13
Research Article Safety-Guaranteed Trajectory Tracking Control for the Underactuated Hovercraft with State and Input Constraints Mingyu Fu, Shuang Gao, and Chenglong Wang College of Automation, Harbin Engineering University, Harbin 150001, China Correspondence should be addressed to Shuang Gao; [email protected] Received 16 May 2017; Revised 14 August 2017; Accepted 24 September 2017; Published 25 October 2017 Academic Editor: Rafael Morales Copyright © 2017 Mingyu Fu et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. is paper develops a safety-guaranteed trajectory tracking controller for hovercraſt by using a safety-guaranteed auxiliary dynamic system, an integral sliding mode control, and an adaptive neural network method. e safety-guaranteed auxiliary dynamic system is designed to implement system state and input constraints. By considering the relationship of velocity and resistance hump, the velocity of hovercraſt is constrained to eliminate the effect of resistance hump and obtain better stability. And the safety limit of driſt angle is well performed to guarantee the light safe maneuvers of hovercraſt tracking with high velocities. In view of the natural capabilities of actuators, the control input is constrained. High nonlinearity and model uncertainties of hovercraſt are approximated by employing adaptive radical basis function neural networks. e proposed controller guarantees the boundedness of all the closed-loop signals. Specifically, the tracking errors are uniformly ultimately bounded. Numerical simulations are implemented to demonstrate the efficacy of the designed controller. 1. Introduction A hovercraſt (Figure 1) is supported totally by its air cushion, with a flexible skirt system around its periphery to seal the cushion air [1]. e hovercraſt is able to run at high speed over shallow water, rapids, ice, and swamp where no other craſt can go. ese “special abilities” have attracted many military and civil users with particular mission requirements. e study about the safety-guaranteed trajectory tracking control of underactuated hovercraſt moving with high velocities is meaningful and challenging to reduce the burden of pilot. From a detailed review of the available literatures about the trajectory tracking control of hovercraſt [2–8], only posi- tion errors were considered and the velocities of hovercraſt were not controlled. However, the velocity is related to the resistance hump of hovercraſt. From [9], the resistance hump occurs in the vicinity of Froude number =1 which can be calculated by = /√ , where is the velocity of hovercraſt and is the cushion length. From [10], two resistance humps (mainly caused by wave-making drag) are encountered for hovercraſt during the acceleration process. It is shown in [1] that the resistance hump will be crossed as increases and the craſt will travel with better course stability and transverse stability. Hence, the velocity of hovercraſt needs to be large enough, corresponding to large , to avoid the resistance hump and hold the better stability. Moreover, driſt angle plays a key role in the high-speed moving process of hovercraſt [11, 12]. If the driſt angle exceeds the angle of driſt which corresponds to the maximum of hydrodynamic forces, the behavior of hovercraſt will be nonstable [13]. e dangers caused by the driſt angle include stern kickoff, plough-in, and great heeling [11]. Hence, safety limit of driſt angle must be strictly obeyed in the high- speed tracking process to ensure safe maneuvers of hovercraſt [12]. For instance, safety limit of a hovercraſt shows if speed exceeds 40 knots, turning is not allowed; if speed is in the range of 25 knots35 knots, driſt angle needs to be within the limits of 7.5 ∼2 . Besides, from a practical viewpoint, the control input is restrained to prevent the actuators from going beyond their natural capabilities [14, 15]. And radical basis function neural Hindawi Mathematical Problems in Engineering Volume 2017, Article ID 9452920, 12 pages https://doi.org/10.1155/2017/9452920

Safety-Guaranteed Trajectory Tracking Control for …downloads.hindawi.com/journals/mpe/2017/9452920.pdfSafety-Guaranteed Trajectory Tracking Control for the Underactuated Hovercraft

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Safety-Guaranteed Trajectory Tracking Control for …downloads.hindawi.com/journals/mpe/2017/9452920.pdfSafety-Guaranteed Trajectory Tracking Control for the Underactuated Hovercraft

Research ArticleSafety-Guaranteed Trajectory Tracking Control forthe Underactuated Hovercraft with State and Input Constraints

Mingyu Fu Shuang Gao and ChenglongWang

College of Automation Harbin Engineering University Harbin 150001 China

Correspondence should be addressed to Shuang Gao gaussianhrbeueducn

Received 16 May 2017 Revised 14 August 2017 Accepted 24 September 2017 Published 25 October 2017

Academic Editor Rafael Morales

Copyright copy 2017 Mingyu Fu et al This is an open access article distributed under the Creative Commons Attribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

This paper develops a safety-guaranteed trajectory tracking controller for hovercraft by using a safety-guaranteed auxiliary dynamicsystem an integral sliding mode control and an adaptive neural network methodThe safety-guaranteed auxiliary dynamic systemis designed to implement system state and input constraints By considering the relationship of velocity and resistance hump thevelocity of hovercraft is constrained to eliminate the effect of resistance hump and obtain better stability And the safety limit ofdrift angle is well performed to guarantee the light safe maneuvers of hovercraft tracking with high velocities In view of the naturalcapabilities of actuators the control input is constrained High nonlinearity andmodel uncertainties of hovercraft are approximatedby employing adaptive radical basis function neural networks The proposed controller guarantees the boundedness of all theclosed-loop signals Specifically the tracking errors are uniformly ultimately bounded Numerical simulations are implemented todemonstrate the efficacy of the designed controller

1 Introduction

A hovercraft (Figure 1) is supported totally by its air cushionwith a flexible skirt system around its periphery to seal thecushion air [1]The hovercraft is able to run at high speed overshallow water rapids ice and swamp where no other craftcan go These ldquospecial abilitiesrdquo have attracted many militaryand civil users with particular mission requirements Thestudy about the safety-guaranteed trajectory tracking controlof underactuated hovercraft moving with high velocitiesis meaningful and challenging to reduce the burden ofpilot

From a detailed review of the available literatures aboutthe trajectory tracking control of hovercraft [2ndash8] only posi-tion errors were considered and the velocities of hovercraftwere not controlled However the velocity is related to theresistance hump of hovercraft From [9] the resistance humpoccurs in the vicinity of Froude number 119865119903 = 1 which canbe calculated by 119865119903 = 119881radic119892119897119888 where 119881 is the velocity ofhovercraft and 119897119888 is the cushion length From [10] tworesistance humps (mainly caused by wave-making drag) are

encountered for hovercraft during the acceleration process Itis shown in [1] that the resistance hump will be crossed as 119865119903increases and the craft will travel with better course stabilityand transverse stability Hence the velocity of hovercraftneeds to be large enough corresponding to large 119865119903 to avoidthe resistance hump and hold the better stability

Moreover drift angle plays a key role in the high-speedmoving process of hovercraft [11 12] If the drift angle exceedsthe angle of drift which corresponds to the maximum ofhydrodynamic forces the behavior of hovercraft will benonstable [13] The dangers caused by the drift angle includestern kickoff plough-in and great heeling [11] Hence safetylimit of drift angle must be strictly obeyed in the high-speed tracking process to ensure safemaneuvers of hovercraft[12] For instance safety limit of a hovercraft shows if speedexceeds 40 knots turning is not allowed if speed is in therange of 25 knotssim35 knots drift angle needs to be within thelimits of 75∘sim2∘

Besides from a practical viewpoint the control input isrestrained to prevent the actuators from going beyond theirnatural capabilities [14 15] And radical basis function neural

HindawiMathematical Problems in EngineeringVolume 2017 Article ID 9452920 12 pageshttpsdoiorg10115520179452920

2 Mathematical Problems in Engineering

Figure 1 A 3Dmodel of hovercraft Photo is from the internationalcooperation project described in Acknowledgments

Propeller

Rudder

Surge force

Yaw moment

w

U

r

u

Figure 2 Diagram of underactuated hovercraft

networks (RBFNNs) are used to stabilize complex nonlineardynamic systems and deal with model uncertainties [16ndash18]

The contributions of this paper are as follows

(i) The velocity of hovercraft is controlled within a rea-sonable range to avoid the effect of resistance humpand keep better stability

(ii) The safety limit of drift angle is obeyed to get light safemaneuvers of hovercraft moving with high velocities

(iii) The control input is constrained to handle inputsaturation

This paper is organized as follows Section 2 establishes a non-linear model of underactuated hovercraft and the transfor-mation of it Section 3 proposes a safety-guaranteed auxiliarydynamic system for state and input constraintsMoreover thecontroller is designed and analyzed in this section Numericalsimulation results are shown in Section 4 and the conclusionis discussed in Section 5

2 Problem Formulation

21 Hovercraft Model Description In general only air pro-pellers and rudders are available for hovercraft as shown inFigure 2 It means only the surge and yaw can be regulateddirectly but without any actuators for their sway motion[19 20]

The nonlinear model of hovercraft is obtained by neglect-ing the roll and pitch motions

[ 119910 ]119879 = 119878 (120595) [119906 V 119908 119903]119879 [[[[[[

V

119903

]]]]]]

= [[[[[[

V119903minus11990611990300

]]]]]]

+119872[[[[[[

119877119906 + 120591119906119877V119877119908 minus 119901119888119878119888119877119903 + 120591119903

]]]]]] (1)

where

119878 (120595) = [[[[[[

cos120595 minus sin120595 0 0sin120595 cos120595 0 00 0 1 00 0 0 1

]]]]]]

119872 =[[[[[[[[[[[

1119898 0 0 00 1119898 0 00 0 1119898 00 0 0 1119869119911

]]]]]]]]]]]

(2)

the signals 119906 V and 119908 represent the surge sway and heavevelocities 119903 is the turn rate 119909 119910 and 119911 denote the position ofhovercraftrsquos mass center in the earth fixed frame 120595 describesyaw angle 119898 and 119869119911 are hovercraftrsquos mass and moments ofinertia 120591119906 and 120591119903 are the control inputs which are providedby the actuators 119901119888 is the average cushion pressure 119878119888 isthe cushion area and [119877119906 119877V 119877119908 119877119903]119879 are the total dragswritten as

119877119898 = 120588119886119881119886119876119877wm = 119862wm1199012119888119861119888120588119908119892 119877sk = 051205881199081198812119886119862sk ( ℎ119897sk)

minus034 119897sk11987805119888+ (28167 (119901119888119897119888 )

minus0259 minus 1)119877wm119877119906 = 119877119906119886 + 119877119906119898 + 119877119906wm + 119877119906sk

= minus051205881198861198812119886119862119906119886119878PP minus 119877119898 cos120573 minus 119877wm cos120573minus 119877sk cos120573

119877V = 119877V119886 + 119877V119898 + 119877Vwm + 119877Vsk

= minus051205881198861198812119886119862V119886119878LP minus 119877119898 sin120573 minus 119877wm sin120573minus 119877sk sin120573

119877119908 = 119877119908119886 + 119877119908wm + 119866= minus051205881198861198812119886119862119908119886119878HP minus 120588119886119908119876 + 119866

Mathematical Problems in Engineering 3

119877119903 = 119877119903119886 + 119877119903119898 + 119877119903wm + 119877119903sk= minus051205881198861198812119886119862119903119886119878HP119867hov minus 119877V119886 times 119909119886 + 119877119906119886 times 119910119886

minus 119877V119898119909119898 + 119877119906119898119910119898 minus 119877Vwm119909wm + 119877119906wm119910wmminus 119877Vsk119909sk + 119877119906sk119910sk

(3)

where the dragrsquos suffix 119886 is the aerodynamic profile drag wmis the wave-making drag 119898 is the air momentum drag sk isthe skirt drag 119862119906119886 119862V119886 119862119901119886 119862119903119886 119862wm and 119862sk are the dragcoefficients 119861119888 is the cushion beam 119897119888 is the cushion length119866 is the weight 119878PP 119878LP and 119878HP are the positive lateral andhorizontal projection areas 120573 is the drift angle 119876 is the fanflow rate of cushion fan ℎ is the distance between baffle andthe bottom of skirtrsquos finger 119897sk is the total peripheral lengthof the skirts 119867hov is the height of hovercraft 120588119886 and 120588119908 areair and water density and (119909119886 119910119886) (119909119898 119910119898) (119909wm 119910wm) and(119909sk 119910sk) are the coordinates of forcersquos acting points119881119886 and 119881119886 in (3) can be obtained by

119881119886= radic[119906 + 119881119908 cos (120573119908 minus 120595)]2 + [V + 119881119908 sin (120573119908 minus 120595)]2

119881119886 = radic1198812119886 + 1199082(4)

in which 119881119908 and 120573119908 are absolute wind speed and directionMore details can be found in [1 9 21]

Remark 1 When a hovercraft is moving on a calm watersurface cushion pressure 119901119888 varies within a narrow range andthe heavemotion is stableThis paper is the research about thehorizontal motion of the hovercraft Hence the heavemotionis not discussed and the cushion pressure 119901119888 is assumed to bea constant

From Figure 2 we have

V = 119906 tan (120573) (5)

In order to make 120573 be the system state and more convenientfor the constraint and control of 120573 an improved model isderived from (1) and (5) that is

[ 119910 ]119879 = 119878 (120595) [119906 119906 tan120573 119908 119903]119879 [[[[[[

120573

119903

]]]]]]

=[[[[[[[

119906119903 tan120573minus sin (2120573)2119906 minus 119903cos2120573

00

]]]]]]]

+119872[[[[[[[[

119877119906 + 120591119906119877V

cos2120573119906119877119908 minus 119901119888119878119888119877119903 + 120591119903

]]]]]]]]

(6)

22 State and Input Constraints Saturation nonlinearities ofactuators can be described by

120591120603 = sat (120591120603119888 120591120603119888max 120591120603119888min) 120603 = 119906 119903 (7)

where 120591120603119888max and 120591120603119888min are the maximum and minimumlimitations of actuators 120591120603119888 are the designed control laws andsat(sdot) is a generalized saturation function with the followingform

sat (120572 120572119872 120572119898) =

120572119872 if 120572 gt 120572119872120572 if 120572119898 le 120572 le 120572119872120572119898 if 120572 lt 120572119898

(8)

Assumption 2 All position orientation velocity and acceler-ation values of hovercraft are available for feedback

Safety limit of 120573 and hump speed of hovercraft need tobe obtained from model and real ship tests [11 12] In thispaper they are assumed to be known and available for thestate constraint Then the safe constraints of system state aredefined as

119906min le 119906 le 119906max120573min le 120573 le 120573max (9)

3 Controller Design

31 Safety-Guaranteed Auxiliary Dynamic System

Proposition 3 A constraint error function is designed as fol-lows

Δ120581 = 1198961199081 (sat (119909 119909119898119886119909 119909119898119894119899) minus 119909)+ 1198961199082 (sat (119906119888 119906119888119898119886119909 119906119888119898119894119899) minus 119906119888) (10)

where 1198961199081 gt 0 1198961199082 gt 0 119909 is the system state and 119906119888 is thedesigned control input

Then an auxiliary dynamic system is designed by

120585 = minus1198961205851120585 minus 120599 (sdot) + 1198961205852Δ1205812100381710038171003817100381712058510038171003817100381710038172 120585 + Δ120581 10038171003817100381710038171205851003817100381710038171003817 ge 120590deadzone (Δ120581 120590) 10038171003817100381710038171205851003817100381710038171003817 lt 120590

(11)

where 120585 is the state of the auxiliary dynamic system 1198961205851 1198961205852 arepositive constants 120590 120590 are positive small design constants 120599(sdot)can be derived from the stability analysis and deadzone(Δ120581 120590)is a dead zone function given by

119889119890119886119889119911119900119899119890 (Δ120581 120590) =

Δ120581 119894119891 Δ120581 gt 1205900 119894119891 minus 120590 lt Δ120581 le 120590Δ120581 119894119891 Δ120581 le 120590

(12)

32 Design of the Desired States Desired reference trajectoryis generated by a virtual ship described in the following form

[[[119889119910119889119889

]]]

= [[[cos120595119889 minus sin120595119889 0sin120595119889 cos120595119889 0

0 0 1]]][[[119906119889setV119889set119903119889set

]]] (13)

4 Mathematical Problems in Engineering

Then the trajectory tracking errors are defined as

(119909119890 119910119890) = (119909 minus 119909119889 119910 minus 119910119889) (14)

For the position tracking the desired states are designed by

119906119889 = (119889 minus 119896119909 10038161003816100381610038161199091198901003816100381610038161003816 sign (119909119890)) cos120595 + ( 119910119889 minus 119896119910 10038161003816100381610038161199101198901003816100381610038161003816sdot sign (119910119890)) sin120595

120573119889 = arctan(minus119889 minus 119896119909 10038161003816100381610038161199091198901003816100381610038161003816 sign (119909119890)119906119889 sin120595+ 119910119889 minus 119896119910 10038161003816100381610038161199101198901003816100381610038161003816 sign (119910119890)119906119889 cos120595)

(15)

where 119896119909 gt 0 and 119896119910 gt 0 are control gainsRemark 4 To guarantee the traceability of the referencetrajectory under state constraints the desired reference tra-jectory needs to satisfy the following conditions

(1198621) 120578119889 120578119889 and 120578119889 are all bounded in which 120578119889 = 119909119889119910119889 120595119889(1198622) There exists 119879119903 gt 0 such that for all 119905 gt 119879119903

119906min lt 119906119889 lt 119906max120573min lt 120573119889 lt 120573max (16)

33 Controller Design State tracking errors are defined as

119890119906 = 119906 minus 119906119889119890120573 = 120573 minus 120573119889 (17)

Then two integral sliding mode manifolds are given by

119904119906 = 119890119906 + 1205821 int1199050119890119906 119889120591

119904119903 = 119890120573 + 1205822119890120573 + 1205823 int1199050119890120573 119889120591

(18)

where 1205821 1205822 and 1205823 are positive constantsUsing (6) (17) and (18) the time derivatives of 119904119906 and 119904119903

are expressed as

119904119906 = 119890119906 + 1205821119890119906= 119891119906 (x119906) + 119872119906120591119906 +119872119906119877119906 minus 119889 + 1205821119890119906 (19)

119904119903 = 119890120573 + 1205822 119890120573 + 1205823119890120573= 119891119903 (x119903) + 119872119903120591119903 + 119863119903119908 minus 120573119889 + 1205822 119890120573 + 1205823119890120573 (20)

where

119891119906 (x119906) = 119906119903 tan120573 x119906 = [119906 120573 119903]119879 119891119903 (x119903) = minus119906 minus 221199062 sin (2120573) minus 120573119906 cos (2120573)

+ 120573119903 sin (2120573) x119903 = [119906 119903 120573 120573]119879 119872119906 = 1119898119872119903 = minuscos2120573119869119911 119863119903119908 = minus 120573119877V sin (2120573)119906119898 + 119906V minus 119877V1199062119898 cos2120573

minus 119877119903cos2120573119869119911

(21)

