc Network-MANET. A MANET is a collection of wireless nodes that can dynamically form a network to exchange information without using any pre-existing fixed network infrastructure. This is a very important part of communication technology that supports truly pervasive computing, because in many contexts information exchange between mobile units cannot rely on any fixed infrastructure, but on rapid configuration of wireless connections on-the-fly. A typical example of this mode of communication is people sitting in the conference room and exchanging data among them without any fixed infrastructure.

Page | 4

Page 5: S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY

Figure 1: Infrastructured and infrastructure less wireless networks

3. Related Background

3.1 MANET Concept

A mobile ad hoc network is a collection of wireless nodes that can dynamically be set up anywhere and anytime without using any pre-existing network infrastructure. It is an autonomous system in which mobile hosts connected by wireless links are free to move randomly. In MANET, nodes act both as host and routers. The traffic types in ad hoc networks are quite different from those in an infrastructured wireless network, including:

1. Peer-to-Peer: Communication between two nodes, which are within one hop.

2. Remote-to-Remote: Communication between two nodes beyond a single hop but which maintain a stable route between them. This may be the result of several nodes staying within communication range of each other in a single area or possibly moving as a group. The traffic is similar to standard network traffic.

3. Dynamic Traffic: This occurs when nodes are dynamic and moving around. Routes must be reconstructed. This results in a poor connectivity and network activity in short bursts.

3.2 MANET Features

MANET has the following features:

1. Autonomous terminal: In MANET, each mobile host is autonomous node, which may function as both a host and a router. In other words, besides the basic processing ability as a host, the mobile nodes can also perform switching functions as a router. So usually endpoints and switches are indistinguishable in MANET.

2. Distributed operation: Since there is no background network for the central control of the network operations, the control and management of the network is distributed among the terminals. The nodes involved in a MANET should collaborate amongst themselves and each node acts as a relay as needed, to implement functions e.g. security and routing.

Page | 5

Page 6: S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY

3. Multi-hop routing: Basic types of ad hoc routing algorithms can be single-hop and multi-hop. Single-hop MANET is simpler than multihop in terms of structure and implementation, with the cost of lesser functionality and applicability. When delivering data packets from a source to its destination out of the direct wireless transmission range, the packets should be forwarded via one or more intermediate nodes.

4. Dynamic network topology: Since the nodes are mobile, the network topology may change rapidly and unpredictably and the connectivity among the terminals may vary with time. MANET should adapt to the traffic and propagation conditions as well as the mobility patterns of the mobile network nodes. The mobile nodes in the network dynamically establish routing among themselves as they move about, forming their own network on the fly. Moreover, a user in the MANET may not only operate within the ad hoc network, but may require access to a public fixed network.

5. Fluctuating link capacity: The nature of high bit-error rates of wireless connection might be more profound in a MANET. One end-to-end path can be shared by several sessions. The channel over which the terminals communicate is subject to noise, fading, and interference, and has less bandwidth than a wired network. In some scenarios, the path between any pair of users can traverse multiple wireless links and the link themselves can be heterogeneous. One effect of the relatively low to moderate capacities is that congestion is typically the norm rather than the exception i.e. aggregate application demand will likely approach or exceed network capacity frequently.

6. Energy-constrained operation: Some or all of the nodes in a MANET may rely on batteries or other means for their energy. Such devices need optimized algorithms and mechanisms that implement the computing and communicating functions.

7. Limited physical security: MANETs are generally more prone to physical security threats than are fixed cable networks. The increased possibility of eavesdropping, spoofing and denial-of-service attacks should be carefully considered.

3.3 MANET Status

Ad hoc network is not a new concept. It was first deployed in military in 1970s. Commercial interest in such networks has grown recently due to the advancement in the wireless communication. A new working group for MANET has been formed within the Internet Engineering Task Force (IETF) to investigate and develop standards for Internet routing support for mobile, wireless IP autonomous segments and develop a framework for running IP based protocols in ad hoc networks.

