40
Santa Rosa Junior College ENGR 45 Fall 2011 December 14, 2011 Recrystallization of Cold-Worked Steel Wire Edward Alicdan Jared Carr

Santa Rosa Junior College ENGR 45 Fall 2011 December 14, 2011

Embed Size (px)

Citation preview

  • Slide 1

Slide 2 Santa Rosa Junior College ENGR 45 Fall 2011 December 14, 2011 Slide 3 Purpose Cold Working Recovery Recrystallization Grain Growth Procedure Results Conclusion Errors Slide 4 To document the recovery, recrystallization, and grain growth phases of cold-worked carbon steel. Slide 5 Increasing strength through plastic deformation and increasing dislocations Cold working because deformation temperature drastically less than melting Higher dislocation density, more hindered dislocation movement, increase hardness Elongates grains http://www.the-warren.org/ALevelRevision/engineering/img2/coldrolling.gif http://adsabs.harvard.edu/abs/1985MTA....16..703C Slide 6 Applied heat increases dislocation motion Metal decreases in hardness as dislocations leave faster Additionally, original electrical and physical properties are restored http://www.ndt-ed.org/EducationResources/CommunityCollege/Materials/Graphics/Recovery.gif Slide 7 Continuation of recovery Continued decreasing dislocation density New grains form between larger grains Start small, eventually engulf parent grain boundaries Recrystallization temperature for carbon steel is about 1000F Possible to increase rate of recrystallization by increasing %CW http://www.ndt-ed.org/EducationResources/CommunityCollege/Materials/Graphics/Recovery.gif http://info.lu.farmingdale.edu/depts/met/met205/annealingstages.html Slide 8 Recrystallization completes, continued applied heat Grain growth due to migration of grain boundaries outward Large range of grain sizes http://www.ndt-ed.org/EducationResources/CommunityCollege/Materials/Graphics/Recovery.gif Slide 9 Cold work a 40 cm long carbon steel wire to approximately 55% CW Cut wire into 12 equally sized pieces and assort into two groups of 6 Heat one group at 500F and the other at 800F Take one metal out of each after 1, 5, 10, 30, 60 minutes, and 24 hours Make two molds of each group taking note of how to distinguish between the samples Sand, polish and etch the samples Use the microscope to photograph each sample Slide 10 Slide 11 Slide 12 Annealing Temperature: Annealing Temperature: 500F Time: Time: 1 minute Magnification: Magnification: 300x Description: Description: Recovery and minor recrystallization. Visible grain stretching. Slide 13 Slide 14 Annealing Temperature: Annealing Temperature: 500F Time: Time: 5 minutes Magnification: Magnification: 300x Description: Stretching not visible. New grains forming. Description: Stretching not visible. New grains forming. Slide 15 Slide 16 Annealing Temperature: Annealing Temperature: 500F Time: Time: 10 minutes Magnification: Magnification: 300x Description: Description: New grains continuing to form. Increasing grain boundaries. Dislocation density begins to decrease due to the increased motion of the dislocations. Slide 17 Slide 18 Annealing Temperature: Annealing Temperature: 500F Time: Time: 30 minutes Magnification: Magnification: 300x Description: Grain size of larger grains increasing. Smaller grain boundaries are forced smaller. Dislocation density continues to decrease. Description: Grain size of larger grains increasing. Smaller grain boundaries are forced smaller. Dislocation density continues to decrease. Slide 19 Slide 20 Annealing Temperature: Annealing Temperature: 500F Time: Time: 60 minutes Magnification: Magnification: 300x Description: Description: Large grain boundaries continuing to increase, forcing other grains smaller. Slide 21 Slide 22 Annealing Temperature: Annealing Temperature: 500F Time: Time: 24 hours Magnification: Magnification: 300x Description: Very large and very small grain sizes visible. Grain growth is apparent. Number of dislocations is much less than at the beginning of recovery. Description: Very large and very small grain sizes visible. Grain growth is apparent. Number of dislocations is much less than at the beginning of recovery. Slide 23 Slide 24 Slide 25 Annealing Temperature: Annealing Temperature: 800F Time: Time: 1 minute Magnification: Magnification: 300x Description: More visible grain stretching than in 500 F. Recovery phase. Description: More visible grain stretching than in 500 F. Recovery phase. Slide 26 Slide 27 Annealing Temperature: Annealing Temperature: 800F Time: Time: 5 minutes Magnification: Magnification: 300x Description: New grains forming, much larger than those formed in 500 F at same annealing time. Description: New grains forming, much larger than those formed in 500 F at same annealing time. Slide 28 Slide 29 Annealing Temperature: Annealing Temperature: 800F Time: Time: 10 minutes Magnification: Magnification: 300x Description: Large grains increasing size, pushing adjacent grains smaller. Description: Large grains increasing size, pushing adjacent grains smaller. Slide 30 Slide 31 Annealing Temperature: Annealing Temperature: 800F Time: Time: 30 minutes Magnification: Magnification: 300x Description: Description: Large grains continue to grow, forcing others smaller. Dislocation density is decreasing. Slide 32 Slide 33 Annealing Temperature: Annealing Temperature: 800F Time: Time: 60 minutes Magnification: Magnification: 300x Description: Large grains are very apparent. Notice the wide variety of grain sizes. Description: Large grains are very apparent. Notice the wide variety of grain sizes. Slide 34 Slide 35 Annealing Temperature: Annealing Temperature: 800F Time: Time: 24 hours Magnification: Magnification: 300x Description: Grain growth is very apparent in larger grains. Smaller grains are much smaller than in previous slides. Dislocation density is at its minimum. Description: Grain growth is very apparent in larger grains. Smaller grains are much smaller than in previous slides. Dislocation density is at its minimum. Slide 36 Slide 37 Although some of the pictures of the recrystallization of carbon steel did not match perfectly with the theoretical outcomes we expected, we think that our experiment was still successful because the overall stages still followed the recrystallization model very closely. Slide 38 Pictures did not come out as clearly as we had liked; over-etching and excessive scratching made the patterns in the grains less noticeable or difficult to see. Lack of a control sample makes it difficult to compare the other metals without a base frame of reference. Although the first metal was only heated for 1 minute, the fact that the steel was so thin may have caused drastic changes in the grain patterns. Slide 39 The extreme thinness of the carbon steel may have caused the recrystallization process to end much faster, resulting in the grain growth phase occurring much sooner. The relatively small surface area of each metal may have caused the patterns in the grains to be distorted. Near the edges of each metal there was stretching of grains and other deformations. The inside of the metal were so close to the edges of the metal that the deformations may have extended to some of the grains in the middle. Slide 40 http://www.the- warren.org/ALevelRevision/engineering/i mg2/coldrolling.gif http://adsabs.harvard.edu/abs/1985MTA....16..703C http://www.ndt- ed.org/EducationResources/CommunityC ollege/Materials/Graphics/Recovery.gif http://info.lu.farmingdale.edu/depts/met /met205/annealingstages.html Slide 41 Younes