To deal with high nonlinearity and model uncertainties119891119906(x119906) and 119891119903(x119903) are approximated by RBFNNs

119891120603 (x120603) = Wlowast119879120603 H120603 (x120603) + 120576120603 120603 = 119906 119903 (22)

where x120603 isin 119877119868 is the input vector and Wlowast120603 isin 119877119899 is the idealweight vectorH120603(x120603) 119877119868 rarr 119877119899 is the basis function vectorwith element ℎ119894120603(x120603) shown as follows

ℎ119894120603 (x120603) = exp(minus1003817100381710038171003817x120603 minus 120583119894120603100381710038171003817100381721205902119894 ) (23)

where120583119894120603 is the center of the receptive field and120590119894 is thewidthof theGaussian functionThe approximation error 120576120603 satisfies|120576120603| le 120576119873

Using (10) and (11) constraint error functions aredesigned as follows

Δ120581119906 = 1198961199081199061 (sat (119906 119906max 119906min) minus 119906)+ 1198961199081199062 (sat (120591119906119888 120591119906119888max 120591119906119888min) minus 120591119906119888)

Δ120581119903 = 1198961199081199031 (sat (120573 120573max 120573min) minus 120573)+ 1198961199081199032 (sat (120591119903119888 120591119903119888max 120591119903119888min) minus 120591119903119888)

(24)

where 1198961199081199061 gt 0 1198961199081199062 gt 0 1198961199081199031 gt 0 and 1198961199081199032 gt 0Then the auxiliary dynamic system is designed as

120585120603=

(minus1198961205851206031120585120603 minus 120599120603 (sdot) + 1198961205851206032Δ1205811206032100381710038171003817100381712058512060310038171003817100381710038172 120585120603 + Δ120581120603) 10038171003817100381710038171205851206031003817100381710038171003817 ge 120590deadzone (Δ120581120603 120590) 10038171003817100381710038171205851206031003817100381710038171003817 lt 120590

(25)

where 120599120603(sdot) = |119872120603119904120603||120591120603 minus 120591120603119888| and 120603 = 119906 119903

Mathematical Problems in Engineering 5

Finally the control laws are given by

120591119906119888 = 1119872119906 (minus1198961119904119906 minus 1205781 sign (119904119906) + 119889 minus 1205821119890119906 minus119872119906119877119906minus W119879119906H119906 (x119906) minus 120576119873 sign (119904119906) + 119896119904119906120585119906)

(26)

120591119903119888 = 1119872119903 ( 120573119889 minus 1198962119904119903 minus 1205782 sign (119904119903) minus 1205822 119890120573 minus 119863119903119908minus 1205823119890120573 minus W119879119903H119903 (x119903) minus 120576119873 sign (119904119903) + 119896119904119903120585119903)

(27)

where 1198961 1198962 1205781 1205782 119896119904119906 and 119896119904119903 are positive constants W119906 =W119906 +Wlowast119906 W119903 = W119903 +Wlowast119903 and119863119903119908 is defined in (20)

And the adaptive laws areW120603 = 120574120603119904120603H120603 (x120603) 120603 = 119906 119903 (28)

where 120574120603 is the adaptive coefficient

34 Stability Analysis

Theorem 5 If the state tracking errors (17) the desired states(15) the auxiliary dynamic system (25) the surge control law120591119906119888 (26) the yaw control law 120591119903119888 (27) and the adaptive laws(28) are applied to the hovercraft system represented by (6)and for any bounded initial condition the closed-loop controlsystem signals 119904119906 119904119903 120585119906 120585119903 119890119906 119890120573 119909119890 119910119890 and 119908119894119906 and 119908119894119903119894 = 1 2 119899 are uniformly ultimately bounded (UUB)The position and desired state tracking errors can be madearbitrarily small by appropriately selecting design parametersAnd the yaw motion will remain bounded

Proof The following Lyapunov function is defined

119881 = 121199042119906 + 121199042119903 + 12120574119906 W119879119906W119906 +12120574119903 W119879119903 W119903 +

121205852119906+ 121205852119903

(29)

From (19) (20) and (29) can be expressed as

= 119904119906 (119891119906 (x119906) + 119872119906120591119906 +119872119906119877119906 minus 119889 + 1205821119890119906)+ 119904119903 (119891119903 (x119903) + 119872119903120591119903 + 119863119903119908 minus 120573119889 + 1205822 119890120573 + 1205823119890120573)+ W119879119906

W119906120574119906 + W119879119903W119903120574119903 + 120585119906 120585119906 + 120585119903 120585119903

(30)

By defining 120591120603 = Δ120591120603 + 120591120603119888 and 120603 = 119906 119903 and using (22) (26)and (27) we have

= minus11989611199042119906 minus 1205781 10038161003816100381610038161199041199061003816100381610038161003816 + 119904119906 (minusW119879119906H119906 (x119906)) +119872119906119904119906Δ120591119906+ 119896119904119906119904119906120585119906 + (minus120576119873 10038161003816100381610038161199041199061003816100381610038161003816 + 120576119906119904119906) minus 11989621199042119903 minus 1205782 10038161003816100381610038161199041199031003816100381610038161003816+ 119904119903 (minusW119879119903H119903 (x119903)) +119872119903119904119903Δ120591119903 + 119896119904119903119904119903120585119903+ (minus120576119873 10038161003816100381610038161199041199031003816100381610038161003816 + 120576119903119904119903) + 1120574119906 W119879119906 W119906 + 1120574119903 W119879119903 W119903+ 120585119906 120585119906 + 120585119903 120585119903

(31)

By using |120576120603| le 120576119873 and 120603 = 119906 119903 (31) can be rewritten as

le minus11989611199042119906 minus 1205781 10038161003816100381610038161199041199061003816100381610038161003816 + 119904119906 (minusW119879119906H119906 (x119906)) minus 11989621199042119903minus 1205782 10038161003816100381610038161199041199031003816100381610038161003816 + 119904119903 (minusW119879119903H119903 (x119903)) + 119872119906119904119906Δ120591119906+ 119896119904119906119904119906120585119906 +119872119903119904119903Δ120591119903 + 119896119904119903119904119903120585119903 + 1120574119906 W119879119906 W119906+ 1120574119903 W119879119903 W119903 + 120585119906 120585119906 + 120585119903 120585119903

(32)

Substituting adaptive laws (28) into it yields

le minus11989611199042119906 +119872119906119904119906Δ120591119906 + 119896119904119906119904119906120585119906 + 120585119906 120585119906 minus 11989621199042119903+119872119903119904119903Δ120591119903 + 119896119904119903119904119903120585119903 + 120585119903 120585119903 (33)

The process of stability analysis is respectively discussed inthe following two cases

Case 1When 120585120603 ge 120590 in light of (25) andYoungrsquos inequalitywe have

120585120603 120585120603 = 120585120603Δ120581120603 minus 11989612058512060311205852120603 minus 1198961205851206032Δ1205812120603minus 10038161003816100381610038161198721206031199041206031003816100381610038161003816 1003816100381610038161003816120591120603 minus 1205911206031198881003816100381610038161003816

le 1198961205851206032Δ1205812120603 + 141198961205851206032 1205852120603 minus 11989612058512060311205852120603 minus 1198961205851206032Δ1205812120603minus 10038161003816100381610038161198721206031199041206031003816100381610038161003816 1003816100381610038161003816120591120603 minus 1205911206031198881003816100381610038161003816

= minus(1198961205851206031 minus 141198961205851206032)1205852120603 minus 10038161003816100381610038161198721206031199041206031003816100381610038161003816 1003816100381610038161003816120591120603 minus 1205911206031198881003816100381610038161003816

(34)

Substituting 120591120603 = Δ120591120603 + 120591120603119888 and (34) into (33) and usingYoungrsquos inequality yield

le minus11989611199042119906 + 119896119904119906119904119906120585119906 minus (1198961205851199061 minus 141198961205851199062)1205852119906 minus 11989621199042119903+ 119896119904119903119904119903120585119903 minus (1198961205851199031 minus 141198961205851199032)1205852119903

le minus (1198961 minus 05) 1199042119906 minus (1198961205851199061 minus 141198961205851199062 minus 051198962119904119906)1205852119906minus (1198962 minus 05) 1199042119903 minus (1198961205851199031 minus 141198961205851199032 minus 051198962119904119903)1205852119903minus 1198961W119879119906W119906120574119906 minus 1198962W119879119903 W119903120574119903 + 1198961W119879119906W119906120574119906+ 1198962W119879119903 W119903120574119903 le minus21205831119881 + 1205881

(35)

6 Mathematical Problems in Engineering

where

1205831 = min(1198961 minus 05) (1198961205851199061 minus 141198961205851199062 minus 051198962119904119906) (1198962 minus 05) (1198961205851199031 minus 141198961205851199032 minus 051198962119904119903)

1205881 = 1198961120574119906 W119879119906W119906 +1198962120574119903 W119879119903 W119903

(36)

Case 2 When 120585120603 lt 120590 in light of (25) and Youngrsquos ine-quality we have

120585120603 120585120603 = 120585120603deadzone (Δ120581120603 120590) le 051205852120603 + 05Δ12058121206030511989621199041206031205852120603 = 11989621199041206031205852120603 minus 0511989621199041206031205852120603 le minus0511989621199041206031205852120603 + 11989621199041206031205902 (37)

Substituting (37) into (33) and using Youngrsquos inequality yield

le minus11989611199042119906 +119872119906119904119906Δ120591119906 + 119896119904119906119904119906120585119906 + 051205852119906 + 05Δ1205812119906minus 11989621199042119903 +119872119903119904119903Δ120591119903 + 119896119904119903119904119903120585119903 + 051205852119903 + 05Δ1205812119903

le minus (1198961 minus 1) 1199042119906 minus (1198962 minus 1) 1199042119903 + 051198722119906Δ1205912119906+ 051198722119903Δ1205912119903 + 0511989621199041199061205852119906 + 0511989621199041199031205852119903 + 051205852119906+ 05Δ1205812119906 + 051205852119903 + 05Δ1205812119903

le minus (1198961 minus 1) 1199042119906 minus (1198962 minus 1) 1199042119903 minus 051205852119906 (1198962119904119906 minus 1)minus 051205852119903 (1198962119904119903 minus 1) + 051198722119906Δ1205912119906 + 051198722119903Δ1205912119903+ 11989621199041199061205902 + 11989621199041199031205902 + 05Δ1205812119906 + 05Δ1205812119903

le minus21205832119881 + 1205882

(38)

where

1205832 = min (1198961 minus 1) (051198962119904119906 minus 05) (1198962 minus 1) (051198962119904119903 minus 05)

1205882 = 1198961120574119906 W119879119906W119906 +1198962120574119903 W119879119903 W119903 + 051198722119906Δ1205912119906

+ 051198722119903Δ1205912119903 + (1198962119904119906 + 1198962119904119903) 1205902 + (Δ1205812119906 + Δ1205812119903)2

(39)

Synthesizing (35) and (38) we have

le minus2120583119881 + 120588 (40)

where 120583 = min1205831 1205832 and 120588 = max1205881 1205882 with the designparameters 1198961 1198962 119896119904119906 119896119904119903 1198961205851199061 1198961205851199062 1198961205851199031 and 1198961205851199032 satisfying

1198961 gt 11198962 gt 1119896119904119906 gt 1119896119904119903 gt 1

1198961205851199061 minus 141198961205851199062 minus 051198962119904119906 gt 01198961205851199031 minus 141198961205851199032 minus 051198962119904119903 gt 0

(41)

Solving (40) we have

0 le 119881 (119905) le 1205882120583 + [119881 (0) minus 1205882120583] 119890minus2120583119905 (42)

It is obviously seen that 119881(119905) is UUB for all 119881(0) le 1198610 with1198610 being any positive constant Therefore in the light of (29)we know that 119904119906 119904119903 120585119906 120585119903 and 119908119894119906 and 119908119894119903 119894 = 1 2 119899 areUUB for all 119881(0) le 1198610 It can be expressed as

10038171003817100381710038171205941003817100381710038171003817 le radic 120588120583 + 2 [119881 (0) minus 1205882120583] 119890minus2120583119905 (43)

where 120594 = 119904119906 119904119903 120585119906 120585119903 119908119894119906 119908119894119903It implies that there exists 119879 gt 0 such that for all 119905 gt 119879

10038171003817100381710038171205941003817100381710038171003817 le radic 120588120583 (44)

where radic120588120583 can be made arbitrarily small by appropriatelyselecting the design parameters

Further the following dynamics are obtained from (18)and (44)

119890119906 + 1205821 int1199050119890119906 119889120591 = 120576119906

119890120573 + 1205822119890120573 + 1205823 int1199050119890120573 119889120591 = 120576120573

(45)

where 120576119906 and 120576120573 are arbitrarily small errorsTo prove that 119890119906 and 119890120573 are UUB the Lyapunov function

is given by

119881119904 = 12 (int1199050119890119906 119889120591)2 + 121198902120573 (46)

The time derivative of this Lyapunov function along thedynamics in (45) is such that

119904 = 119890119906 int1199050119890119906 119889120591 + 119890120573 119890120573

= minus1205821 (int1199050119890119906 119889120591)2 minus 12058221198902120573 + 120576119906 int119905

0119890119906 119889120591

minus 1205823119890120573 int1199050119890120573 119889120591 + 120576120573119890120573

(47)

Mathematical Problems in Engineering 7

From Youngrsquos inequality the following fact is obtained

120576119906 int1199050119890119906 119889120591 le 051205821 (int119905

0119890119906 119889120591)2 + 05 12057621199061205821

minus1205823119890120573 int1199050119890120573 119889120591 le 120582211989021205732 + 120582321205822 (int

119905

0119890120573 119889120591)2

120576120573119890120573 le 02512058221198902120573 + 12057621205731205822

(48)

Then

119904 le minus051205821 (int1199050119890119906 119889120591)2 minus 02512058221198902120573 + 05 12057621199061205821

+ 0512058231205822 (int119905

0119890120573 119889120591)2 + 12057621205731205822 = minus2120583119904119881119904 + 120588119904

(49)

where

120583119904 = min 051205821 0251205822 120588119904 = 05 12057621199061205821 + 0512058231205822 (int

119905

0119890120573 119889120591)2 + 12057621205731205822

(50)

Similar to the analysis in (42)sim(44) there exists 119879119904 gt 0 suchthat for all 119905 gt 119879119904

10038171003817100381710038171205941199041003817100381710038171003817 le radic 120588119904120583119904 (51)

where 120594119904 = int1199050119890119906 119889120591 119890120573

It is obvious that int1199050119890119906 119889120591 and 119890120573 are UUB and will be

arbitrarily small by choosing suitable parametersFrom 119904119906 = 119890119906 + 1205821 int1199050 119890119906 119889120591 we know 119890119906 will be arbitrarily

small From (6) and (15) we have

[ 119906 minus 119906119889119906 tan120573 minus 119906119889 tan120573119889] = 119877[119890 + 119896119909 10038161003816100381610038161199091198901003816100381610038161003816 sign (119909119890)119910119890 + 119896119910 10038161003816100381610038161199101198901003816100381610038161003816 sign (119910119890)] (52)

where

119877 = [ cos120595 sin120595minus sin120595 cos120595] (53)

It is clear that |119877| = 1 which indicates that it is nonsingularThen we have

119890 = minus119896119909 10038161003816100381610038161199091198901003816100381610038161003816 sign (119909119890) + 120576119909119887119910119890 = minus119896119910 10038161003816100381610038161199101198901003816100381610038161003816 sign (119910119890) + 120576119910119887 (54)

where 120576119909119887 120576119910119887 are arbitrarily small errorsFurthermore consider the following Lyapunov function

candidate

119881119901 = 121199092119890 + 121199102119890 (55)

The time derivative of 119881119901 along the dynamics in (54) is suchthat

119901 = 119909119890119890 + 119910119890 119910119890= 119909119890 (minus119896119909 10038161003816100381610038161199091198901003816100381610038161003816 sign (119909119890) + 120576119909119887)

+ 119910119890 (minus119896119910 10038161003816100381610038161199101198901003816100381610038161003816 sign (119910119890) + 120576119910119887)= minus119896119909 100381610038161003816100381611990911989010038161003816100381610038162 minus 119896119910 100381610038161003816100381611991011989010038161003816100381610038162 + 119909119890120576119909119887 + 119910119890120576119910119887le minus05119896119909 100381610038161003816100381611990911989010038161003816100381610038162 minus 05119896119910 100381610038161003816100381611991011989010038161003816100381610038162 + 12057621199091198872119896119909 +

12057621199101198872119896119910= minus2120583119901119881119901 + 120588119901

(56)

where

120583119901 = min 05119896119909 05119896119910 120588119901 = 12057621199091198872119896119909 +

12057621199101198872119896119910 (57)

Also similar to the analysis in (42)sim(44) there exists 119879119901 gt 0such that for all 119905 gt 119879119901

1003817100381710038171003817100381712059411990110038171003817100381710038171003817 le radic 120588119901120583119901 (58)

where 120594119901 = 119909119890 119910119890From the reason that 120576119909119887 and 120576119910119887 are arbitrarily small

errors we know that 119909119890 and 119910119890 are UUB andwill be arbitrarilysmall

Also 119906 is continuously differentiable in the movingprocess of hovercraft Hence is bounded From (6) we have

= 119906119903 tan (120573) + 119877119906 + 120591119906119898 (59)

From (15) Remark 4 and the boundedness of 119909119890 and 119910119890we have that 119906119889 and 120573119889 are bounded Then 119906 V and 120573 arebounded from (5) and (17) Furthermore119877119906 is bounded from(3)Therefore it can be concluded that 119903will remain boundedfrom (7) and (59) This concludes the proof

Remark 6 In order to avoid the well-known chatteringproblem the sign function used in the control laws (26) and(27) can be replaced by hyperbolic tangent function whichis continuous such that sign(119904) = tanh(119896119867119904) where 119896119867 isa positive scalar which can be chosen to get a very goodapproximation

4 Simulations

Two different cases are implemented to verify the effective-ness and superiority of the proposed controller In simula-tions the main particulars and constraints of hovercraft areshown in Tables 1 and 2 The water surface is calm withoutwaves

8 Mathematical Problems in Engineering

Table 1 Main particulars of hovercraft

119898 (kg) 40000119869119911 (kgm2) 18 times 106119878PP (m2) 45119878LP (m2) 93119878HP (m2) 260119876 (m3s) 1408119881119908 (knots) 10119897sk (m) 65119861119888 (m) 89119897119888 (m) 236ℎ (m) 1119867hov (m) 59119878119888 (m2) 212120573119908 (deg) 45