The recent IEEE standard 802.11 has increased the research interest in the field. Many international conferences and workshops have been held by e.g. IEEE and ACM. Research in the area of ad hoc networking is receiving more attention from academia, industry, and government. Since these networks pose many complex issues, there are many open problems for research and significant contributions.

Page | 6

Page 7: S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY

4. MANET Applications

With the increase of portable devices as well as progress in wireless communication, ad hoc networking is gaining importance with the increasing number of widespread applications. Ad hoc networking can be applied anywhere where there is little or no communication infrastructure or the existing infrastructure is expensive or inconvenient to use. Ad hoc networking allows the devices to maintain connections to the network as well as easily adding and removing devices to and from the network. The set of applications for MANETs is diverse, ranging from large-scale, mobile, highly dynamic networks, to small, static networks that are constrained by power sources. Besides the legacy applications that move from traditional infrastructured environment into the ad hoc context, a great deal of new services can and will be generated for the new environment.

Typical applications include:

1.Military battlefield:

Military equipment now routinely contains some sort of computer equipment. Ad hoc networking would allow the military to take advantage of commonplace network technology to maintain an information network between the soldiers, vehicles, and military information head quarters. The basic techniques of ad hoc network came from this field.

2. Commercial sector:

Ad hoc can be used in emergency/rescue operations for disaster relief efforts, e.g. in fire, flood, or earthquake. Emergency rescue operations must take place where non-existing or damaged communications infrastructure and rapid deployment of a communication network is needed. Information is relayed from one rescue team member to another over a small handheld. Other commercial scenarios include e.g. ship-to-ship ad hoc mobile communication, law enforcement, etc.

3. Local level:

Ad hoc networks can autonomously link an instant and temporary multimedia network using notebook computers or palmtop computers to spread and share information among participants at a e.g. conference or classroom. Another appropriate local level application might be in home networks where devices can communicate directly to exchange information. Similarly in other civilian environments like taxicab, sports stadium, boat and small aircraft, mobile ad hoc communications will have many applications.

4. Personal Area Network (PAN):

Short-range MANET can simplify the intercommunication between various mobile devices (such as a PDA, a laptop, and a cellular phone). Tedious wired cables are replaced with wireless connections. Such an ad hoc network can also extend the access to the Internet or other networks by mechanisms e.g. Wireless LAN (WLAN), GPRS, and UMTS.

Page | 7

Page 8: S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY

5. Challenges in MANETs

The special features of MANET bring this technology great opportunity together with severe challenges. These include:

5.1 Routing in MANETs

The main function of the network layer is routing packets from the source machine to the destination machine. The routing algorithm is that part of the network layer software responsible for deciding which output line as incoming packet should be transmitted on. The algorithms that choose the routes and the data structures that they use are a major area of network layer design.

The challenging task of the routing algorithm in the ad hoc network is the changing topology. All the rules of wired network i.e. fixed topologies, fixed and known neighbors are automatically becomes out of scope. With an ad hoc network, the topology may be changing all the time; so valid routes can change spontaneously without any warning.

The following are the desirable properties of MANET routing protocol [6]:

1. Distributed operation: Since there is no central point like wired network, each and every node in the MANET performs routing.

2. Loop freedom: Though, if not incorporated in the routing protocol, the TTL value could be used to prevent packet from roaming in the network for arbitrarily long periods of time. But, still this property is desirable for efficient use of resources and better overall performance.

3. Demand-based operation: Instead of assuming an uniform traffic distribution within the network and maintaining routing information between all nodes at all times, routing algorithm should adapt to the traffic pattern on a demand or need basis. It should be done in such a way so that it could utilize mobile nodes energy and network bandwidth more efficiently at the cost of increased route discovery delay.

4. Proactive operation: This is the opposite of demand-based operation. It certain contexts, the additional latency demand-based operation are unacceptable. If bandwidth and energy resources permit, proactive operation is desirable in these contexts.

5. Security: Without some form of network-level or link layer security, a MANET routing protocol is vulnerable to many forms of attack. It may be relatively simple to snoop network traffic, manipulate packet headers and redirect routing messages, within a wireless network without appropriate security provisions.

