38
Schrödinger’s Rainbow: The Renaissance in Quantum Optical Interferometry Jonathan P. Dowling Quantum Science & Technologies ( QST) Group Hearne Institute for Theoretical Physics Louisiana State University http://quantum.phys.lsu.edu

Schrödinger’s Rainbow: The Renaissance in Quantum Optical Interferometry

  • Upload
    neena

  • View
    61

  • Download
    1

Embed Size (px)

DESCRIPTION

Schrödinger’s Rainbow: The Renaissance in Quantum Optical Interferometry. Jonathan P. Dowling Quantum Science & Technologies ( Q S T ) Group Hearne Institute for Theoretical Physics Louisiana State University. http://quantum.phys.lsu.edu. Table of Contents. • Quantum Technologies - PowerPoint PPT Presentation

Citation preview

Page 1: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

Schrödinger’s Rainbow: The Renaissance in Quantum Optical Interferometry

Jonathan P. DowlingQuantum Science & Technologies (QST) Group

Hearne Institute for Theoretical PhysicsLouisiana State University

http://quantum.phys.lsu.edu

Page 2: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

Table of Contents

• Quantum Technologies

• Schrödinger’s Cat and All That

• Quantum Light—Over the Rainbow

• Putting Entangled Light to Work

• The Yellow-Brick Roadmap

Page 3: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

Quantum Technology: The Second Quantum RevolutionJP Dowling & GJ Milburn, Phil. Transactions of the Royal Soc. of London

QuantumMechanical

Systems

PendulumsCantileversPhonons

CoherentQuantumElectronics

SuperconductorsExcitonsSpintronics

Quantum Optics

Ion TrapsCavity QEDLinear Optics

QuantumAtomics

Bose-EinsteinAtomic CoherenceIon TrapsQuantum

InformationProcessing

Page 4: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

Schrödinger’s Cat and All That

Page 5: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

Schrödinger’s Cat Revisited

Page 6: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

Quantum Kitty Review

A sealed and insulated box (A) contains a radioactive source (B) which has a 50% chance during the course of the "experiment" of triggering Geiger counter (C) which activates a mechanism (D) causing a hammer to smash a flask of prussic acid (E) and killing the cat (F). An observer (G) must open the box in order to collapse the state vector of the system into one of the two possible states. A second observer (H) may be needed to collapse the state vector of the larger system containing the first observer (G) and the apparatus (A-F). And so on ...

Page 7: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

Paradox? What Paradox!?

(1.) The State of the Cat is “Entangled” with That of the Atom.

(2.) The Cat is in a Simultaneous Superposition of Dead & Alive.

(3.) Observers are Required to “Collapse” the Cat to Dead or Alive

Page 8: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

Quantum Entanglement

“Quantum entanglement is the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought.”

— Erwin Schrödinger

Page 9: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

Conservation of Classical Angular

Momentum

A B

Page 10: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

Conservation of Quantum Spin

Entangled

David Bohm

A B

Page 11: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

Einstein, Podolsky, Rosen (EPR) Paradox

Albert Einstein

Boris Podolsky

“If, without in any way disturbing a system, we can predict with certainty ... the value of a physical quantity, then there exists an element of physical reality corresponding to this physical quantity."

Nathan Rosen

Page 12: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

Hidden Variable Theory

+A B A B

Can the Spooky, Action-at-a-distance Predictions (Entanglement) of Quantum Mechanics…

+A B A B

…Be Replaced by Some Sort of Local, Statistical, Classical (Hidden Variable) Theory?

Page 13: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

NO!—Bell’s Inequality

The physical predictions of quantum theory disagree with those of any local (classical) hidden-variable theory!

John Bell

Page 14: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

Clauser (1978) & Aspect (1982) Experiments

John Clauser

Alain Aspect

V= Vertical Polarization

H = Horizontal Polarization

HAV

B VAH

B

A B

H

V H

VTwo-PhotonAtomicDecay

Page 15: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

Quantum Light—Over the Rainbow

Page 16: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

Parametric Downconversion: Type I

Page 17: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

Parametric Downconversion: Type I

UV

Pump

Signal B

Idler A

Degenerate (Entangled) Case: s=iDegenerate (Entangled) Case: s=i

s, s, ks A i, i, ks B i, i, ki A s, s, ks B

Type I

Photon Pairs

Page 18: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

Parametric Downconversion: Type I

QuickTime™ and aSorenson Video decompressorare needed to see this picture.