Table 2 State and input constraints

Variable Maximum Minimum119906 (knots) 40 25120573 (deg) 8 minus8120591119906 (N) 80000 minus80000120591119903 (Nm) 1 times 105 minus1 times 105

The comparisons of three different methods are carriedout in each case The legend ldquoMethod Ardquo means the methodin [14] the legend ldquoMethod Brdquo means the method withoutstate and input saturation constraints

Saturation coefficients are

119896119904119906 = 121198961199081199061 = 11198961199081199062 = 9030001198961205851199061 = 31119896119904119903 = 12

1198961199081199031 = 11198961199081199032 = 6503001198961205851199031 = 381198961205851199062 = 0081198961205851199032 = 008

120590 = 3120590 = 1

(60)

Case 1 The reference trajectory parameters are

119909119889 (0) = 300m119910119889 (0) = 100m

120595119889 (0) = 45∘119906119889set (119905) = 35 knotsV119889set (119905) = 0119903119889set (119905) = 0

(61)

The initial values of hovercraft model are119909 (0) = 0119910 (0) = 0120595 (0) = 70∘119906 (0) = 35 knots120573 (0) = 0119903 (0) = 0

(62)

The controller parameters are

119896119909 = 06119896119910 = 061198961 = 111205781 = 0251205821 = 21198962 = 121205782 = 051205822 = 301205823 = 6120576119873 = 05

(63)

It is observed from Figures 3ndash8 that the proposed trajectorytracking controller is effective Tracking errors of all threemethods converge to arbitrarily small values and headingangle is bounded From the comparisons with Methods Aand B in Figures 9 and 10 the proposed controller canlimit the surge speed and the drift angle into the safe rangeeffectively Figures 11 and 12 show that the input saturation isalso handled by the proposed controller

Case 2 The reference trajectory parameters are

119909119889 (0) = minus200m119910119889 (0) = 50m120595119889 (0) = 45∘

119906119889set (119905) = 35 knotsV119889set (119905) = 0119903119889set (119905) = 01∘s

(64)

Mathematical Problems in Engineering 9

0 2000 4000 6000 8000 10000 12000

0

5000

10000

15000

Starting point

Proposed controllerMethod A

Method BDesired trajectory

x(m

)

y (m)

Figure 3 The actual and desired trajectory of hovercraft

0 200 400 600 800 1000 1200 140020

40

60

80

Time (s)

Proposed controllerMethod AMethod B

(d

eg)

Figure 4 The heading angle of hovercraft

0 200 400 600 800 1000 1200 1400

0

500

Time (s)

Proposed controllerMethod AMethod B

xe

(m)

minus500

minus1000

Figure 5 The surge position tracking error

The initial values of hovercraft model are119909 (0) = 0119910 (0) = 0120595 (0) = 30∘119906 (0) = 35 knots120573 (0) = 0119903 (0) = 0

(65)

The controller parameters are

119896119909 = 06119896119910 = 061198961 = 153

0 200 400 600 800 1000 1200 1400

0

500

1000

Time (s)

Proposed controllerMethod AMethod B

ye

(m)

minus500

Figure 6 The sway position tracking error

0 200 400 600 800 1000 1200 1400

0

10

Time (s)

Proposed controllerMethod AMethod B

e u(k

nots)

minus10

minus20

Figure 7 The surge velocity tracking error

0 200 400 600 800 1000 1200 1400

0

5

Time (s)

Proposed controllerMethod AMethod B

e (d

eg)

minus10

minus5

Figure 8 The drift angle tracking error

1205781 = 011205821 = 41198962 = 121205782 = 051205822 = 301205823 = 2120576119873 = 05

(66)

It is obvious from Figures 14ndash19 that only the proposedcontroller can track the trajectory successfully Figures 20 and21 show that the surge speed changes to negative values andthe drift angle exceeds the safety limit in the tracking control

10 Mathematical Problems in Engineering

0 200 400 600 800 1000 1200 140020

40

60

80

Time (s)

Proposed controller

u (k

nots)

Method AMethod B

Figure 9 The surge velocity of hovercraft

0 200 400 600 800 1000 1200 1400

0

10

Time (s)

Proposed controllerMethod AMethod B

(d

eg)

minus10

minus20

Figure 10 The drift angle of hovercraft

0 200 400 600 800 1000 1200 1400

0

2

4

Time (s)

0 50 1000

5

10

Proposed controllerMethod AMethod B

uc

(N)

times105

times104

Figure 11 The surge control law of hovercraft

process ofMethods A and BThese are absolutely not allowedfor hovercraft In contrast you can see from Figure 20 thatsurge speed can still be positive even large enough to avoidthe influence of the resistance humps under the control of theproposed controller And drift angle is also within the safetylimit from Figure 21 From Figures 22 and 23 we know thatthe input constraint ability of the proposed controller is effec-tive Figures 13 and 24 show the heave position of hovercraft

5 Conclusion

A safety-guaranteed trajectory tracking controller has beenproposed for underactuated hovercraft in this paper Thesafety-guaranteed auxiliary dynamic system is designed todeal with state and input constraints The velocity of hov-ercraft is constrained to eliminate the effect of resistance

0 200 400 600 800 1000 1200 1400minus4

0

Time (s)

0 10 20minus15minus10minus5

05

Proposed controllerMethod AMethod B

rc

(Nm

)

times105

times104

minus2

Figure 12 The yaw control law of hovercraft

0 200 400 600 800 1000 1200 1400minus245

minus24

minus235

Time (s)z

(m)

Proposed controllerMethod AMethod B

Figure 13 The heave position of hovercraft

minus2000 0 2000 4000 6000 8000 10000 12000minus1000

0

1000

2000

3000

Starting point

Proposed controllerMethod A

Method BDesired trajectory

minus200minus100

0100

x(m

)

y (m)

minus20 0 20 40 60 80

Figure 14 The actual and desired trajectory of hovercraft

0 200 400 600 800 1000 12000

50

100

150

Time (s)

Proposed controllerMethod AMethod B

(d

eg)

Figure 15 The heading angle of hovercraft

hump and obtain better stability The safety limit of driftangle is carried out effectively for safety in the high-speedtrajectory tracking process of hovercraftThe input saturationis handled High nonlinearity and model uncertainties areapproximated by RBFNNs Simulation results have been

Mathematical Problems in Engineering 11

0 200 400 600 800 1000 1200

0

100

200

300

Time (s)

Proposed controllerMethod AMethod B

xe

(m)

minus100

Figure 16 The surge position tracking error

0 200 400 600 800 1000 1200minus600

minus400

minus200

0

200

Time (s)

Proposed controllerMethod AMethod B

ye

(m)

Figure 17 The sway position tracking error

0 200 400 600 800 1000 1200

0

100

200

300

Time (s)

Proposed controllerMethod AMethod B

e u(k

nots)

minus100

Figure 18 The surge velocity tracking error of hovercraft

0 200 400 600 800 1000 1200

0

2

4

6

Time (s)

Proposed controllerMethod AMethod B

e (d

eg)

minus2

Figure 19 The drift angle tracking error of hovercraft

0 200 400 600 800 1000 1200

0

50

Time (s)

0 100 200

0

50

Proposed controllerMethod AMethod B

u(k

nots)

minus50minus50

minus100

Figure 20 The surge velocity of hovercraft

0 200 400 600 800 1000 1200

0

100

200

Time (s)

0 100 2000

20

40

Proposed controllerMethod AMethod B

(d

eg)

minus100

Figure 21 The drift angle of hovercraft

0 200 400 600 800 1000 1200

0

Time (s)

0 50 100

0

Proposed controllerMethod AMethod B

uc

(N)

minus5

minus10

times105

times104

minus5

minus10

Figure 22 The surge control law of hovercraft

0 200 400 600 800 1000 1200

0

10

20

Time (s)

0 10 20

05

1015

Proposed controllerMethod AMethod B

rc

(Nm

)

minus5

times109

times104

Figure 23 The yaw control law of hovercraft

12 Mathematical Problems in Engineering

0 200 400 600 800 1000 1200Time (s)

Proposed controllerMethod AMethod B

z(m

)

minus15

minus2

minus25

minus3

Figure 24 The heave position of hovercraft

presented to illustrate the effectiveness of the proposed con-troller

Conflicts of Interest

The authors declare that there are no conflicts of interestregarding the publication of this paper

Acknowledgments

The supports of the National Natural Science Foundationof China (Grant no 51309062) and the project ldquoResearchon Maneuverability of High Speed Hovercraftrdquo (Project no2007DFR80320) are gratefully acknowledged

References

[1] Y Liang and A Bliault Theory amp Design of Air Cushion CraftArnold 2000

[2] H Sira-Ramırez ldquoDynamic second-order sliding mode controlof the hovercraft vesselrdquo IEEE Transactions on Control SystemsTechnology vol 10 no 6 pp 860ndash865 2002

[3] J Aranda ldquoA Control for tracki-ng and stabilization of anunder-actuated nonlinear RC hovercraftrdquo International Feder-ation of Auto-matic Control 2006

[4] J Zhao and J Pang ldquoTrajectory control of underactuated hover-craftrdquo inProceedings of the 2010 8thWorldCongress on IntelligentControl and Automation (WCICA rsquo10) pp 3904ndash3907 July 2010

[5] RMorales H Sira-Ramırez and J A Somolinos ldquoLinear activedisturbance rejection control of the hovercraft vessel modelrdquoOcean Engineering vol 96 pp 100ndash108 2015

[6] G G Rigatos and G V Raffo ldquoInputndashoutput linearizing con-trol of the underactuated hovercraft using the derivative-freenonlinear kalman filterrdquo Unmanned Systems vol 03 no 02 pp127ndash142 2015

[7] K Shojaei ldquoTrajectory tracking control of autonomous under-actuated hovercraft vehicles with limited torquerdquo in Proceedingsof the 2014 2nd RSIISM International Conference on Roboticsand Mechatronics (ICRoM rsquo14) pp 468ndash473 October 2014

[8] K Shojaei ldquoNeural adaptive robust control of underactuatedmarine surface vehicles with input saturationrdquo Applied OceanResearch vol 53 pp 267ndash278 2015

[9] M Cohen T Miloh and G Zilman ldquoWave resistance of ahovercraft moving in water with nonrigid bottomrdquoOcean Engi-neering vol 28 no 11 pp 1461ndash1478 2001

[10] Y Yang Z K Zhang and M D Amp ldquoiscussion and practiceabout hump transition problem of high-density air medium-low speed ACVrdquo Ship amp Boat 2014

[11] H Fu ldquoAnalysis and consider- ation on safety of all-lift hover-craftrdquo Ship amp Boat 2008

[12] M Tao and W Chengjie Hovercraft performance and skirt-cushion system dynamics design National Defence IndustryPress 2012

[13] G Zilman ldquoMathematical simula- tion of hovercraft maneu-verin- grdquo Proceedings of the Twenty-Third American Towing tankConference pp 373ndash382 1993

[14] J Du X Hu M Krstic and Y Sun ldquoRobust dynamic position-ing of ships with disturbances under input saturationrdquo Auto-matica vol 73 pp 207ndash214 2016

[15] M Chen S S Ge and B Ren ldquoAdaptive tracking control ofuncertain MIMO nonlinear systems with input constraintsrdquoAutomatica vol 47 no 3 pp 452ndash465 2011

[16] S Li YWang J Tan and Y Zheng ldquoAdaptive RBFNNsintegralsliding mode control for a quadrotor aircraftrdquoNeurocomputingvol 216 pp 126ndash134 2016

[17] K Xia and W Huo ldquoRobust adaptive backstepping neuralnetworks control for spacecraft rendezvous and docking withinput saturationrdquo ISA Transactions vol 62 pp 249ndash257 2016

[18] J Feng and G-X Wen ldquoAdaptive NN consensus tracking con-trol of a class of nonlinear multi-agent systemsrdquo Neurocomput-ing vol 151 no 1 pp 288ndash295 2015

[19] T Elmokadem M Zribi and K Youcef-Toumi ldquoTrajectorytracking sliding mode control of underactuated AUVsrdquo Non-linear Dynamics vol 84 no 2 pp 1079ndash1091 2016

[20] T Elmokadem M Zribi and K Youcef-Toumi ldquoTerminal slid-ing mode control for the trajectory tracking of underactuatedAutonomousUnderwaterVehiclesrdquoOceanEngineering vol 129pp 613ndash625 2017

[21] V K Dyachenko Resistance of Air Cushion Vehicle CentralResearch Institute of ACAD Krylov 1999

Submit your manuscripts athttpswwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Safety-Guaranteed Trajectory Tracking Control for …downloads.hindawi.com/journals/mpe/2017/9452920.pdfSafety-Guaranteed Trajectory Tracking Control for the Underactuated Hovercraft

2 Mathematical Problems in Engineering

Figure 1 A 3Dmodel of hovercraft Photo is from the internationalcooperation project described in Acknowledgments

Propeller

Rudder

Surge force

Yaw moment

w

U

r

u

Figure 2 Diagram of underactuated hovercraft

networks (RBFNNs) are used to stabilize complex nonlineardynamic systems and deal with model uncertainties [16ndash18]

The contributions of this paper are as follows

(i) The velocity of hovercraft is controlled within a rea-sonable range to avoid the effect of resistance humpand keep better stability

(ii) The safety limit of drift angle is obeyed to get light safemaneuvers of hovercraft moving with high velocities

(iii) The control input is constrained to handle inputsaturation

This paper is organized as follows Section 2 establishes a non-linear model of underactuated hovercraft and the transfor-mation of it Section 3 proposes a safety-guaranteed auxiliarydynamic system for state and input constraintsMoreover thecontroller is designed and analyzed in this section Numericalsimulation results are shown in Section 4 and the conclusionis discussed in Section 5

2 Problem Formulation

21 Hovercraft Model Description In general only air pro-pellers and rudders are available for hovercraft as shown inFigure 2 It means only the surge and yaw can be regulateddirectly but without any actuators for their sway motion[19 20]

The nonlinear model of hovercraft is obtained by neglect-ing the roll and pitch motions

[ 119910 ]119879 = 119878 (120595) [119906 V 119908 119903]119879 [[[[[[

V

119903

]]]]]]

= [[[[[[

V119903minus11990611990300

]]]]]]

+119872[[[[[[

119877119906 + 120591119906119877V119877119908 minus 119901119888119878119888119877119903 + 120591119903

]]]]]] (1)

where

119878 (120595) = [[[[[[

cos120595 minus sin120595 0 0sin120595 cos120595 0 00 0 1 00 0 0 1

]]]]]]

119872 =[[[[[[[[[[[

1119898 0 0 00 1119898 0 00 0 1119898 00 0 0 1119869119911

]]]]]]]]]]]

(2)

the signals 119906 V and 119908 represent the surge sway and heavevelocities 119903 is the turn rate 119909 119910 and 119911 denote the position ofhovercraftrsquos mass center in the earth fixed frame 120595 describesyaw angle 119898 and 119869119911 are hovercraftrsquos mass and moments ofinertia 120591119906 and 120591119903 are the control inputs which are providedby the actuators 119901119888 is the average cushion pressure 119878119888 isthe cushion area and [119877119906 119877V 119877119908 119877119903]119879 are the total dragswritten as

119877119898 = 120588119886119881119886119876119877wm = 119862wm1199012119888119861119888120588119908119892 119877sk = 051205881199081198812119886119862sk ( ℎ119897sk)

minus034 119897sk11987805119888+ (28167 (119901119888119897119888 )

minus0259 minus 1)119877wm119877119906 = 119877119906119886 + 119877119906119898 + 119877119906wm + 119877119906sk

= minus051205881198861198812119886119862119906119886119878PP minus 119877119898 cos120573 minus 119877wm cos120573minus 119877sk cos120573

119877V = 119877V119886 + 119877V119898 + 119877Vwm + 119877Vsk

= minus051205881198861198812119886119862V119886119878LP minus 119877119898 sin120573 minus 119877wm sin120573minus 119877sk sin120573

119877119908 = 119877119908119886 + 119877119908wm + 119866= minus051205881198861198812119886119862119908119886119878HP minus 120588119886119908119876 + 119866

Mathematical Problems in Engineering 3

119877119903 = 119877119903119886 + 119877119903119898 + 119877119903wm + 119877119903sk= minus051205881198861198812119886119862119903119886119878HP119867hov minus 119877V119886 times 119909119886 + 119877119906119886 times 119910119886

minus 119877V119898119909119898 + 119877119906119898119910119898 minus 119877Vwm119909wm + 119877119906wm119910wmminus 119877Vsk119909sk + 119877119906sk119910sk

(3)

where the dragrsquos suffix 119886 is the aerodynamic profile drag wmis the wave-making drag 119898 is the air momentum drag sk isthe skirt drag 119862119906119886 119862V119886 119862119901119886 119862119903119886 119862wm and 119862sk are the dragcoefficients 119861119888 is the cushion beam 119897119888 is the cushion length119866 is the weight 119878PP 119878LP and 119878HP are the positive lateral andhorizontal projection areas 120573 is the drift angle 119876 is the fanflow rate of cushion fan ℎ is the distance between baffle andthe bottom of skirtrsquos finger 119897sk is the total peripheral lengthof the skirts 119867hov is the height of hovercraft 120588119886 and 120588119908 areair and water density and (119909119886 119910119886) (119909119898 119910119898) (119909wm 119910wm) and(119909sk 119910sk) are the coordinates of forcersquos acting points119881119886 and 119881119886 in (3) can be obtained by

119881119886= radic[119906 + 119881119908 cos (120573119908 minus 120595)]2 + [V + 119881119908 sin (120573119908 minus 120595)]2

119881119886 = radic1198812119886 + 1199082(4)

in which 119881119908 and 120573119908 are absolute wind speed and directionMore details can be found in [1 9 21]

Remark 1 When a hovercraft is moving on a calm watersurface cushion pressure 119901119888 varies within a narrow range andthe heavemotion is stableThis paper is the research about thehorizontal motion of the hovercraft Hence the heavemotionis not discussed and the cushion pressure 119901119888 is assumed to bea constant

From Figure 2 we have

V = 119906 tan (120573) (5)

In order to make 120573 be the system state and more convenientfor the constraint and control of 120573 an improved model isderived from (1) and (5) that is

[ 119910 ]119879 = 119878 (120595) [119906 119906 tan120573 119908 119903]119879 [[[[[[

120573

119903

]]]]]]

=[[[[[[[

119906119903 tan120573minus sin (2120573)2119906 minus 119903cos2120573

00

]]]]]]]

+119872[[[[[[[[

119877119906 + 120591119906119877V

cos2120573119906119877119908 minus 119901119888119878119888119877119903 + 120591119903

]]]]]]]]

(6)