6. “Sleep” period operation: As a result of energy conservation or some other need to be inactive, nodes of a MANET may stop transmitting and/or receiving for arbitrary time periods. A routing protocol should be able to accommodate such sleep periods without overly adverse consequences.

Page | 8

Page 9: S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY

7. Unidirectional link support: Bi-directional links are typically assumed in the design of routing algorithms, and many algorithms are incapable of functioning properly over unidirectional links. But, unidirectional links can and do occur in wireless networks.

Example: Ad hoc On-demand Distance Vector (AODV) Routing:

AODV is the routing algorithm specially designed for ad hoc networks [1] [2]. It is the distant relative of the Bellman-Ford distance vector algorithm but adapted to work in a mobile environment. It takes into account the limited bandwidth and low battery life of the mobile nodes found in the ad hoc environment. It provides loop-free routes. Another very important characteristic is that it is an on-demand algorithm, that is, it determines a route to some destination only when somebody wants to send a packet to that destination.

To find a path to the destination, the source broadcasts a route request packet. The neighbors in turn broadcast the packet to their neighbors till it reaches an intermediate node that has recent route information about the destination or till it reaches the destination (Figure 2). A node discards a route request packet that it has already seen. The route request packet uses sequence numbers to ensure that the routes are loop free and to make sure that if the intermediate nodes reply to route requests, they reply with the latest information only.

When a node forwards a route request packet to its neighbors, it also records in its tables the node from which the first copy of the request came. This information is used to construct the reverse path for the route reply packet. AODV uses only symmetric links because the route reply packet follows the reverse path of route request packet. As the route reply packet traverses back to the source (Figure 3), the nodes along the path enter the forward route into their tables.

If the source moves then it can reinitiate route discovery to the destination. If one of the intermediate nodes move then moved nodes neighbor realizes the link failure and sends a link failure notification to its upstream neighbors and so on till it reaches the source upon which the source can reinitiate route discovery if needed.

Figure 2.Propagation of Route Request Packet (RREQ)

Page | 9

Page 10: S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY

Figure 3.Path taken by Request Packet (RREQ)

5.2 Intrusion Detection

Intrusion detection has become very important within the realm of network security especially in the case wireless ad hoc networks. Intrusion detection is defined as the method to identify “any set of actions that attempt to compromise the integrity, confidentiality or availability of a resource”. It is the techniques that attempt to detect intrusion into a computer or network by observing the actions, security logs, or audit data.

Following are the some primary assumptions that have to be made when working on intrusion detection:

1. User and program activities are observable, that is the information regarding the usage of a system by a user or program must be recordable and analyzable.

2. Normal and intrusive behavior must have distinct characteristics.

In order to detect an intrusion attack, one needs to make use of a model of intrusion. That is, we need to know what an Intrusion Detection System (IDS) should look out for. There are two types of models employed in current IDS:

1. Anomaly Detection: The first model bases its detection upon the profile of a user’s normal behavior. It analyzes the user’s current session and compares them to the profile representing the user’s normal behavior. It raises alarm if significant deviation is found during the comparison of audit data and user’s profile. This type of detection system is well suited to detect known or previously not encountered attacks.

2. Misuse Detection: It bases its detection upon comparison of user’s session or commands with the rule base of techniques used by the attackers previously. This model looks for known attacks in the user’s behavior. A typical misuse detection system takes in audit data for analysis and compares the data to large database of known attack signatures.

Page | 10

Page 11: S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY

Most of the IDS take either a network-based or host–based approach based on the source of audit data.

1. Network-based IDS (NIDS): An IDS is network based when it looks for these patterns in network traffic. It listens on the network and capture and examine individual packet flowing through a network. They are able to look at the payload within a packet, to see which particular host application is being accessed, and to raise alerts when attacker tries to exploit a bug in such code. NIDS are host independent but can also be a software package installed on dedicated workstation. Side effect of NIDS is that its active scanning can slow down the network considerable.

2. Host-based IDS (HIDS): A Host-based IDS is concerned with what is happening on each individual host. They are able to detect actions such as repeated failed access attempts or changes to critical system files. It normally operates by accessing log files or monitoring real-time system usage.