Page 19: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

A

B

Parametric Downconversion: Type II

HAV

B VAH

B

Degenerate (Entangled) Case: s=iDegenerate (Entangled) Case: s=i

Page 20: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

QuickTime™ and aAnimation decompressor

are needed to see this picture.

Page 21: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

Putting Entangled Light to Work

Page 22: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

Tests of Bell’s Inequalities at Innsbruck

Anton ZeilingerAlice

Bob

Type II Downcoversion

Page 23: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

Quantum Teleportation

Page 24: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry
Page 25: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

Teleportation Experiment at Innsbruck

Bell State Analysis

EPR Source

Experiment

Page 26: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

NIST Heralded Photon Absolute Light Source

Output characteristics : photon # knownphoton timing knownwavelength knowndirection knownpolarization known Alan Migdall

Page 27: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

0

ω2

ω1

PARAMETRIC CRYSTAL

COUNTER

COINC COUNTER

AbsoluteQuantumEfficiency

COUNTER

N

Detector to be Calibrated

Trigger or “Herald” DetectorN1=η1N N2=η2N NC=η1η2N

η1=NC/ N2

Detector Quantum Efficiency Scheme

No External Standards Needed!No External Standards Needed!

Page 28: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

Black BoxGenerates arbitrary Entangled States

QWP

QWP

HWP

HWP

PBS

PBS

Detector

Detector

This setup allows measurement of an arbitrary polarization

state in each arm.

Any two-photon tomography requires 16 of these measurements.

ExamplesArm 1 Arm 2 H V H R D D

Characterizing Two-Photon Entanglement

Paul KwiatU. Illinois

#1

H-polarized(from #1)Type-I phase-matching

#2V-polarized(from #2)

#1

H-polarized(from #1)Type-I phase-matching

Kwiat Super-Bright Source

Page 29: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Maximally-Entangled Mixed States

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Linear entropy, SLPure

states

Product States

Bell StatesImpossible States

Mixed states

Characterization of Entangled States

Werner States

Page 30: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

Bob and “Charly” Share Random Crypto Key

Quantum Cryptography at University of Geneva

System Under Lake Geneva

Nicolas Gisin

Page 31: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

New York Times

Page 32: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

The Hong-Ou-Mandel Effect

Leonard Mandel

Page 33: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

EASY (BUT USELESS?) FOR N=2ABA′B′CBSMMPS - Two Photon Absorption

1

A1

B

0A

2B

+ e2 i ϕ

2A

0B

2

Parametric Downcoversion

Classical One-Photon Absorption —Classical Two-Photon Absorption —Quantum Two-Photon Absorption —

- p 0 pj

0.5

1

1.5

2D

Quantum PeakIs Narrower andSpacing is HALVED!

Quantum PeakIs Narrower andSpacing is HALVED!

Quantum Optical Lithography

Page 34: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

squeezed vacuum : OPA

+ 0.920.08

coherent beam

wave plate

R=0.92

33cm

lens f=3cm

3.3cm

Image of the wave plate plane with

waist=300m

Displacement Measurements and Gravity Waves

Hans BachorAustralian National University

Δxclassical=λ, Δxshotnoise=λN

, ΔxHeisenberg=λN

Page 35: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

Quantum Clock Synchronization

Entangled Photons Can Synchronize Past the Turbulent Atmosphere!Entangled Photons Can Synchronize Past the Turbulent Atmosphere!

SethLloydMIT

A B

Page 36: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

Quantum Computing

Quantum Controlled-NOT Gate using and Entangled-Light Source, Beam Splitters, and Detectors.

Entangled Photons are a Resource for Scalable Quantum Computation!Entangled Photons are a Resource for Scalable Quantum Computation!

E. Knill, R. Laflamme and G. Milburn, Nature 409, 46, (2001)

E. Knill, R. Laflamme and G. Milburn, Nature 409, 46, (2001)

GerardMilburnUniversityOfQueensland

Page 37: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry
Page 38: Schrödinger’s Rainbow:  The Renaissance in Quantum Optical Interferometry

Computing

CommunicationsClock SynchronizationImaging

SensorsMetrology

The Yellow-Brick Roadmap