22 State and Input Constraints Saturation nonlinearities ofactuators can be described by

120591120603 = sat (120591120603119888 120591120603119888max 120591120603119888min) 120603 = 119906 119903 (7)

where 120591120603119888max and 120591120603119888min are the maximum and minimumlimitations of actuators 120591120603119888 are the designed control laws andsat(sdot) is a generalized saturation function with the followingform

sat (120572 120572119872 120572119898) =

120572119872 if 120572 gt 120572119872120572 if 120572119898 le 120572 le 120572119872120572119898 if 120572 lt 120572119898

(8)

Assumption 2 All position orientation velocity and acceler-ation values of hovercraft are available for feedback

Safety limit of 120573 and hump speed of hovercraft need tobe obtained from model and real ship tests [11 12] In thispaper they are assumed to be known and available for thestate constraint Then the safe constraints of system state aredefined as

119906min le 119906 le 119906max120573min le 120573 le 120573max (9)

3 Controller Design

31 Safety-Guaranteed Auxiliary Dynamic System

Proposition 3 A constraint error function is designed as fol-lows

Δ120581 = 1198961199081 (sat (119909 119909119898119886119909 119909119898119894119899) minus 119909)+ 1198961199082 (sat (119906119888 119906119888119898119886119909 119906119888119898119894119899) minus 119906119888) (10)

where 1198961199081 gt 0 1198961199082 gt 0 119909 is the system state and 119906119888 is thedesigned control input

Then an auxiliary dynamic system is designed by

120585 = minus1198961205851120585 minus 120599 (sdot) + 1198961205852Δ1205812100381710038171003817100381712058510038171003817100381710038172 120585 + Δ120581 10038171003817100381710038171205851003817100381710038171003817 ge 120590deadzone (Δ120581 120590) 10038171003817100381710038171205851003817100381710038171003817 lt 120590

(11)

where 120585 is the state of the auxiliary dynamic system 1198961205851 1198961205852 arepositive constants 120590 120590 are positive small design constants 120599(sdot)can be derived from the stability analysis and deadzone(Δ120581 120590)is a dead zone function given by

119889119890119886119889119911119900119899119890 (Δ120581 120590) =

Δ120581 119894119891 Δ120581 gt 1205900 119894119891 minus 120590 lt Δ120581 le 120590Δ120581 119894119891 Δ120581 le 120590

(12)

32 Design of the Desired States Desired reference trajectoryis generated by a virtual ship described in the following form

[[[119889119910119889119889

]]]

= [[[cos120595119889 minus sin120595119889 0sin120595119889 cos120595119889 0

0 0 1]]][[[119906119889setV119889set119903119889set

]]] (13)

4 Mathematical Problems in Engineering

Then the trajectory tracking errors are defined as

(119909119890 119910119890) = (119909 minus 119909119889 119910 minus 119910119889) (14)

For the position tracking the desired states are designed by

119906119889 = (119889 minus 119896119909 10038161003816100381610038161199091198901003816100381610038161003816 sign (119909119890)) cos120595 + ( 119910119889 minus 119896119910 10038161003816100381610038161199101198901003816100381610038161003816sdot sign (119910119890)) sin120595

120573119889 = arctan(minus119889 minus 119896119909 10038161003816100381610038161199091198901003816100381610038161003816 sign (119909119890)119906119889 sin120595+ 119910119889 minus 119896119910 10038161003816100381610038161199101198901003816100381610038161003816 sign (119910119890)119906119889 cos120595)

(15)

where 119896119909 gt 0 and 119896119910 gt 0 are control gainsRemark 4 To guarantee the traceability of the referencetrajectory under state constraints the desired reference tra-jectory needs to satisfy the following conditions

(1198621) 120578119889 120578119889 and 120578119889 are all bounded in which 120578119889 = 119909119889119910119889 120595119889(1198622) There exists 119879119903 gt 0 such that for all 119905 gt 119879119903

119906min lt 119906119889 lt 119906max120573min lt 120573119889 lt 120573max (16)

33 Controller Design State tracking errors are defined as

119890119906 = 119906 minus 119906119889119890120573 = 120573 minus 120573119889 (17)

Then two integral sliding mode manifolds are given by

119904119906 = 119890119906 + 1205821 int1199050119890119906 119889120591

119904119903 = 119890120573 + 1205822119890120573 + 1205823 int1199050119890120573 119889120591

(18)

where 1205821 1205822 and 1205823 are positive constantsUsing (6) (17) and (18) the time derivatives of 119904119906 and 119904119903

are expressed as

119904119906 = 119890119906 + 1205821119890119906= 119891119906 (x119906) + 119872119906120591119906 +119872119906119877119906 minus 119889 + 1205821119890119906 (19)

119904119903 = 119890120573 + 1205822 119890120573 + 1205823119890120573= 119891119903 (x119903) + 119872119903120591119903 + 119863119903119908 minus 120573119889 + 1205822 119890120573 + 1205823119890120573 (20)

where

119891119906 (x119906) = 119906119903 tan120573 x119906 = [119906 120573 119903]119879 119891119903 (x119903) = minus119906 minus 221199062 sin (2120573) minus 120573119906 cos (2120573)

+ 120573119903 sin (2120573) x119903 = [119906 119903 120573 120573]119879 119872119906 = 1119898119872119903 = minuscos2120573119869119911 119863119903119908 = minus 120573119877V sin (2120573)119906119898 + 119906V minus 119877V1199062119898 cos2120573

minus 119877119903cos2120573119869119911

(21)

To deal with high nonlinearity and model uncertainties119891119906(x119906) and 119891119903(x119903) are approximated by RBFNNs

119891120603 (x120603) = Wlowast119879120603 H120603 (x120603) + 120576120603 120603 = 119906 119903 (22)

where x120603 isin 119877119868 is the input vector and Wlowast120603 isin 119877119899 is the idealweight vectorH120603(x120603) 119877119868 rarr 119877119899 is the basis function vectorwith element ℎ119894120603(x120603) shown as follows

ℎ119894120603 (x120603) = exp(minus1003817100381710038171003817x120603 minus 120583119894120603100381710038171003817100381721205902119894 ) (23)

where120583119894120603 is the center of the receptive field and120590119894 is thewidthof theGaussian functionThe approximation error 120576120603 satisfies|120576120603| le 120576119873

Using (10) and (11) constraint error functions aredesigned as follows

Δ120581119906 = 1198961199081199061 (sat (119906 119906max 119906min) minus 119906)+ 1198961199081199062 (sat (120591119906119888 120591119906119888max 120591119906119888min) minus 120591119906119888)

Δ120581119903 = 1198961199081199031 (sat (120573 120573max 120573min) minus 120573)+ 1198961199081199032 (sat (120591119903119888 120591119903119888max 120591119903119888min) minus 120591119903119888)

(24)

where 1198961199081199061 gt 0 1198961199081199062 gt 0 1198961199081199031 gt 0 and 1198961199081199032 gt 0Then the auxiliary dynamic system is designed as

120585120603=

(minus1198961205851206031120585120603 minus 120599120603 (sdot) + 1198961205851206032Δ1205811206032100381710038171003817100381712058512060310038171003817100381710038172 120585120603 + Δ120581120603) 10038171003817100381710038171205851206031003817100381710038171003817 ge 120590deadzone (Δ120581120603 120590) 10038171003817100381710038171205851206031003817100381710038171003817 lt 120590

(25)

where 120599120603(sdot) = |119872120603119904120603||120591120603 minus 120591120603119888| and 120603 = 119906 119903

Mathematical Problems in Engineering 5

Finally the control laws are given by

120591119906119888 = 1119872119906 (minus1198961119904119906 minus 1205781 sign (119904119906) + 119889 minus 1205821119890119906 minus119872119906119877119906minus W119879119906H119906 (x119906) minus 120576119873 sign (119904119906) + 119896119904119906120585119906)

(26)

120591119903119888 = 1119872119903 ( 120573119889 minus 1198962119904119903 minus 1205782 sign (119904119903) minus 1205822 119890120573 minus 119863119903119908minus 1205823119890120573 minus W119879119903H119903 (x119903) minus 120576119873 sign (119904119903) + 119896119904119903120585119903)

(27)

where 1198961 1198962 1205781 1205782 119896119904119906 and 119896119904119903 are positive constants W119906 =W119906 +Wlowast119906 W119903 = W119903 +Wlowast119903 and119863119903119908 is defined in (20)

And the adaptive laws areW120603 = 120574120603119904120603H120603 (x120603) 120603 = 119906 119903 (28)

where 120574120603 is the adaptive coefficient

34 Stability Analysis

Theorem 5 If the state tracking errors (17) the desired states(15) the auxiliary dynamic system (25) the surge control law120591119906119888 (26) the yaw control law 120591119903119888 (27) and the adaptive laws(28) are applied to the hovercraft system represented by (6)and for any bounded initial condition the closed-loop controlsystem signals 119904119906 119904119903 120585119906 120585119903 119890119906 119890120573 119909119890 119910119890 and 119908119894119906 and 119908119894119903119894 = 1 2 119899 are uniformly ultimately bounded (UUB)The position and desired state tracking errors can be madearbitrarily small by appropriately selecting design parametersAnd the yaw motion will remain bounded

Proof The following Lyapunov function is defined

119881 = 121199042119906 + 121199042119903 + 12120574119906 W119879119906W119906 +12120574119903 W119879119903 W119903 +

121205852119906+ 121205852119903

(29)

From (19) (20) and (29) can be expressed as

= 119904119906 (119891119906 (x119906) + 119872119906120591119906 +119872119906119877119906 minus 119889 + 1205821119890119906)+ 119904119903 (119891119903 (x119903) + 119872119903120591119903 + 119863119903119908 minus 120573119889 + 1205822 119890120573 + 1205823119890120573)+ W119879119906

W119906120574119906 + W119879119903W119903120574119903 + 120585119906 120585119906 + 120585119903 120585119903

(30)

By defining 120591120603 = Δ120591120603 + 120591120603119888 and 120603 = 119906 119903 and using (22) (26)and (27) we have

= minus11989611199042119906 minus 1205781 10038161003816100381610038161199041199061003816100381610038161003816 + 119904119906 (minusW119879119906H119906 (x119906)) +119872119906119904119906Δ120591119906+ 119896119904119906119904119906120585119906 + (minus120576119873 10038161003816100381610038161199041199061003816100381610038161003816 + 120576119906119904119906) minus 11989621199042119903 minus 1205782 10038161003816100381610038161199041199031003816100381610038161003816+ 119904119903 (minusW119879119903H119903 (x119903)) +119872119903119904119903Δ120591119903 + 119896119904119903119904119903120585119903+ (minus120576119873 10038161003816100381610038161199041199031003816100381610038161003816 + 120576119903119904119903) + 1120574119906 W119879119906 W119906 + 1120574119903 W119879119903 W119903+ 120585119906 120585119906 + 120585119903 120585119903

(31)

By using |120576120603| le 120576119873 and 120603 = 119906 119903 (31) can be rewritten as

le minus11989611199042119906 minus 1205781 10038161003816100381610038161199041199061003816100381610038161003816 + 119904119906 (minusW119879119906H119906 (x119906)) minus 11989621199042119903minus 1205782 10038161003816100381610038161199041199031003816100381610038161003816 + 119904119903 (minusW119879119903H119903 (x119903)) + 119872119906119904119906Δ120591119906+ 119896119904119906119904119906120585119906 +119872119903119904119903Δ120591119903 + 119896119904119903119904119903120585119903 + 1120574119906 W119879119906 W119906+ 1120574119903 W119879119903 W119903 + 120585119906 120585119906 + 120585119903 120585119903

(32)

Substituting adaptive laws (28) into it yields

le minus11989611199042119906 +119872119906119904119906Δ120591119906 + 119896119904119906119904119906120585119906 + 120585119906 120585119906 minus 11989621199042119903+119872119903119904119903Δ120591119903 + 119896119904119903119904119903120585119903 + 120585119903 120585119903 (33)

The process of stability analysis is respectively discussed inthe following two cases

Case 1When 120585120603 ge 120590 in light of (25) andYoungrsquos inequalitywe have

120585120603 120585120603 = 120585120603Δ120581120603 minus 11989612058512060311205852120603 minus 1198961205851206032Δ1205812120603minus 10038161003816100381610038161198721206031199041206031003816100381610038161003816 1003816100381610038161003816120591120603 minus 1205911206031198881003816100381610038161003816

le 1198961205851206032Δ1205812120603 + 141198961205851206032 1205852120603 minus 11989612058512060311205852120603 minus 1198961205851206032Δ1205812120603minus 10038161003816100381610038161198721206031199041206031003816100381610038161003816 1003816100381610038161003816120591120603 minus 1205911206031198881003816100381610038161003816

= minus(1198961205851206031 minus 141198961205851206032)1205852120603 minus 10038161003816100381610038161198721206031199041206031003816100381610038161003816 1003816100381610038161003816120591120603 minus 1205911206031198881003816100381610038161003816

(34)

Substituting 120591120603 = Δ120591120603 + 120591120603119888 and (34) into (33) and usingYoungrsquos inequality yield

le minus11989611199042119906 + 119896119904119906119904119906120585119906 minus (1198961205851199061 minus 141198961205851199062)1205852119906 minus 11989621199042119903+ 119896119904119903119904119903120585119903 minus (1198961205851199031 minus 141198961205851199032)1205852119903

le minus (1198961 minus 05) 1199042119906 minus (1198961205851199061 minus 141198961205851199062 minus 051198962119904119906)1205852119906minus (1198962 minus 05) 1199042119903 minus (1198961205851199031 minus 141198961205851199032 minus 051198962119904119903)1205852119903minus 1198961W119879119906W119906120574119906 minus 1198962W119879119903 W119903120574119903 + 1198961W119879119906W119906120574119906+ 1198962W119879119903 W119903120574119903 le minus21205831119881 + 1205881

(35)

6 Mathematical Problems in Engineering

where

1205831 = min(1198961 minus 05) (1198961205851199061 minus 141198961205851199062 minus 051198962119904119906) (1198962 minus 05) (1198961205851199031 minus 141198961205851199032 minus 051198962119904119903)

1205881 = 1198961120574119906 W119879119906W119906 +1198962120574119903 W119879119903 W119903

(36)

Case 2 When 120585120603 lt 120590 in light of (25) and Youngrsquos ine-quality we have

120585120603 120585120603 = 120585120603deadzone (Δ120581120603 120590) le 051205852120603 + 05Δ12058121206030511989621199041206031205852120603 = 11989621199041206031205852120603 minus 0511989621199041206031205852120603 le minus0511989621199041206031205852120603 + 11989621199041206031205902 (37)

Substituting (37) into (33) and using Youngrsquos inequality yield

le minus11989611199042119906 +119872119906119904119906Δ120591119906 + 119896119904119906119904119906120585119906 + 051205852119906 + 05Δ1205812119906minus 11989621199042119903 +119872119903119904119903Δ120591119903 + 119896119904119903119904119903120585119903 + 051205852119903 + 05Δ1205812119903

le minus (1198961 minus 1) 1199042119906 minus (1198962 minus 1) 1199042119903 + 051198722119906Δ1205912119906+ 051198722119903Δ1205912119903 + 0511989621199041199061205852119906 + 0511989621199041199031205852119903 + 051205852119906+ 05Δ1205812119906 + 051205852119903 + 05Δ1205812119903

le minus (1198961 minus 1) 1199042119906 minus (1198962 minus 1) 1199042119903 minus 051205852119906 (1198962119904119906 minus 1)minus 051205852119903 (1198962119904119903 minus 1) + 051198722119906Δ1205912119906 + 051198722119903Δ1205912119903+ 11989621199041199061205902 + 11989621199041199031205902 + 05Δ1205812119906 + 05Δ1205812119903

le minus21205832119881 + 1205882

(38)

where

1205832 = min (1198961 minus 1) (051198962119904119906 minus 05) (1198962 minus 1) (051198962119904119903 minus 05)

1205882 = 1198961120574119906 W119879119906W119906 +1198962120574119903 W119879119903 W119903 + 051198722119906Δ1205912119906

+ 051198722119903Δ1205912119903 + (1198962119904119906 + 1198962119904119903) 1205902 + (Δ1205812119906 + Δ1205812119903)2

(39)

Synthesizing (35) and (38) we have

le minus2120583119881 + 120588 (40)

where 120583 = min1205831 1205832 and 120588 = max1205881 1205882 with the designparameters 1198961 1198962 119896119904119906 119896119904119903 1198961205851199061 1198961205851199062 1198961205851199031 and 1198961205851199032 satisfying

1198961 gt 11198962 gt 1119896119904119906 gt 1119896119904119903 gt 1

1198961205851199061 minus 141198961205851199062 minus 051198962119904119906 gt 01198961205851199031 minus 141198961205851199032 minus 051198962119904119903 gt 0

(41)

Solving (40) we have

0 le 119881 (119905) le 1205882120583 + [119881 (0) minus 1205882120583] 119890minus2120583119905 (42)

It is obviously seen that 119881(119905) is UUB for all 119881(0) le 1198610 with1198610 being any positive constant Therefore in the light of (29)we know that 119904119906 119904119903 120585119906 120585119903 and 119908119894119906 and 119908119894119903 119894 = 1 2 119899 areUUB for all 119881(0) le 1198610 It can be expressed as

10038171003817100381710038171205941003817100381710038171003817 le radic 120588120583 + 2 [119881 (0) minus 1205882120583] 119890minus2120583119905 (43)

where 120594 = 119904119906 119904119903 120585119906 120585119903 119908119894119906 119908119894119903It implies that there exists 119879 gt 0 such that for all 119905 gt 119879

10038171003817100381710038171205941003817100381710038171003817 le radic 120588120583 (44)

where radic120588120583 can be made arbitrarily small by appropriatelyselecting the design parameters

Further the following dynamics are obtained from (18)and (44)

119890119906 + 1205821 int1199050119890119906 119889120591 = 120576119906

119890120573 + 1205822119890120573 + 1205823 int1199050119890120573 119889120591 = 120576120573

(45)

where 120576119906 and 120576120573 are arbitrarily small errorsTo prove that 119890119906 and 119890120573 are UUB the Lyapunov function

is given by

119881119904 = 12 (int1199050119890119906 119889120591)2 + 121198902120573 (46)

The time derivative of this Lyapunov function along thedynamics in (45) is such that

119904 = 119890119906 int1199050119890119906 119889120591 + 119890120573 119890120573

= minus1205821 (int1199050119890119906 119889120591)2 minus 12058221198902120573 + 120576119906 int119905

0119890119906 119889120591

minus 1205823119890120573 int1199050119890120573 119889120591 + 120576120573119890120573

(47)