The existing IDS cannot be used in the ad hoc network because:

The vast difference between the two networks makes it very difficult to apply intrusion detection techniques developed for a fixed wired network to an ad hoc wireless network. The most important difference is perhaps that the ad hoc network does not have a fixed infrastructure and today’s network-based IDSs, which rely on real-time traffic analysis, can no longer function well in this new environment. Therefore, at any one time, the only available audit trace will be limited to communication activities taking place within the radio range, and the intrusion detection algorithms must be made to work on this partial and localized information.

Further, there may not be a clear separation between normalcy and anomaly in wireless ad hoc network. A node that sends out false routing information could be the one that has been compromised, or merely the one that is temporarily out of sync due to physical movement. ID may find it increasing difficult to distinguish false alarms from real intrusion.

The following are the desirable features of Intrusion Detection System for MANET:

1. The IDS should not introduce a new weakness in the MANET. That is, the IDS itself should not make a node any weaker than it already is.

2. IDS should run continuously and remain transparent to the system and users.3. The IDS should use as little system resources as possible to detect and prevent intrusions. IDSs

that require excessive communication among nodes or run complex algorithms are not desirable.

4. It must be fault-tolerant in the sense that it must be able to recover from system crashes, hopefully recover to the previous state, and resume the operations before the crash.

5. Apart from detecting and responding to intrusions, an IDS should also monitor itself and detect if it has been compromised by an attacker.

6. IDS should have a proper response. In other words, an IDS should not only detect but also respond to detected intrusions, preferably without human intervention.

7. Accuracy of the IDS is another major factor in MANETs. Fewer false positives and false negatives are desired.

8. It should interoperate with other intrusion detection systems to collaboratively detect intrusions.

Page | 11

Page 12: S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY

Example: A Distributed IDS

Distributed IDS:

In their pioneering work on intrusion detection in MANETs, Zhang and Lee describe a distributed and cooperative intrusion detection model where every node in the network participates in intrusion detection and response [4]. In this model, an IDS agent runs at each mobile node, and performs local data collection and local detection, whereas cooperative detection and global intrusion response can be triggered when a node reports an anomaly. It considers abnormal updated to routing tables.

The internals of an IDS agent are structured into six pieces, as shown in Figure. Each node does local intrusion detection independently, and neighboring nodes collaboratively work on a larger scale. Individual IDS agents placed on each and every node run independently and monitor local activities (including user, systems, and communication activities within the radio range), detect intrusions from local traces, and initiate responses. Neighboring IDS agents cooperatively participate in global intrusion detection actions when an anomaly is detected in local data or if there is inconclusive evidence. The data collection module gathers local audit traces and activity logs that are used by the local detection engine to detect local anomaly. Detection methods that need broader data sets or require collaborations among local IDS agents use the cooperative detection engine. Both the local and global response modules provide intrusion response actions. The local response module triggers actions local to this mobile node (e.g., an IDS agent alerting the local user), while the global one coordinates actions among neighboring nodes, such as the IDS agents in the network electing a remedial action. A secure communication module provides a high-confidence communication channel among IDS agents.

This IDS presents a distributed and cooperative intrusion detection architecture based on statistical anomaly detection techniques. This article was among the first that had such a detailed distributed design.

Figure 4.An Intrusion Detection system for MANETs

Page | 12

Page 13: S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY

5.3 Quality of Service (QoS):

Providing different quality of service levels in a constantly changing environment will be a challenge. The inherent stochastic feature of communications quality in a MANET makes it difficult to offer fixed guarantees on the services offered to a device. An adaptive QoS must be implemented over the traditional resource reservation to support the multimedia services.

5.4 Internetworking:

In addition to the communication within an ad hoc network, internetworking between MANET and fixed networks (mainly IP based) is often expected in many cases. The coexistence of routing protocols in such a mobile device is a challenge for the harmonious mobility management.

5.5 Power Consumption:

For most of the light-weight mobile terminals, the communication-related functions should be optimized for lean power consumption. Conservation of power and power-aware routing must be taken into consideration.