Mathematical Problems in Engineering 7

From Youngrsquos inequality the following fact is obtained

120576119906 int1199050119890119906 119889120591 le 051205821 (int119905

0119890119906 119889120591)2 + 05 12057621199061205821

minus1205823119890120573 int1199050119890120573 119889120591 le 120582211989021205732 + 120582321205822 (int

119905

0119890120573 119889120591)2

120576120573119890120573 le 02512058221198902120573 + 12057621205731205822

(48)

Then

119904 le minus051205821 (int1199050119890119906 119889120591)2 minus 02512058221198902120573 + 05 12057621199061205821

+ 0512058231205822 (int119905

0119890120573 119889120591)2 + 12057621205731205822 = minus2120583119904119881119904 + 120588119904

(49)

where

120583119904 = min 051205821 0251205822 120588119904 = 05 12057621199061205821 + 0512058231205822 (int

119905

0119890120573 119889120591)2 + 12057621205731205822

(50)

Similar to the analysis in (42)sim(44) there exists 119879119904 gt 0 suchthat for all 119905 gt 119879119904

10038171003817100381710038171205941199041003817100381710038171003817 le radic 120588119904120583119904 (51)

where 120594119904 = int1199050119890119906 119889120591 119890120573

It is obvious that int1199050119890119906 119889120591 and 119890120573 are UUB and will be

arbitrarily small by choosing suitable parametersFrom 119904119906 = 119890119906 + 1205821 int1199050 119890119906 119889120591 we know 119890119906 will be arbitrarily

small From (6) and (15) we have

[ 119906 minus 119906119889119906 tan120573 minus 119906119889 tan120573119889] = 119877[119890 + 119896119909 10038161003816100381610038161199091198901003816100381610038161003816 sign (119909119890)119910119890 + 119896119910 10038161003816100381610038161199101198901003816100381610038161003816 sign (119910119890)] (52)

where

119877 = [ cos120595 sin120595minus sin120595 cos120595] (53)

It is clear that |119877| = 1 which indicates that it is nonsingularThen we have

119890 = minus119896119909 10038161003816100381610038161199091198901003816100381610038161003816 sign (119909119890) + 120576119909119887119910119890 = minus119896119910 10038161003816100381610038161199101198901003816100381610038161003816 sign (119910119890) + 120576119910119887 (54)

where 120576119909119887 120576119910119887 are arbitrarily small errorsFurthermore consider the following Lyapunov function

candidate

119881119901 = 121199092119890 + 121199102119890 (55)

The time derivative of 119881119901 along the dynamics in (54) is suchthat

119901 = 119909119890119890 + 119910119890 119910119890= 119909119890 (minus119896119909 10038161003816100381610038161199091198901003816100381610038161003816 sign (119909119890) + 120576119909119887)

+ 119910119890 (minus119896119910 10038161003816100381610038161199101198901003816100381610038161003816 sign (119910119890) + 120576119910119887)= minus119896119909 100381610038161003816100381611990911989010038161003816100381610038162 minus 119896119910 100381610038161003816100381611991011989010038161003816100381610038162 + 119909119890120576119909119887 + 119910119890120576119910119887le minus05119896119909 100381610038161003816100381611990911989010038161003816100381610038162 minus 05119896119910 100381610038161003816100381611991011989010038161003816100381610038162 + 12057621199091198872119896119909 +

12057621199101198872119896119910= minus2120583119901119881119901 + 120588119901

(56)

where

120583119901 = min 05119896119909 05119896119910 120588119901 = 12057621199091198872119896119909 +

12057621199101198872119896119910 (57)

Also similar to the analysis in (42)sim(44) there exists 119879119901 gt 0such that for all 119905 gt 119879119901

1003817100381710038171003817100381712059411990110038171003817100381710038171003817 le radic 120588119901120583119901 (58)

where 120594119901 = 119909119890 119910119890From the reason that 120576119909119887 and 120576119910119887 are arbitrarily small

errors we know that 119909119890 and 119910119890 are UUB andwill be arbitrarilysmall

Also 119906 is continuously differentiable in the movingprocess of hovercraft Hence is bounded From (6) we have

= 119906119903 tan (120573) + 119877119906 + 120591119906119898 (59)

From (15) Remark 4 and the boundedness of 119909119890 and 119910119890we have that 119906119889 and 120573119889 are bounded Then 119906 V and 120573 arebounded from (5) and (17) Furthermore119877119906 is bounded from(3)Therefore it can be concluded that 119903will remain boundedfrom (7) and (59) This concludes the proof

Remark 6 In order to avoid the well-known chatteringproblem the sign function used in the control laws (26) and(27) can be replaced by hyperbolic tangent function whichis continuous such that sign(119904) = tanh(119896119867119904) where 119896119867 isa positive scalar which can be chosen to get a very goodapproximation

4 Simulations

Two different cases are implemented to verify the effective-ness and superiority of the proposed controller In simula-tions the main particulars and constraints of hovercraft areshown in Tables 1 and 2 The water surface is calm withoutwaves

8 Mathematical Problems in Engineering

Table 1 Main particulars of hovercraft

119898 (kg) 40000119869119911 (kgm2) 18 times 106119878PP (m2) 45119878LP (m2) 93119878HP (m2) 260119876 (m3s) 1408119881119908 (knots) 10119897sk (m) 65119861119888 (m) 89119897119888 (m) 236ℎ (m) 1119867hov (m) 59119878119888 (m2) 212120573119908 (deg) 45

Table 2 State and input constraints

Variable Maximum Minimum119906 (knots) 40 25120573 (deg) 8 minus8120591119906 (N) 80000 minus80000120591119903 (Nm) 1 times 105 minus1 times 105

The comparisons of three different methods are carriedout in each case The legend ldquoMethod Ardquo means the methodin [14] the legend ldquoMethod Brdquo means the method withoutstate and input saturation constraints

Saturation coefficients are

119896119904119906 = 121198961199081199061 = 11198961199081199062 = 9030001198961205851199061 = 31119896119904119903 = 12

1198961199081199031 = 11198961199081199032 = 6503001198961205851199031 = 381198961205851199062 = 0081198961205851199032 = 008

120590 = 3120590 = 1

(60)

Case 1 The reference trajectory parameters are

119909119889 (0) = 300m119910119889 (0) = 100m

120595119889 (0) = 45∘119906119889set (119905) = 35 knotsV119889set (119905) = 0119903119889set (119905) = 0

(61)

The initial values of hovercraft model are119909 (0) = 0119910 (0) = 0120595 (0) = 70∘119906 (0) = 35 knots120573 (0) = 0119903 (0) = 0

(62)

The controller parameters are

119896119909 = 06119896119910 = 061198961 = 111205781 = 0251205821 = 21198962 = 121205782 = 051205822 = 301205823 = 6120576119873 = 05

(63)

It is observed from Figures 3ndash8 that the proposed trajectorytracking controller is effective Tracking errors of all threemethods converge to arbitrarily small values and headingangle is bounded From the comparisons with Methods Aand B in Figures 9 and 10 the proposed controller canlimit the surge speed and the drift angle into the safe rangeeffectively Figures 11 and 12 show that the input saturation isalso handled by the proposed controller

Case 2 The reference trajectory parameters are

119909119889 (0) = minus200m119910119889 (0) = 50m120595119889 (0) = 45∘

119906119889set (119905) = 35 knotsV119889set (119905) = 0119903119889set (119905) = 01∘s

(64)

Mathematical Problems in Engineering 9

0 2000 4000 6000 8000 10000 12000

0

5000

10000

15000

Starting point

Proposed controllerMethod A

Method BDesired trajectory

x(m

)

y (m)

Figure 3 The actual and desired trajectory of hovercraft

0 200 400 600 800 1000 1200 140020

40

60

80

Time (s)

Proposed controllerMethod AMethod B

(d

eg)

Figure 4 The heading angle of hovercraft

0 200 400 600 800 1000 1200 1400

0

500

Time (s)

Proposed controllerMethod AMethod B

xe

(m)

minus500

minus1000

Figure 5 The surge position tracking error

The initial values of hovercraft model are119909 (0) = 0119910 (0) = 0120595 (0) = 30∘119906 (0) = 35 knots120573 (0) = 0119903 (0) = 0

(65)

The controller parameters are

119896119909 = 06119896119910 = 061198961 = 153

0 200 400 600 800 1000 1200 1400

0

500

1000

Time (s)

Proposed controllerMethod AMethod B

ye

(m)

minus500

Figure 6 The sway position tracking error

0 200 400 600 800 1000 1200 1400

0

10

Time (s)

Proposed controllerMethod AMethod B

e u(k

nots)

minus10

minus20

Figure 7 The surge velocity tracking error

0 200 400 600 800 1000 1200 1400

0

5

Time (s)

Proposed controllerMethod AMethod B

e (d

eg)

minus10

minus5

Figure 8 The drift angle tracking error

1205781 = 011205821 = 41198962 = 121205782 = 051205822 = 301205823 = 2120576119873 = 05

(66)

It is obvious from Figures 14ndash19 that only the proposedcontroller can track the trajectory successfully Figures 20 and21 show that the surge speed changes to negative values andthe drift angle exceeds the safety limit in the tracking control

10 Mathematical Problems in Engineering

0 200 400 600 800 1000 1200 140020

40

60

80

Time (s)

Proposed controller

u (k

nots)

Method AMethod B

Figure 9 The surge velocity of hovercraft

0 200 400 600 800 1000 1200 1400

0

10

Time (s)

Proposed controllerMethod AMethod B

(d

eg)

minus10

minus20

Figure 10 The drift angle of hovercraft

0 200 400 600 800 1000 1200 1400

0

2

4

Time (s)

0 50 1000

5

10

Proposed controllerMethod AMethod B

uc

(N)

times105

times104

Figure 11 The surge control law of hovercraft

process ofMethods A and BThese are absolutely not allowedfor hovercraft In contrast you can see from Figure 20 thatsurge speed can still be positive even large enough to avoidthe influence of the resistance humps under the control of theproposed controller And drift angle is also within the safetylimit from Figure 21 From Figures 22 and 23 we know thatthe input constraint ability of the proposed controller is effec-tive Figures 13 and 24 show the heave position of hovercraft

5 Conclusion

A safety-guaranteed trajectory tracking controller has beenproposed for underactuated hovercraft in this paper Thesafety-guaranteed auxiliary dynamic system is designed todeal with state and input constraints The velocity of hov-ercraft is constrained to eliminate the effect of resistance

0 200 400 600 800 1000 1200 1400minus4

0

Time (s)

0 10 20minus15minus10minus5

05

Proposed controllerMethod AMethod B

rc

(Nm

)

times105

times104

minus2

Figure 12 The yaw control law of hovercraft

0 200 400 600 800 1000 1200 1400minus245

minus24

minus235

Time (s)z

(m)

Proposed controllerMethod AMethod B

Figure 13 The heave position of hovercraft

minus2000 0 2000 4000 6000 8000 10000 12000minus1000

0

1000

2000

3000

Starting point

Proposed controllerMethod A

Method BDesired trajectory

minus200minus100

0100

x(m

)

y (m)

minus20 0 20 40 60 80

Figure 14 The actual and desired trajectory of hovercraft

0 200 400 600 800 1000 12000

50

100

150

Time (s)

Proposed controllerMethod AMethod B

(d

eg)

Figure 15 The heading angle of hovercraft

hump and obtain better stability The safety limit of driftangle is carried out effectively for safety in the high-speedtrajectory tracking process of hovercraftThe input saturationis handled High nonlinearity and model uncertainties areapproximated by RBFNNs Simulation results have been

Mathematical Problems in Engineering 11

0 200 400 600 800 1000 1200

0

100

200

300

Time (s)

Proposed controllerMethod AMethod B

xe

(m)

minus100

Figure 16 The surge position tracking error

0 200 400 600 800 1000 1200minus600

minus400

minus200

0

200

Time (s)

Proposed controllerMethod AMethod B

ye

(m)

Figure 17 The sway position tracking error

0 200 400 600 800 1000 1200

0

100

200

300

Time (s)

Proposed controllerMethod AMethod B

e u(k

nots)

minus100

Figure 18 The surge velocity tracking error of hovercraft

0 200 400 600 800 1000 1200

0

2

4

6

Time (s)

Proposed controllerMethod AMethod B

e (d

eg)

minus2

Figure 19 The drift angle tracking error of hovercraft

0 200 400 600 800 1000 1200

0

50

Time (s)

0 100 200

0

50

Proposed controllerMethod AMethod B

u(k

nots)

minus50minus50

minus100

Figure 20 The surge velocity of hovercraft

0 200 400 600 800 1000 1200

0

100

200

Time (s)

0 100 2000

20

40

Proposed controllerMethod AMethod B

(d

eg)

minus100

Figure 21 The drift angle of hovercraft

0 200 400 600 800 1000 1200

0

Time (s)

0 50 100

0

Proposed controllerMethod AMethod B

uc

(N)

minus5

minus10

times105

times104

minus5

minus10

Figure 22 The surge control law of hovercraft

0 200 400 600 800 1000 1200

0

10

20

Time (s)

0 10 20

05

1015

Proposed controllerMethod AMethod B

rc

(Nm

)

minus5

times109

times104

Figure 23 The yaw control law of hovercraft

12 Mathematical Problems in Engineering

0 200 400 600 800 1000 1200Time (s)

Proposed controllerMethod AMethod B

z(m

)

minus15

minus2

minus25

minus3

Figure 24 The heave position of hovercraft

presented to illustrate the effectiveness of the proposed con-troller

Conflicts of Interest

The authors declare that there are no conflicts of interestregarding the publication of this paper

Acknowledgments

The supports of the National Natural Science Foundationof China (Grant no 51309062) and the project ldquoResearchon Maneuverability of High Speed Hovercraftrdquo (Project no2007DFR80320) are gratefully acknowledged

References

[1] Y Liang and A Bliault Theory amp Design of Air Cushion CraftArnold 2000

[2] H Sira-Ramırez ldquoDynamic second-order sliding mode controlof the hovercraft vesselrdquo IEEE Transactions on Control SystemsTechnology vol 10 no 6 pp 860ndash865 2002

[3] J Aranda ldquoA Control for tracki-ng and stabilization of anunder-actuated nonlinear RC hovercraftrdquo International Feder-ation of Auto-matic Control 2006

[4] J Zhao and J Pang ldquoTrajectory control of underactuated hover-craftrdquo inProceedings of the 2010 8thWorldCongress on IntelligentControl and Automation (WCICA rsquo10) pp 3904ndash3907 July 2010

[5] RMorales H Sira-Ramırez and J A Somolinos ldquoLinear activedisturbance rejection control of the hovercraft vessel modelrdquoOcean Engineering vol 96 pp 100ndash108 2015

[6] G G Rigatos and G V Raffo ldquoInputndashoutput linearizing con-trol of the underactuated hovercraft using the derivative-freenonlinear kalman filterrdquo Unmanned Systems vol 03 no 02 pp127ndash142 2015

[7] K Shojaei ldquoTrajectory tracking control of autonomous under-actuated hovercraft vehicles with limited torquerdquo in Proceedingsof the 2014 2nd RSIISM International Conference on Roboticsand Mechatronics (ICRoM rsquo14) pp 468ndash473 October 2014

[8] K Shojaei ldquoNeural adaptive robust control of underactuatedmarine surface vehicles with input saturationrdquo Applied OceanResearch vol 53 pp 267ndash278 2015

[9] M Cohen T Miloh and G Zilman ldquoWave resistance of ahovercraft moving in water with nonrigid bottomrdquoOcean Engi-neering vol 28 no 11 pp 1461ndash1478 2001

[10] Y Yang Z K Zhang and M D Amp ldquoiscussion and practiceabout hump transition problem of high-density air medium-low speed ACVrdquo Ship amp Boat 2014

[11] H Fu ldquoAnalysis and consider- ation on safety of all-lift hover-craftrdquo Ship amp Boat 2008

[12] M Tao and W Chengjie Hovercraft performance and skirt-cushion system dynamics design National Defence IndustryPress 2012

[13] G Zilman ldquoMathematical simula- tion of hovercraft maneu-verin- grdquo Proceedings of the Twenty-Third American Towing tankConference pp 373ndash382 1993

[14] J Du X Hu M Krstic and Y Sun ldquoRobust dynamic position-ing of ships with disturbances under input saturationrdquo Auto-matica vol 73 pp 207ndash214 2016

[15] M Chen S S Ge and B Ren ldquoAdaptive tracking control ofuncertain MIMO nonlinear systems with input constraintsrdquoAutomatica vol 47 no 3 pp 452ndash465 2011

[16] S Li YWang J Tan and Y Zheng ldquoAdaptive RBFNNsintegralsliding mode control for a quadrotor aircraftrdquoNeurocomputingvol 216 pp 126ndash134 2016

[17] K Xia and W Huo ldquoRobust adaptive backstepping neuralnetworks control for spacecraft rendezvous and docking withinput saturationrdquo ISA Transactions vol 62 pp 249ndash257 2016

[18] J Feng and G-X Wen ldquoAdaptive NN consensus tracking con-trol of a class of nonlinear multi-agent systemsrdquo Neurocomput-ing vol 151 no 1 pp 288ndash295 2015

[19] T Elmokadem M Zribi and K Youcef-Toumi ldquoTrajectorytracking sliding mode control of underactuated AUVsrdquo Non-linear Dynamics vol 84 no 2 pp 1079ndash1091 2016

[20] T Elmokadem M Zribi and K Youcef-Toumi ldquoTerminal slid-ing mode control for the trajectory tracking of underactuatedAutonomousUnderwaterVehiclesrdquoOceanEngineering vol 129pp 613ndash625 2017

[21] V K Dyachenko Resistance of Air Cushion Vehicle CentralResearch Institute of ACAD Krylov 1999

Submit your manuscripts athttpswwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Safety-Guaranteed Trajectory Tracking Control for …downloads.hindawi.com/journals/mpe/2017/9452920.pdfSafety-Guaranteed Trajectory Tracking Control for the Underactuated Hovercraft

Mathematical Problems in Engineering 3

119877119903 = 119877119903119886 + 119877119903119898 + 119877119903wm + 119877119903sk= minus051205881198861198812119886119862119903119886119878HP119867hov minus 119877V119886 times 119909119886 + 119877119906119886 times 119910119886

minus 119877V119898119909119898 + 119877119906119898119910119898 minus 119877Vwm119909wm + 119877119906wm119910wmminus 119877Vsk119909sk + 119877119906sk119910sk