Kernel Barrier

It has been widely recognized that routing strategy is the most important research problem among others. To determine viable routing paths and deliver messages in a decentralized environment where network topology fluctuates is far less than a well-defined problem. New models are needed to describe the mobile ad hoc feature of the target wireless networks, while new algorithms are required to safely and efficiently route information to mobile destination in order to support different types of multimedia applications. Factors such as variable wireless link quality, propagation path loss, fading, multiuser interference, power expended, and topological changes become relevant issues that add more difficulties and complexities to the routing protocol design.

Many routing protocols have been proposed with the form of IETF working documents of both Internet Drafts and Request For Comments (RFC) . Numerous projects related to different aspects of MANET are employed by academics and institutes all over the world, with individual standards being presented occasionally in literatures .

They serve the purpose of demonstrating the functionality and performance of ad hoc routing with comparatively simple protocols, whereas very few of them can be regarded to really fulfill the requirements of a real application scenario. There are still many relative aspects to be deeply researched before the wide deployment of the commercial ad hoc systems.

6. KEY RESEARCH ISSUES

This section analyses key Research issues concerning MANET network layer routing strategies, including four selected key problems in MANET: X-cast routing, security & reliability, QoS, and inter working with outside IP networks. These issues are currently main challenges of ad hoc wireless networks. The lack of robust solutions to these problems prevents MANET from wide commercial deployment.

Page | 13

Page 14: S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY

1. X-cast Routing Algorithms

As in the infrastructured wireless networks, all kinds of X-cast communication schemes should be supported in an ad hoc mobile environment. These include unicast, anycast, multicast, and broadcast. MANET also brings new X-cast modes into communications, e.g. geocast and content-based. In particular, multicast is desirable to support multiparty wireless communications Since the multicast tree is no longer static (i.e. its topology is subject to change over time), the multicast routing protocol must be able to cope with mobility, including multicast membership dynamics (e.g., leave and join).

In a multihop ad hoc context, the routing problem becomes more complex because of the mobility of both hosts and routers. The random movement of the nodes and the uncertainty of path quality render the traditional routing protocols impractical. Trade-off between reactive and proactive schemes in terms of latency and overhead of route discovery and maintenance are to be considered depending on different traffic and mobility patterns. Issues to be taken into account include routing discovery and flooding, caching, data delivery, location-aided and power-aware, broadcast storm issue, route request and reverse path.

2. QoS Supporting Model

Just like in wired networks, QoS protocols can be used to prioritize data within ad hoc networks in order to reserve better connections for high data rate applications while still maintaining enough bandwidth for lower bit rate communication. The support of multimedia services will most likely be required within and throughout the MANET, for which different QoS classes (e.g. voice, video, audio, web, and data stream) are needed to facilitate the use of multimedia applications.

In such a stochastic changing environment involving dynamic nodes, hidden terminals, and fluctuating link characteristics, supporting end-to-end QoS at different levels will be a great challenge that requires in-depth investigation . An adaptive QoS must be implemented over the traditional plain resource reservation to support the multimedia services. Special emphasis should be put on achieving a new QoS model for MANETs by taking into account the ad hoc features of the target networks: dynamic node roles, data flow granularity, traffic profile, etc.

3. Security, Reliability, and Availability Schemes

Security, reliability, and availability are three crucial aspect of MANET, especially in security-sensitive applications. Since ad hoc relies on wireless communication medium, it is important to deploy a security protocol to protect the privacy of transmissions. The requirements regarding confidentiality, integrity, and availability are the same as for any other public communication networks. However, the implementation schemes of key management, authentication, and authorization are quite different because there is no aid of a trusted third-party certification authority to create trusted relationships by exchanging private/public keys. Different types of threats and attacks against routing in MANET should be analyzed leading to the requirement of ad hoc routing security, and advanced solutions are needed for the secure routing of MANET.