(3)

where the dragrsquos suffix 119886 is the aerodynamic profile drag wmis the wave-making drag 119898 is the air momentum drag sk isthe skirt drag 119862119906119886 119862V119886 119862119901119886 119862119903119886 119862wm and 119862sk are the dragcoefficients 119861119888 is the cushion beam 119897119888 is the cushion length119866 is the weight 119878PP 119878LP and 119878HP are the positive lateral andhorizontal projection areas 120573 is the drift angle 119876 is the fanflow rate of cushion fan ℎ is the distance between baffle andthe bottom of skirtrsquos finger 119897sk is the total peripheral lengthof the skirts 119867hov is the height of hovercraft 120588119886 and 120588119908 areair and water density and (119909119886 119910119886) (119909119898 119910119898) (119909wm 119910wm) and(119909sk 119910sk) are the coordinates of forcersquos acting points119881119886 and 119881119886 in (3) can be obtained by

119881119886= radic[119906 + 119881119908 cos (120573119908 minus 120595)]2 + [V + 119881119908 sin (120573119908 minus 120595)]2

119881119886 = radic1198812119886 + 1199082(4)

in which 119881119908 and 120573119908 are absolute wind speed and directionMore details can be found in [1 9 21]

Remark 1 When a hovercraft is moving on a calm watersurface cushion pressure 119901119888 varies within a narrow range andthe heavemotion is stableThis paper is the research about thehorizontal motion of the hovercraft Hence the heavemotionis not discussed and the cushion pressure 119901119888 is assumed to bea constant

From Figure 2 we have

V = 119906 tan (120573) (5)

In order to make 120573 be the system state and more convenientfor the constraint and control of 120573 an improved model isderived from (1) and (5) that is

[ 119910 ]119879 = 119878 (120595) [119906 119906 tan120573 119908 119903]119879 [[[[[[

120573

119903

]]]]]]

=[[[[[[[

119906119903 tan120573minus sin (2120573)2119906 minus 119903cos2120573

00

]]]]]]]

+119872[[[[[[[[

119877119906 + 120591119906119877V

cos2120573119906119877119908 minus 119901119888119878119888119877119903 + 120591119903

]]]]]]]]

(6)

22 State and Input Constraints Saturation nonlinearities ofactuators can be described by

120591120603 = sat (120591120603119888 120591120603119888max 120591120603119888min) 120603 = 119906 119903 (7)

where 120591120603119888max and 120591120603119888min are the maximum and minimumlimitations of actuators 120591120603119888 are the designed control laws andsat(sdot) is a generalized saturation function with the followingform

sat (120572 120572119872 120572119898) =

120572119872 if 120572 gt 120572119872120572 if 120572119898 le 120572 le 120572119872120572119898 if 120572 lt 120572119898

(8)

Assumption 2 All position orientation velocity and acceler-ation values of hovercraft are available for feedback

Safety limit of 120573 and hump speed of hovercraft need tobe obtained from model and real ship tests [11 12] In thispaper they are assumed to be known and available for thestate constraint Then the safe constraints of system state aredefined as

119906min le 119906 le 119906max120573min le 120573 le 120573max (9)

3 Controller Design

31 Safety-Guaranteed Auxiliary Dynamic System

Proposition 3 A constraint error function is designed as fol-lows

Δ120581 = 1198961199081 (sat (119909 119909119898119886119909 119909119898119894119899) minus 119909)+ 1198961199082 (sat (119906119888 119906119888119898119886119909 119906119888119898119894119899) minus 119906119888) (10)

where 1198961199081 gt 0 1198961199082 gt 0 119909 is the system state and 119906119888 is thedesigned control input

Then an auxiliary dynamic system is designed by

120585 = minus1198961205851120585 minus 120599 (sdot) + 1198961205852Δ1205812100381710038171003817100381712058510038171003817100381710038172 120585 + Δ120581 10038171003817100381710038171205851003817100381710038171003817 ge 120590deadzone (Δ120581 120590) 10038171003817100381710038171205851003817100381710038171003817 lt 120590

(11)

where 120585 is the state of the auxiliary dynamic system 1198961205851 1198961205852 arepositive constants 120590 120590 are positive small design constants 120599(sdot)can be derived from the stability analysis and deadzone(Δ120581 120590)is a dead zone function given by

119889119890119886119889119911119900119899119890 (Δ120581 120590) =

Δ120581 119894119891 Δ120581 gt 1205900 119894119891 minus 120590 lt Δ120581 le 120590Δ120581 119894119891 Δ120581 le 120590

(12)

32 Design of the Desired States Desired reference trajectoryis generated by a virtual ship described in the following form

[[[119889119910119889119889

]]]

= [[[cos120595119889 minus sin120595119889 0sin120595119889 cos120595119889 0

0 0 1]]][[[119906119889setV119889set119903119889set

]]] (13)

4 Mathematical Problems in Engineering

Then the trajectory tracking errors are defined as

(119909119890 119910119890) = (119909 minus 119909119889 119910 minus 119910119889) (14)

For the position tracking the desired states are designed by

119906119889 = (119889 minus 119896119909 10038161003816100381610038161199091198901003816100381610038161003816 sign (119909119890)) cos120595 + ( 119910119889 minus 119896119910 10038161003816100381610038161199101198901003816100381610038161003816sdot sign (119910119890)) sin120595

120573119889 = arctan(minus119889 minus 119896119909 10038161003816100381610038161199091198901003816100381610038161003816 sign (119909119890)119906119889 sin120595+ 119910119889 minus 119896119910 10038161003816100381610038161199101198901003816100381610038161003816 sign (119910119890)119906119889 cos120595)

(15)

where 119896119909 gt 0 and 119896119910 gt 0 are control gainsRemark 4 To guarantee the traceability of the referencetrajectory under state constraints the desired reference tra-jectory needs to satisfy the following conditions

(1198621) 120578119889 120578119889 and 120578119889 are all bounded in which 120578119889 = 119909119889119910119889 120595119889(1198622) There exists 119879119903 gt 0 such that for all 119905 gt 119879119903

119906min lt 119906119889 lt 119906max120573min lt 120573119889 lt 120573max (16)

33 Controller Design State tracking errors are defined as

119890119906 = 119906 minus 119906119889119890120573 = 120573 minus 120573119889 (17)

Then two integral sliding mode manifolds are given by

119904119906 = 119890119906 + 1205821 int1199050119890119906 119889120591

119904119903 = 119890120573 + 1205822119890120573 + 1205823 int1199050119890120573 119889120591

(18)

where 1205821 1205822 and 1205823 are positive constantsUsing (6) (17) and (18) the time derivatives of 119904119906 and 119904119903

are expressed as

119904119906 = 119890119906 + 1205821119890119906= 119891119906 (x119906) + 119872119906120591119906 +119872119906119877119906 minus 119889 + 1205821119890119906 (19)

119904119903 = 119890120573 + 1205822 119890120573 + 1205823119890120573= 119891119903 (x119903) + 119872119903120591119903 + 119863119903119908 minus 120573119889 + 1205822 119890120573 + 1205823119890120573 (20)

where

119891119906 (x119906) = 119906119903 tan120573 x119906 = [119906 120573 119903]119879 119891119903 (x119903) = minus119906 minus 221199062 sin (2120573) minus 120573119906 cos (2120573)

+ 120573119903 sin (2120573) x119903 = [119906 119903 120573 120573]119879 119872119906 = 1119898119872119903 = minuscos2120573119869119911 119863119903119908 = minus 120573119877V sin (2120573)119906119898 + 119906V minus 119877V1199062119898 cos2120573

minus 119877119903cos2120573119869119911

(21)

To deal with high nonlinearity and model uncertainties119891119906(x119906) and 119891119903(x119903) are approximated by RBFNNs

119891120603 (x120603) = Wlowast119879120603 H120603 (x120603) + 120576120603 120603 = 119906 119903 (22)

where x120603 isin 119877119868 is the input vector and Wlowast120603 isin 119877119899 is the idealweight vectorH120603(x120603) 119877119868 rarr 119877119899 is the basis function vectorwith element ℎ119894120603(x120603) shown as follows

ℎ119894120603 (x120603) = exp(minus1003817100381710038171003817x120603 minus 120583119894120603100381710038171003817100381721205902119894 ) (23)

where120583119894120603 is the center of the receptive field and120590119894 is thewidthof theGaussian functionThe approximation error 120576120603 satisfies|120576120603| le 120576119873

Using (10) and (11) constraint error functions aredesigned as follows

Δ120581119906 = 1198961199081199061 (sat (119906 119906max 119906min) minus 119906)+ 1198961199081199062 (sat (120591119906119888 120591119906119888max 120591119906119888min) minus 120591119906119888)

Δ120581119903 = 1198961199081199031 (sat (120573 120573max 120573min) minus 120573)+ 1198961199081199032 (sat (120591119903119888 120591119903119888max 120591119903119888min) minus 120591119903119888)

(24)

where 1198961199081199061 gt 0 1198961199081199062 gt 0 1198961199081199031 gt 0 and 1198961199081199032 gt 0Then the auxiliary dynamic system is designed as

120585120603=

(minus1198961205851206031120585120603 minus 120599120603 (sdot) + 1198961205851206032Δ1205811206032100381710038171003817100381712058512060310038171003817100381710038172 120585120603 + Δ120581120603) 10038171003817100381710038171205851206031003817100381710038171003817 ge 120590deadzone (Δ120581120603 120590) 10038171003817100381710038171205851206031003817100381710038171003817 lt 120590

(25)

where 120599120603(sdot) = |119872120603119904120603||120591120603 minus 120591120603119888| and 120603 = 119906 119903

Mathematical Problems in Engineering 5

Finally the control laws are given by

120591119906119888 = 1119872119906 (minus1198961119904119906 minus 1205781 sign (119904119906) + 119889 minus 1205821119890119906 minus119872119906119877119906minus W119879119906H119906 (x119906) minus 120576119873 sign (119904119906) + 119896119904119906120585119906)

(26)

120591119903119888 = 1119872119903 ( 120573119889 minus 1198962119904119903 minus 1205782 sign (119904119903) minus 1205822 119890120573 minus 119863119903119908minus 1205823119890120573 minus W119879119903H119903 (x119903) minus 120576119873 sign (119904119903) + 119896119904119903120585119903)

(27)

where 1198961 1198962 1205781 1205782 119896119904119906 and 119896119904119903 are positive constants W119906 =W119906 +Wlowast119906 W119903 = W119903 +Wlowast119903 and119863119903119908 is defined in (20)

And the adaptive laws areW120603 = 120574120603119904120603H120603 (x120603) 120603 = 119906 119903 (28)

where 120574120603 is the adaptive coefficient

34 Stability Analysis

Theorem 5 If the state tracking errors (17) the desired states(15) the auxiliary dynamic system (25) the surge control law120591119906119888 (26) the yaw control law 120591119903119888 (27) and the adaptive laws(28) are applied to the hovercraft system represented by (6)and for any bounded initial condition the closed-loop controlsystem signals 119904119906 119904119903 120585119906 120585119903 119890119906 119890120573 119909119890 119910119890 and 119908119894119906 and 119908119894119903119894 = 1 2 119899 are uniformly ultimately bounded (UUB)The position and desired state tracking errors can be madearbitrarily small by appropriately selecting design parametersAnd the yaw motion will remain bounded

Proof The following Lyapunov function is defined

119881 = 121199042119906 + 121199042119903 + 12120574119906 W119879119906W119906 +12120574119903 W119879119903 W119903 +

121205852119906+ 121205852119903

(29)

From (19) (20) and (29) can be expressed as

= 119904119906 (119891119906 (x119906) + 119872119906120591119906 +119872119906119877119906 minus 119889 + 1205821119890119906)+ 119904119903 (119891119903 (x119903) + 119872119903120591119903 + 119863119903119908 minus 120573119889 + 1205822 119890120573 + 1205823119890120573)+ W119879119906

W119906120574119906 + W119879119903W119903120574119903 + 120585119906 120585119906 + 120585119903 120585119903

(30)

By defining 120591120603 = Δ120591120603 + 120591120603119888 and 120603 = 119906 119903 and using (22) (26)and (27) we have

= minus11989611199042119906 minus 1205781 10038161003816100381610038161199041199061003816100381610038161003816 + 119904119906 (minusW119879119906H119906 (x119906)) +119872119906119904119906Δ120591119906+ 119896119904119906119904119906120585119906 + (minus120576119873 10038161003816100381610038161199041199061003816100381610038161003816 + 120576119906119904119906) minus 11989621199042119903 minus 1205782 10038161003816100381610038161199041199031003816100381610038161003816+ 119904119903 (minusW119879119903H119903 (x119903)) +119872119903119904119903Δ120591119903 + 119896119904119903119904119903120585119903+ (minus120576119873 10038161003816100381610038161199041199031003816100381610038161003816 + 120576119903119904119903) + 1120574119906 W119879119906 W119906 + 1120574119903 W119879119903 W119903+ 120585119906 120585119906 + 120585119903 120585119903

(31)

By using |120576120603| le 120576119873 and 120603 = 119906 119903 (31) can be rewritten as

le minus11989611199042119906 minus 1205781 10038161003816100381610038161199041199061003816100381610038161003816 + 119904119906 (minusW119879119906H119906 (x119906)) minus 11989621199042119903minus 1205782 10038161003816100381610038161199041199031003816100381610038161003816 + 119904119903 (minusW119879119903H119903 (x119903)) + 119872119906119904119906Δ120591119906+ 119896119904119906119904119906120585119906 +119872119903119904119903Δ120591119903 + 119896119904119903119904119903120585119903 + 1120574119906 W119879119906 W119906+ 1120574119903 W119879119903 W119903 + 120585119906 120585119906 + 120585119903 120585119903

(32)

Substituting adaptive laws (28) into it yields

le minus11989611199042119906 +119872119906119904119906Δ120591119906 + 119896119904119906119904119906120585119906 + 120585119906 120585119906 minus 11989621199042119903+119872119903119904119903Δ120591119903 + 119896119904119903119904119903120585119903 + 120585119903 120585119903 (33)

The process of stability analysis is respectively discussed inthe following two cases

Case 1When 120585120603 ge 120590 in light of (25) andYoungrsquos inequalitywe have

120585120603 120585120603 = 120585120603Δ120581120603 minus 11989612058512060311205852120603 minus 1198961205851206032Δ1205812120603minus 10038161003816100381610038161198721206031199041206031003816100381610038161003816 1003816100381610038161003816120591120603 minus 1205911206031198881003816100381610038161003816

le 1198961205851206032Δ1205812120603 + 141198961205851206032 1205852120603 minus 11989612058512060311205852120603 minus 1198961205851206032Δ1205812120603minus 10038161003816100381610038161198721206031199041206031003816100381610038161003816 1003816100381610038161003816120591120603 minus 1205911206031198881003816100381610038161003816

= minus(1198961205851206031 minus 141198961205851206032)1205852120603 minus 10038161003816100381610038161198721206031199041206031003816100381610038161003816 1003816100381610038161003816120591120603 minus 1205911206031198881003816100381610038161003816

(34)

Substituting 120591120603 = Δ120591120603 + 120591120603119888 and (34) into (33) and usingYoungrsquos inequality yield

le minus11989611199042119906 + 119896119904119906119904119906120585119906 minus (1198961205851199061 minus 141198961205851199062)1205852119906 minus 11989621199042119903+ 119896119904119903119904119903120585119903 minus (1198961205851199031 minus 141198961205851199032)1205852119903

le minus (1198961 minus 05) 1199042119906 minus (1198961205851199061 minus 141198961205851199062 minus 051198962119904119906)1205852119906minus (1198962 minus 05) 1199042119903 minus (1198961205851199031 minus 141198961205851199032 minus 051198962119904119903)1205852119903minus 1198961W119879119906W119906120574119906 minus 1198962W119879119903 W119903120574119903 + 1198961W119879119906W119906120574119906+ 1198962W119879119903 W119903120574119903 le minus21205831119881 + 1205881

(35)

6 Mathematical Problems in Engineering

where

1205831 = min(1198961 minus 05) (1198961205851199061 minus 141198961205851199062 minus 051198962119904119906) (1198962 minus 05) (1198961205851199031 minus 141198961205851199032 minus 051198962119904119903)

1205881 = 1198961120574119906 W119879119906W119906 +1198962120574119903 W119879119903 W119903

(36)

Case 2 When 120585120603 lt 120590 in light of (25) and Youngrsquos ine-quality we have

120585120603 120585120603 = 120585120603deadzone (Δ120581120603 120590) le 051205852120603 + 05Δ12058121206030511989621199041206031205852120603 = 11989621199041206031205852120603 minus 0511989621199041206031205852120603 le minus0511989621199041206031205852120603 + 11989621199041206031205902 (37)

Substituting (37) into (33) and using Youngrsquos inequality yield

le minus11989611199042119906 +119872119906119904119906Δ120591119906 + 119896119904119906119904119906120585119906 + 051205852119906 + 05Δ1205812119906minus 11989621199042119903 +119872119903119904119903Δ120591119903 + 119896119904119903119904119903120585119903 + 051205852119903 + 05Δ1205812119903

le minus (1198961 minus 1) 1199042119906 minus (1198962 minus 1) 1199042119903 + 051198722119906Δ1205912119906+ 051198722119903Δ1205912119903 + 0511989621199041199061205852119906 + 0511989621199041199031205852119903 + 051205852119906+ 05Δ1205812119906 + 051205852119903 + 05Δ1205812119903

le minus (1198961 minus 1) 1199042119906 minus (1198962 minus 1) 1199042119903 minus 051205852119906 (1198962119904119906 minus 1)minus 051205852119903 (1198962119904119903 minus 1) + 051198722119906Δ1205912119906 + 051198722119903Δ1205912119903+ 11989621199041199061205902 + 11989621199041199031205902 + 05Δ1205812119906 + 05Δ1205812119903

le minus21205832119881 + 1205882

(38)

where

1205832 = min (1198961 minus 1) (051198962119904119906 minus 05) (1198962 minus 1) (051198962119904119903 minus 05)

1205882 = 1198961120574119906 W119879119906W119906 +1198962120574119903 W119879119903 W119903 + 051198722119906Δ1205912119906

+ 051198722119903Δ1205912119903 + (1198962119904119906 + 1198962119904119903) 1205902 + (Δ1205812119906 + Δ1205812119903)2

(39)

Synthesizing (35) and (38) we have

le minus2120583119881 + 120588 (40)

where 120583 = min1205831 1205832 and 120588 = max1205881 1205882 with the designparameters 1198961 1198962 119896119904119906 119896119904119903 1198961205851199061 1198961205851199062 1198961205851199031 and 1198961205851199032 satisfying

1198961 gt 11198962 gt 1119896119904119906 gt 1119896119904119903 gt 1

1198961205851199061 minus 141198961205851199062 minus 051198962119904119906 gt 01198961205851199031 minus 141198961205851199032 minus 051198962119904119903 gt 0

(41)

Solving (40) we have

0 le 119881 (119905) le 1205882120583 + [119881 (0) minus 1205882120583] 119890minus2120583119905 (42)