Wireless communication is subject to many types of problems due to interference and poor signals. As for reliability and availability issues, besides low level error masking and recovery mechanisms (i.e. link layer error detection and correction coding), special attention should be paid to studying fault-tolerant routing algorithm. In multihop ad hoc wireless networks, there exists an inherent attribute of redundant routing paths between nodes. Exploiting this property, it’s possible to provide a fault-tolerant routing scheme , for increasing the reliability and security of the target routing algorithm. Since overhead occurs in this reliable-increasing algorithm, research should also study the tradeoff between performance and reliability in order to calculate the most efficient solution.

Page | 14

Page 15: S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY

4. Internetworking Mechanisms

To integrate the two mobility management schemes in the domains of both traditional infrastructured wireless networks and the new mobile ad hoc networks is an important issue. The mobility mode of an ad hoc network is quite different from that of infrastructured networks. In infrastructured networks only the nodes (terminals) at the very edges (the last hop) of fixed networks are moving, whereas an ad hoc network can be completely mobile, since a device can serve both as router and host at the same time. Consequently, in an ad hoc network mobility is handled directly by the routing algorithm.

In many cases, device accesses both within the ad hoc network and to public networks (e.g. the Internet) can be expected to form a universal communication scenario. In other words, a terminal in an ad hoc wireless network is able to connect to nodes outside the MANET while being itself also accessible by external nodes. The inter working between ad hoc and fixed networks is necessary. In particular, the coexistence and cooperation with the public IP based wireless networks is necessary to many contexts. The Mobile IP protocol for MANET should be deeply studied in order to give nodes in ad hoc networks the ability of accessing the Internet and other IP based networks to take advantage of the services of Mobile IP.

Advantages of MANETs:

1. They provide access to information and services regardless of geographic position.

2. These networks can be set up at any place and time.

3. These networks work without any pre-existing infrastructure.

Disadvantages of MANETs are:

1. Limited resources. Limited physical security.

2. Intrinsic mutual trust vulnerable to attacks. Lack of authorization facilities.

3. Volatile network topology makes it hard to detect malicious nodes.

4. Security protocols for wired networks cannot work for ad hoc networks.

7. Conclusion

This report describes the fundamental issues and analyses key research problems of MANET. Firstly, the background information of MANET are introduced, including the MANET concept, features, current status, and application areas. Thereafter, it covers the two main challenges of MANETs i.e. Routing and Intrusion detection in detail. Various issues concerning different aspects of ad hoc wireless networks are discussed. Finally, four key network layer research issues of MANET routing strategies are described in detail.

MANET is one of the most important and essential technologies in current times. MANETs can be exploited in a wide area of applications, from military, emergency rescue, law enforcement, commercial, to local and personal contexts. It has already gained critical mass among researchers in academia as well as in industry. Moreover, there is also a flurry of activity in the standards bodies in this area. Many routing protocols designed for ad hoc networks have been proposed as Internet Draft and RFC of IETF. However, MANET as a technology can only become successful and popular if the challenges related to routing and intrusion detection, as described in this report, are adequately addressed.

Page | 15

Page 16: S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY

8. References

1. C.E.Perkins, E.M. Royer, "Ad Hoc on Demand Distance Vector (AODV) Routing" August 1998 IETF Draft, 24 pages

2. Computer and Communication Networks – Nader F. Mir: Pearson Education, 2007.

3. C.E. Perkins and P. Bhagwat, "Highly Dynamic Destination Sequenced Distance-Vector Routing (DSDV) for Mobile Computers", Comp. Comm. Rev., Oct. 1994, pp.234-244.

4. Y. Zhang and W. Lee, “Intrusion Detection in Wireless Ad Hoc Networks,” 6th Int’l. Conf. Mobile Comp. And Net. Aug. 2000, pp. 275–83.

5. A. Mishra, K. Nadkarni, and A. Patcha, “Intrusion Detection in Wireless Ad Hoc Networks,” Wireless Communications, IEEE, vol. 11, Feb 2004, pp. 48- 60.

6. S. Corson, J. Macker, "Mobile Ad hoc Networking (MANET): Routing Protocol Performance Issues and Evaluation Considerations", RFC2501.

Page | 16