It is obviously seen that 119881(119905) is UUB for all 119881(0) le 1198610 with1198610 being any positive constant Therefore in the light of (29)we know that 119904119906 119904119903 120585119906 120585119903 and 119908119894119906 and 119908119894119903 119894 = 1 2 119899 areUUB for all 119881(0) le 1198610 It can be expressed as

10038171003817100381710038171205941003817100381710038171003817 le radic 120588120583 + 2 [119881 (0) minus 1205882120583] 119890minus2120583119905 (43)

where 120594 = 119904119906 119904119903 120585119906 120585119903 119908119894119906 119908119894119903It implies that there exists 119879 gt 0 such that for all 119905 gt 119879

10038171003817100381710038171205941003817100381710038171003817 le radic 120588120583 (44)

where radic120588120583 can be made arbitrarily small by appropriatelyselecting the design parameters

Further the following dynamics are obtained from (18)and (44)

119890119906 + 1205821 int1199050119890119906 119889120591 = 120576119906

119890120573 + 1205822119890120573 + 1205823 int1199050119890120573 119889120591 = 120576120573

(45)

where 120576119906 and 120576120573 are arbitrarily small errorsTo prove that 119890119906 and 119890120573 are UUB the Lyapunov function

is given by

119881119904 = 12 (int1199050119890119906 119889120591)2 + 121198902120573 (46)

The time derivative of this Lyapunov function along thedynamics in (45) is such that

119904 = 119890119906 int1199050119890119906 119889120591 + 119890120573 119890120573

= minus1205821 (int1199050119890119906 119889120591)2 minus 12058221198902120573 + 120576119906 int119905

0119890119906 119889120591

minus 1205823119890120573 int1199050119890120573 119889120591 + 120576120573119890120573

(47)

Mathematical Problems in Engineering 7

From Youngrsquos inequality the following fact is obtained

120576119906 int1199050119890119906 119889120591 le 051205821 (int119905

0119890119906 119889120591)2 + 05 12057621199061205821

minus1205823119890120573 int1199050119890120573 119889120591 le 120582211989021205732 + 120582321205822 (int

119905

0119890120573 119889120591)2

120576120573119890120573 le 02512058221198902120573 + 12057621205731205822

(48)

Then

119904 le minus051205821 (int1199050119890119906 119889120591)2 minus 02512058221198902120573 + 05 12057621199061205821

+ 0512058231205822 (int119905

0119890120573 119889120591)2 + 12057621205731205822 = minus2120583119904119881119904 + 120588119904

(49)

where

120583119904 = min 051205821 0251205822 120588119904 = 05 12057621199061205821 + 0512058231205822 (int

119905

0119890120573 119889120591)2 + 12057621205731205822

(50)

Similar to the analysis in (42)sim(44) there exists 119879119904 gt 0 suchthat for all 119905 gt 119879119904

10038171003817100381710038171205941199041003817100381710038171003817 le radic 120588119904120583119904 (51)

where 120594119904 = int1199050119890119906 119889120591 119890120573

It is obvious that int1199050119890119906 119889120591 and 119890120573 are UUB and will be

arbitrarily small by choosing suitable parametersFrom 119904119906 = 119890119906 + 1205821 int1199050 119890119906 119889120591 we know 119890119906 will be arbitrarily

small From (6) and (15) we have

[ 119906 minus 119906119889119906 tan120573 minus 119906119889 tan120573119889] = 119877[119890 + 119896119909 10038161003816100381610038161199091198901003816100381610038161003816 sign (119909119890)119910119890 + 119896119910 10038161003816100381610038161199101198901003816100381610038161003816 sign (119910119890)] (52)

where

119877 = [ cos120595 sin120595minus sin120595 cos120595] (53)

It is clear that |119877| = 1 which indicates that it is nonsingularThen we have

119890 = minus119896119909 10038161003816100381610038161199091198901003816100381610038161003816 sign (119909119890) + 120576119909119887119910119890 = minus119896119910 10038161003816100381610038161199101198901003816100381610038161003816 sign (119910119890) + 120576119910119887 (54)

where 120576119909119887 120576119910119887 are arbitrarily small errorsFurthermore consider the following Lyapunov function

candidate

119881119901 = 121199092119890 + 121199102119890 (55)

The time derivative of 119881119901 along the dynamics in (54) is suchthat

119901 = 119909119890119890 + 119910119890 119910119890= 119909119890 (minus119896119909 10038161003816100381610038161199091198901003816100381610038161003816 sign (119909119890) + 120576119909119887)

+ 119910119890 (minus119896119910 10038161003816100381610038161199101198901003816100381610038161003816 sign (119910119890) + 120576119910119887)= minus119896119909 100381610038161003816100381611990911989010038161003816100381610038162 minus 119896119910 100381610038161003816100381611991011989010038161003816100381610038162 + 119909119890120576119909119887 + 119910119890120576119910119887le minus05119896119909 100381610038161003816100381611990911989010038161003816100381610038162 minus 05119896119910 100381610038161003816100381611991011989010038161003816100381610038162 + 12057621199091198872119896119909 +

12057621199101198872119896119910= minus2120583119901119881119901 + 120588119901

(56)

where

120583119901 = min 05119896119909 05119896119910 120588119901 = 12057621199091198872119896119909 +

12057621199101198872119896119910 (57)

Also similar to the analysis in (42)sim(44) there exists 119879119901 gt 0such that for all 119905 gt 119879119901

1003817100381710038171003817100381712059411990110038171003817100381710038171003817 le radic 120588119901120583119901 (58)

where 120594119901 = 119909119890 119910119890From the reason that 120576119909119887 and 120576119910119887 are arbitrarily small

errors we know that 119909119890 and 119910119890 are UUB andwill be arbitrarilysmall

Also 119906 is continuously differentiable in the movingprocess of hovercraft Hence is bounded From (6) we have

= 119906119903 tan (120573) + 119877119906 + 120591119906119898 (59)

From (15) Remark 4 and the boundedness of 119909119890 and 119910119890we have that 119906119889 and 120573119889 are bounded Then 119906 V and 120573 arebounded from (5) and (17) Furthermore119877119906 is bounded from(3)Therefore it can be concluded that 119903will remain boundedfrom (7) and (59) This concludes the proof

Remark 6 In order to avoid the well-known chatteringproblem the sign function used in the control laws (26) and(27) can be replaced by hyperbolic tangent function whichis continuous such that sign(119904) = tanh(119896119867119904) where 119896119867 isa positive scalar which can be chosen to get a very goodapproximation

4 Simulations

Two different cases are implemented to verify the effective-ness and superiority of the proposed controller In simula-tions the main particulars and constraints of hovercraft areshown in Tables 1 and 2 The water surface is calm withoutwaves

8 Mathematical Problems in Engineering

Table 1 Main particulars of hovercraft

119898 (kg) 40000119869119911 (kgm2) 18 times 106119878PP (m2) 45119878LP (m2) 93119878HP (m2) 260119876 (m3s) 1408119881119908 (knots) 10119897sk (m) 65119861119888 (m) 89119897119888 (m) 236ℎ (m) 1119867hov (m) 59119878119888 (m2) 212120573119908 (deg) 45

Table 2 State and input constraints

Variable Maximum Minimum119906 (knots) 40 25120573 (deg) 8 minus8120591119906 (N) 80000 minus80000120591119903 (Nm) 1 times 105 minus1 times 105

The comparisons of three different methods are carriedout in each case The legend ldquoMethod Ardquo means the methodin [14] the legend ldquoMethod Brdquo means the method withoutstate and input saturation constraints

Saturation coefficients are

119896119904119906 = 121198961199081199061 = 11198961199081199062 = 9030001198961205851199061 = 31119896119904119903 = 12

1198961199081199031 = 11198961199081199032 = 6503001198961205851199031 = 381198961205851199062 = 0081198961205851199032 = 008

120590 = 3120590 = 1

(60)

Case 1 The reference trajectory parameters are

119909119889 (0) = 300m119910119889 (0) = 100m

120595119889 (0) = 45∘119906119889set (119905) = 35 knotsV119889set (119905) = 0119903119889set (119905) = 0

(61)

The initial values of hovercraft model are119909 (0) = 0119910 (0) = 0120595 (0) = 70∘119906 (0) = 35 knots120573 (0) = 0119903 (0) = 0

(62)

The controller parameters are

119896119909 = 06119896119910 = 061198961 = 111205781 = 0251205821 = 21198962 = 121205782 = 051205822 = 301205823 = 6120576119873 = 05

(63)

It is observed from Figures 3ndash8 that the proposed trajectorytracking controller is effective Tracking errors of all threemethods converge to arbitrarily small values and headingangle is bounded From the comparisons with Methods Aand B in Figures 9 and 10 the proposed controller canlimit the surge speed and the drift angle into the safe rangeeffectively Figures 11 and 12 show that the input saturation isalso handled by the proposed controller

Case 2 The reference trajectory parameters are

119909119889 (0) = minus200m119910119889 (0) = 50m120595119889 (0) = 45∘

119906119889set (119905) = 35 knotsV119889set (119905) = 0119903119889set (119905) = 01∘s

(64)

Mathematical Problems in Engineering 9

0 2000 4000 6000 8000 10000 12000

0

5000

10000

15000

Starting point

Proposed controllerMethod A

Method BDesired trajectory

x(m

)

y (m)

Figure 3 The actual and desired trajectory of hovercraft

0 200 400 600 800 1000 1200 140020

40

60

80

Time (s)

Proposed controllerMethod AMethod B

(d

eg)

Figure 4 The heading angle of hovercraft

0 200 400 600 800 1000 1200 1400

0

500

Time (s)

Proposed controllerMethod AMethod B

xe

(m)

minus500

minus1000

Figure 5 The surge position tracking error

The initial values of hovercraft model are119909 (0) = 0119910 (0) = 0120595 (0) = 30∘119906 (0) = 35 knots120573 (0) = 0119903 (0) = 0

(65)

The controller parameters are

119896119909 = 06119896119910 = 061198961 = 153

0 200 400 600 800 1000 1200 1400

0

500

1000

Time (s)

Proposed controllerMethod AMethod B

ye

(m)

minus500

Figure 6 The sway position tracking error

0 200 400 600 800 1000 1200 1400

0

10

Time (s)

Proposed controllerMethod AMethod B

e u(k

nots)

minus10

minus20

Figure 7 The surge velocity tracking error

0 200 400 600 800 1000 1200 1400

0

5

Time (s)

Proposed controllerMethod AMethod B

e (d

eg)

minus10

minus5

Figure 8 The drift angle tracking error

1205781 = 011205821 = 41198962 = 121205782 = 051205822 = 301205823 = 2120576119873 = 05

(66)

It is obvious from Figures 14ndash19 that only the proposedcontroller can track the trajectory successfully Figures 20 and21 show that the surge speed changes to negative values andthe drift angle exceeds the safety limit in the tracking control

10 Mathematical Problems in Engineering

0 200 400 600 800 1000 1200 140020

40

60

80

Time (s)

Proposed controller

u (k

nots)

Method AMethod B

Figure 9 The surge velocity of hovercraft

0 200 400 600 800 1000 1200 1400

0

10

Time (s)

Proposed controllerMethod AMethod B

(d

eg)

minus10

minus20

Figure 10 The drift angle of hovercraft

0 200 400 600 800 1000 1200 1400

0

2

4

Time (s)

0 50 1000

5

10

Proposed controllerMethod AMethod B

uc

(N)

times105

times104

Figure 11 The surge control law of hovercraft

process ofMethods A and BThese are absolutely not allowedfor hovercraft In contrast you can see from Figure 20 thatsurge speed can still be positive even large enough to avoidthe influence of the resistance humps under the control of theproposed controller And drift angle is also within the safetylimit from Figure 21 From Figures 22 and 23 we know thatthe input constraint ability of the proposed controller is effec-tive Figures 13 and 24 show the heave position of hovercraft

5 Conclusion

A safety-guaranteed trajectory tracking controller has beenproposed for underactuated hovercraft in this paper Thesafety-guaranteed auxiliary dynamic system is designed todeal with state and input constraints The velocity of hov-ercraft is constrained to eliminate the effect of resistance

0 200 400 600 800 1000 1200 1400minus4

0

Time (s)

0 10 20minus15minus10minus5

05

Proposed controllerMethod AMethod B

rc

(Nm

)

times105

times104

minus2

Figure 12 The yaw control law of hovercraft

0 200 400 600 800 1000 1200 1400minus245

minus24

minus235

Time (s)z

(m)

Proposed controllerMethod AMethod B

Figure 13 The heave position of hovercraft

minus2000 0 2000 4000 6000 8000 10000 12000minus1000

0

1000

2000

3000

Starting point

Proposed controllerMethod A

Method BDesired trajectory

minus200minus100

0100

x(m

)

y (m)

minus20 0 20 40 60 80

Figure 14 The actual and desired trajectory of hovercraft

0 200 400 600 800 1000 12000

50

100

150

Time (s)

Proposed controllerMethod AMethod B

(d

eg)

Figure 15 The heading angle of hovercraft

hump and obtain better stability The safety limit of driftangle is carried out effectively for safety in the high-speedtrajectory tracking process of hovercraftThe input saturationis handled High nonlinearity and model uncertainties areapproximated by RBFNNs Simulation results have been

Mathematical Problems in Engineering 11

0 200 400 600 800 1000 1200

0

100

200

300

Time (s)

Proposed controllerMethod AMethod B

xe

(m)

minus100

Figure 16 The surge position tracking error

0 200 400 600 800 1000 1200minus600

minus400

minus200

0

200

Time (s)

Proposed controllerMethod AMethod B

ye

(m)

Figure 17 The sway position tracking error

0 200 400 600 800 1000 1200

0

100

200

300

Time (s)

Proposed controllerMethod AMethod B

e u(k

nots)

minus100

Figure 18 The surge velocity tracking error of hovercraft

0 200 400 600 800 1000 1200

0

2

4

6

Time (s)

Proposed controllerMethod AMethod B

e (d

eg)

minus2

Figure 19 The drift angle tracking error of hovercraft

0 200 400 600 800 1000 1200

0

50

Time (s)

0 100 200

0

50

Proposed controllerMethod AMethod B

u(k

nots)

minus50minus50

minus100

Figure 20 The surge velocity of hovercraft

0 200 400 600 800 1000 1200

0

100

200

Time (s)

0 100 2000

20

40

Proposed controllerMethod AMethod B

(d

eg)

minus100

Figure 21 The drift angle of hovercraft

0 200 400 600 800 1000 1200

0

Time (s)

0 50 100

0

Proposed controllerMethod AMethod B

uc

(N)

minus5

minus10

times105

times104

minus5

minus10

Figure 22 The surge control law of hovercraft

0 200 400 600 800 1000 1200

0

10

20

Time (s)

0 10 20

05

1015

Proposed controllerMethod AMethod B

rc

(Nm

)

minus5

times109

times104

Figure 23 The yaw control law of hovercraft

12 Mathematical Problems in Engineering

0 200 400 600 800 1000 1200Time (s)

Proposed controllerMethod AMethod B

z(m

)

minus15

minus2

minus25

minus3

Figure 24 The heave position of hovercraft

presented to illustrate the effectiveness of the proposed con-troller

Conflicts of Interest

The authors declare that there are no conflicts of interestregarding the publication of this paper

Acknowledgments

The supports of the National Natural Science Foundationof China (Grant no 51309062) and the project ldquoResearchon Maneuverability of High Speed Hovercraftrdquo (Project no2007DFR80320) are gratefully acknowledged

References

[1] Y Liang and A Bliault Theory amp Design of Air Cushion CraftArnold 2000

[2] H Sira-Ramırez ldquoDynamic second-order sliding mode controlof the hovercraft vesselrdquo IEEE Transactions on Control SystemsTechnology vol 10 no 6 pp 860ndash865 2002

[3] J Aranda ldquoA Control for tracki-ng and stabilization of anunder-actuated nonlinear RC hovercraftrdquo International Feder-ation of Auto-matic Control 2006

[4] J Zhao and J Pang ldquoTrajectory control of underactuated hover-craftrdquo inProceedings of the 2010 8thWorldCongress on IntelligentControl and Automation (WCICA rsquo10) pp 3904ndash3907 July 2010

[5] RMorales H Sira-Ramırez and J A Somolinos ldquoLinear activedisturbance rejection control of the hovercraft vessel modelrdquoOcean Engineering vol 96 pp 100ndash108 2015

[6] G G Rigatos and G V Raffo ldquoInputndashoutput linearizing con-trol of the underactuated hovercraft using the derivative-freenonlinear kalman filterrdquo Unmanned Systems vol 03 no 02 pp127ndash142 2015

[7] K Shojaei ldquoTrajectory tracking control of autonomous under-actuated hovercraft vehicles with limited torquerdquo in Proceedingsof the 2014 2nd RSIISM International Conference on Roboticsand Mechatronics (ICRoM rsquo14) pp 468ndash473 October 2014

[8] K Shojaei ldquoNeural adaptive robust control of underactuatedmarine surface vehicles with input saturationrdquo Applied OceanResearch vol 53 pp 267ndash278 2015

[9] M Cohen T Miloh and G Zilman ldquoWave resistance of ahovercraft moving in water with nonrigid bottomrdquoOcean Engi-neering vol 28 no 11 pp 1461ndash1478 2001

[10] Y Yang Z K Zhang and M D Amp ldquoiscussion and practiceabout hump transition problem of high-density air medium-low speed ACVrdquo Ship amp Boat 2014

[11] H Fu ldquoAnalysis and consider- ation on safety of all-lift hover-craftrdquo Ship amp Boat 2008

[12] M Tao and W Chengjie Hovercraft performance and skirt-cushion system dynamics design National Defence IndustryPress 2012

[13] G Zilman ldquoMathematical simula- tion of hovercraft maneu-verin- grdquo Proceedings of the Twenty-Third American Towing tankConference pp 373ndash382 1993

[14] J Du X Hu M Krstic and Y Sun ldquoRobust dynamic position-ing of ships with disturbances under input saturationrdquo Auto-matica vol 73 pp 207ndash214 2016

[15] M Chen S S Ge and B Ren ldquoAdaptive tracking control ofuncertain MIMO nonlinear systems with input constraintsrdquoAutomatica vol 47 no 3 pp 452ndash465 2011

[16] S Li YWang J Tan and Y Zheng ldquoAdaptive RBFNNsintegralsliding mode control for a quadrotor aircraftrdquoNeurocomputingvol 216 pp 126ndash134 2016

[17] K Xia and W Huo ldquoRobust adaptive backstepping neuralnetworks control for spacecraft rendezvous and docking withinput saturationrdquo ISA Transactions vol 62 pp 249ndash257 2016

[18] J Feng and G-X Wen ldquoAdaptive NN consensus tracking con-trol of a class of nonlinear multi-agent systemsrdquo Neurocomput-ing vol 151 no 1 pp 288ndash295 2015

[19] T Elmokadem M Zribi and K Youcef-Toumi ldquoTrajectorytracking sliding mode control of underactuated AUVsrdquo Non-linear Dynamics vol 84 no 2 pp 1079ndash1091 2016

[20] T Elmokadem M Zribi and K Youcef-Toumi ldquoTerminal slid-ing mode control for the trajectory tracking of underactuatedAutonomousUnderwaterVehiclesrdquoOceanEngineering vol 129pp 613ndash625 2017

[21] V K Dyachenko Resistance of Air Cushion Vehicle CentralResearch Institute of ACAD Krylov 1999

Submit your manuscripts athttpswwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Safety-Guaranteed Trajectory Tracking Control for …downloads.hindawi.com/journals/mpe/2017/9452920.pdfSafety-Guaranteed Trajectory Tracking Control for the Underactuated Hovercraft

4 Mathematical Problems in Engineering

Then the trajectory tracking errors are defined as

(119909119890 119910119890) = (119909 minus 119909119889 119910 minus 119910119889) (14)

For the position tracking the desired states are designed by

119906119889 = (119889 minus 119896119909 10038161003816100381610038161199091198901003816100381610038161003816 sign (119909119890)) cos120595 + ( 119910119889 minus 119896119910 10038161003816100381610038161199101198901003816100381610038161003816sdot sign (119910119890)) sin120595

120573119889 = arctan(minus119889 minus 119896119909 10038161003816100381610038161199091198901003816100381610038161003816 sign (119909119890)119906119889 sin120595+ 119910119889 minus 119896119910 10038161003816100381610038161199101198901003816100381610038161003816 sign (119910119890)119906119889 cos120595)

(15)

where 119896119909 gt 0 and 119896119910 gt 0 are control gainsRemark 4 To guarantee the traceability of the referencetrajectory under state constraints the desired reference tra-jectory needs to satisfy the following conditions

(1198621) 120578119889 120578119889 and 120578119889 are all bounded in which 120578119889 = 119909119889119910119889 120595119889(1198622) There exists 119879119903 gt 0 such that for all 119905 gt 119879119903

119906min lt 119906119889 lt 119906max120573min lt 120573119889 lt 120573max (16)

33 Controller Design State tracking errors are defined as

119890119906 = 119906 minus 119906119889119890120573 = 120573 minus 120573119889 (17)

Then two integral sliding mode manifolds are given by

119904119906 = 119890119906 + 1205821 int1199050119890119906 119889120591

119904119903 = 119890120573 + 1205822119890120573 + 1205823 int1199050119890120573 119889120591

(18)

where 1205821 1205822 and 1205823 are positive constantsUsing (6) (17) and (18) the time derivatives of 119904119906 and 119904119903

are expressed as

119904119906 = 119890119906 + 1205821119890119906= 119891119906 (x119906) + 119872119906120591119906 +119872119906119877119906 minus 119889 + 1205821119890119906 (19)

119904119903 = 119890120573 + 1205822 119890120573 + 1205823119890120573= 119891119903 (x119903) + 119872119903120591119903 + 119863119903119908 minus 120573119889 + 1205822 119890120573 + 1205823119890120573 (20)

where

119891119906 (x119906) = 119906119903 tan120573 x119906 = [119906 120573 119903]119879 119891119903 (x119903) = minus119906 minus 221199062 sin (2120573) minus 120573119906 cos (2120573)

+ 120573119903 sin (2120573) x119903 = [119906 119903 120573 120573]119879 119872119906 = 1119898119872119903 = minuscos2120573119869119911 119863119903119908 = minus 120573119877V sin (2120573)119906119898 + 119906V minus 119877V1199062119898 cos2120573

minus 119877119903cos2120573119869119911

(21)

To deal with high nonlinearity and model uncertainties119891119906(x119906) and 119891119903(x119903) are approximated by RBFNNs

119891120603 (x120603) = Wlowast119879120603 H120603 (x120603) + 120576120603 120603 = 119906 119903 (22)

where x120603 isin 119877119868 is the input vector and Wlowast120603 isin 119877119899 is the idealweight vectorH120603(x120603) 119877119868 rarr 119877119899 is the basis function vectorwith element ℎ119894120603(x120603) shown as follows

ℎ119894120603 (x120603) = exp(minus1003817100381710038171003817x120603 minus 120583119894120603100381710038171003817100381721205902119894 ) (23)

where120583119894120603 is the center of the receptive field and120590119894 is thewidthof theGaussian functionThe approximation error 120576120603 satisfies|120576120603| le 120576119873

Using (10) and (11) constraint error functions aredesigned as follows

Δ120581119906 = 1198961199081199061 (sat (119906 119906max 119906min) minus 119906)+ 1198961199081199062 (sat (120591119906119888 120591119906119888max 120591119906119888min) minus 120591119906119888)

Δ120581119903 = 1198961199081199031 (sat (120573 120573max 120573min) minus 120573)+ 1198961199081199032 (sat (120591119903119888 120591119903119888max 120591119903119888min) minus 120591119903119888)

(24)

where 1198961199081199061 gt 0 1198961199081199062 gt 0 1198961199081199031 gt 0 and 1198961199081199032 gt 0Then the auxiliary dynamic system is designed as

120585120603=

(minus1198961205851206031120585120603 minus 120599120603 (sdot) + 1198961205851206032Δ1205811206032100381710038171003817100381712058512060310038171003817100381710038172 120585120603 + Δ120581120603) 10038171003817100381710038171205851206031003817100381710038171003817 ge 120590deadzone (Δ120581120603 120590) 10038171003817100381710038171205851206031003817100381710038171003817 lt 120590

(25)

where 120599120603(sdot) = |119872120603119904120603||120591120603 minus 120591120603119888| and 120603 = 119906 119903

Mathematical Problems in Engineering 5

Finally the control laws are given by

120591119906119888 = 1119872119906 (minus1198961119904119906 minus 1205781 sign (119904119906) + 119889 minus 1205821119890119906 minus119872119906119877119906minus W119879119906H119906 (x119906) minus 120576119873 sign (119904119906) + 119896119904119906120585119906)

(26)

120591119903119888 = 1119872119903 ( 120573119889 minus 1198962119904119903 minus 1205782 sign (119904119903) minus 1205822 119890120573 minus 119863119903119908minus 1205823119890120573 minus W119879119903H119903 (x119903) minus 120576119873 sign (119904119903) + 119896119904119903120585119903)

(27)

where 1198961 1198962 1205781 1205782 119896119904119906 and 119896119904119903 are positive constants W119906 =W119906 +Wlowast119906 W119903 = W119903 +Wlowast119903 and119863119903119908 is defined in (20)

And the adaptive laws areW120603 = 120574120603119904120603H120603 (x120603) 120603 = 119906 119903 (28)

where 120574120603 is the adaptive coefficient

34 Stability Analysis

Theorem 5 If the state tracking errors (17) the desired states(15) the auxiliary dynamic system (25) the surge control law120591119906119888 (26) the yaw control law 120591119903119888 (27) and the adaptive laws(28) are applied to the hovercraft system represented by (6)and for any bounded initial condition the closed-loop controlsystem signals 119904119906 119904119903 120585119906 120585119903 119890119906 119890120573 119909119890 119910119890 and 119908119894119906 and 119908119894119903119894 = 1 2 119899 are uniformly ultimately bounded (UUB)The position and desired state tracking errors can be madearbitrarily small by appropriately selecting design parametersAnd the yaw motion will remain bounded

Proof The following Lyapunov function is defined

119881 = 121199042119906 + 121199042119903 + 12120574119906 W119879119906W119906 +12120574119903 W119879119903 W119903 +

121205852119906+ 121205852119903

(29)

From (19) (20) and (29) can be expressed as

= 119904119906 (119891119906 (x119906) + 119872119906120591119906 +119872119906119877119906 minus 119889 + 1205821119890119906)+ 119904119903 (119891119903 (x119903) + 119872119903120591119903 + 119863119903119908 minus 120573119889 + 1205822 119890120573 + 1205823119890120573)+ W119879119906

W119906120574119906 + W119879119903W119903120574119903 + 120585119906 120585119906 + 120585119903 120585119903

(30)

By defining 120591120603 = Δ120591120603 + 120591120603119888 and 120603 = 119906 119903 and using (22) (26)and (27) we have

= minus11989611199042119906 minus 1205781 10038161003816100381610038161199041199061003816100381610038161003816 + 119904119906 (minusW119879119906H119906 (x119906)) +119872119906119904119906Δ120591119906+ 119896119904119906119904119906120585119906 + (minus120576119873 10038161003816100381610038161199041199061003816100381610038161003816 + 120576119906119904119906) minus 11989621199042119903 minus 1205782 10038161003816100381610038161199041199031003816100381610038161003816+ 119904119903 (minusW119879119903H119903 (x119903)) +119872119903119904119903Δ120591119903 + 119896119904119903119904119903120585119903+ (minus120576119873 10038161003816100381610038161199041199031003816100381610038161003816 + 120576119903119904119903) + 1120574119906 W119879119906 W119906 + 1120574119903 W119879119903 W119903+ 120585119906 120585119906 + 120585119903 120585119903

(31)

By using |120576120603| le 120576119873 and 120603 = 119906 119903 (31) can be rewritten as

le minus11989611199042119906 minus 1205781 10038161003816100381610038161199041199061003816100381610038161003816 + 119904119906 (minusW119879119906H119906 (x119906)) minus 11989621199042119903minus 1205782 10038161003816100381610038161199041199031003816100381610038161003816 + 119904119903 (minusW119879119903H119903 (x119903)) + 119872119906119904119906Δ120591119906+ 119896119904119906119904119906120585119906 +119872119903119904119903Δ120591119903 + 119896119904119903119904119903120585119903 + 1120574119906 W119879119906 W119906+ 1120574119903 W119879119903 W119903 + 120585119906 120585119906 + 120585119903 120585119903

(32)

Substituting adaptive laws (28) into it yields

le minus11989611199042119906 +119872119906119904119906Δ120591119906 + 119896119904119906119904119906120585119906 + 120585119906 120585119906 minus 11989621199042119903+119872119903119904119903Δ120591119903 + 119896119904119903119904119903120585119903 + 120585119903 120585119903 (33)

The process of stability analysis is respectively discussed inthe following two cases

Case 1When 120585120603 ge 120590 in light of (25) andYoungrsquos inequalitywe have

120585120603 120585120603 = 120585120603Δ120581120603 minus 11989612058512060311205852120603 minus 1198961205851206032Δ1205812120603minus 10038161003816100381610038161198721206031199041206031003816100381610038161003816 1003816100381610038161003816120591120603 minus 1205911206031198881003816100381610038161003816

le 1198961205851206032Δ1205812120603 + 141198961205851206032 1205852120603 minus 11989612058512060311205852120603 minus 1198961205851206032Δ1205812120603minus 10038161003816100381610038161198721206031199041206031003816100381610038161003816 1003816100381610038161003816120591120603 minus 1205911206031198881003816100381610038161003816

= minus(1198961205851206031 minus 141198961205851206032)1205852120603 minus 10038161003816100381610038161198721206031199041206031003816100381610038161003816 1003816100381610038161003816120591120603 minus 1205911206031198881003816100381610038161003816

(34)

Substituting 120591120603 = Δ120591120603 + 120591120603119888 and (34) into (33) and usingYoungrsquos inequality yield

le minus11989611199042119906 + 119896119904119906119904119906120585119906 minus (1198961205851199061 minus 141198961205851199062)1205852119906 minus 11989621199042119903+ 119896119904119903119904119903120585119903 minus (1198961205851199031 minus 141198961205851199032)1205852119903

le minus (1198961 minus 05) 1199042119906 minus (1198961205851199061 minus 141198961205851199062 minus 051198962119904119906)1205852119906minus (1198962 minus 05) 1199042119903 minus (1198961205851199031 minus 141198961205851199032 minus 051198962119904119903)1205852119903minus 1198961W119879119906W119906120574119906 minus 1198962W119879119903 W119903120574119903 + 1198961W119879119906W119906120574119906+ 1198962W119879119903 W119903120574119903 le minus21205831119881 + 1205881

(35)

6 Mathematical Problems in Engineering

where

1205831 = min(1198961 minus 05) (1198961205851199061 minus 141198961205851199062 minus 051198962119904119906) (1198962 minus 05) (1198961205851199031 minus 141198961205851199032 minus 051198962119904119903)

1205881 = 1198961120574119906 W119879119906W119906 +1198962120574119903 W119879119903 W119903

(36)

Case 2 When 120585120603 lt 120590 in light of (25) and Youngrsquos ine-quality we have

120585120603 120585120603 = 120585120603deadzone (Δ120581120603 120590) le 051205852120603 + 05Δ12058121206030511989621199041206031205852120603 = 11989621199041206031205852120603 minus 0511989621199041206031205852120603 le minus0511989621199041206031205852120603 + 11989621199041206031205902 (37)

Substituting (37) into (33) and using Youngrsquos inequality yield

le minus11989611199042119906 +119872119906119904119906Δ120591119906 + 119896119904119906119904119906120585119906 + 051205852119906 + 05Δ1205812119906minus 11989621199042119903 +119872119903119904119903Δ120591119903 + 119896119904119903119904119903120585119903 + 051205852119903 + 05Δ1205812119903

le minus (1198961 minus 1) 1199042119906 minus (1198962 minus 1) 1199042119903 + 051198722119906Δ1205912119906+ 051198722119903Δ1205912119903 + 0511989621199041199061205852119906 + 0511989621199041199031205852119903 + 051205852119906+ 05Δ1205812119906 + 051205852119903 + 05Δ1205812119903

le minus (1198961 minus 1) 1199042119906 minus (1198962 minus 1) 1199042119903 minus 051205852119906 (1198962119904119906 minus 1)minus 051205852119903 (1198962119904119903 minus 1) + 051198722119906Δ1205912119906 + 051198722119903Δ1205912119903+ 11989621199041199061205902 + 11989621199041199031205902 + 05Δ1205812119906 + 05Δ1205812119903

le minus21205832119881 + 1205882

(38)

where

1205832 = min (1198961 minus 1) (051198962119904119906 minus 05) (1198962 minus 1) (051198962119904119903 minus 05)

1205882 = 1198961120574119906 W119879119906W119906 +1198962120574119903 W119879119903 W119903 + 051198722119906Δ1205912119906

+ 051198722119903Δ1205912119903 + (1198962119904119906 + 1198962119904119903) 1205902 + (Δ1205812119906 + Δ1205812119903)2

(39)

Synthesizing (35) and (38) we have

le minus2120583119881 + 120588 (40)

where 120583 = min1205831 1205832 and 120588 = max1205881 1205882 with the designparameters 1198961 1198962 119896119904119906 119896119904119903 1198961205851199061 1198961205851199062 1198961205851199031 and 1198961205851199032 satisfying

1198961 gt 11198962 gt 1119896119904119906 gt 1119896119904119903 gt 1

1198961205851199061 minus 141198961205851199062 minus 051198962119904119906 gt 01198961205851199031 minus 141198961205851199032 minus 051198962119904119903 gt 0

(41)

Solving (40) we have

0 le 119881 (119905) le 1205882120583 + [119881 (0) minus 1205882120583] 119890minus2120583119905 (42)

It is obviously seen that 119881(119905) is UUB for all 119881(0) le 1198610 with1198610 being any positive constant Therefore in the light of (29)we know that 119904119906 119904119903 120585119906 120585119903 and 119908119894119906 and 119908119894119903 119894 = 1 2 119899 areUUB for all 119881(0) le 1198610 It can be expressed as

10038171003817100381710038171205941003817100381710038171003817 le radic 120588120583 + 2 [119881 (0) minus 1205882120583] 119890minus2120583119905 (43)

where 120594 = 119904119906 119904119903 120585119906 120585119903 119908119894119906 119908119894119903It implies that there exists 119879 gt 0 such that for all 119905 gt 119879

10038171003817100381710038171205941003817100381710038171003817 le radic 120588120583 (44)

where radic120588120583 can be made arbitrarily small by appropriatelyselecting the design parameters

Further the following dynamics are obtained from (18)and (44)

119890119906 + 1205821 int1199050119890119906 119889120591 = 120576119906

119890120573 + 1205822119890120573 + 1205823 int1199050119890120573 119889120591 = 120576120573

(45)

where 120576119906 and 120576120573 are arbitrarily small errorsTo prove that 119890119906 and 119890120573 are UUB the Lyapunov function

is given by

119881119904 = 12 (int1199050119890119906 119889120591)2 + 121198902120573 (46)

The time derivative of this Lyapunov function along thedynamics in (45) is such that

119904 = 119890119906 int1199050119890119906 119889120591 + 119890120573 119890120573

= minus1205821 (int1199050119890119906 119889120591)2 minus 12058221198902120573 + 120576119906 int119905

0119890119906 119889120591

minus 1205823119890120573 int1199050119890120573 119889120591 + 120576120573119890120573

(47)

Mathematical Problems in Engineering 7

From Youngrsquos inequality the following fact is obtained

120576119906 int1199050119890119906 119889120591 le 051205821 (int119905

0119890119906 119889120591)2 + 05 12057621199061205821

minus1205823119890120573 int1199050119890120573 119889120591 le 120582211989021205732 + 120582321205822 (int

119905

0119890120573 119889120591)2

120576120573119890120573 le 02512058221198902120573 + 12057621205731205822

(48)

Then

119904 le minus051205821 (int1199050119890119906 119889120591)2 minus 02512058221198902120573 + 05 12057621199061205821

+ 0512058231205822 (int119905

0119890120573 119889120591)2 + 12057621205731205822 = minus2120583119904119881119904 + 120588119904

(49)

where

120583119904 = min 051205821 0251205822 120588119904 = 05 12057621199061205821 + 0512058231205822 (int

119905

0119890120573 119889120591)2 + 12057621205731205822

(50)

Similar to the analysis in (42)sim(44) there exists 119879119904 gt 0 suchthat for all 119905 gt 119879119904

10038171003817100381710038171205941199041003817100381710038171003817 le radic 120588119904120583119904 (51)

where 120594119904 = int1199050119890119906 119889120591 119890120573

It is obvious that int1199050119890119906 119889120591 and 119890120573 are UUB and will be

arbitrarily small by choosing suitable parametersFrom 119904119906 = 119890119906 + 1205821 int1199050 119890119906 119889120591 we know 119890119906 will be arbitrarily

small From (6) and (15) we have

[ 119906 minus 119906119889119906 tan120573 minus 119906119889 tan120573119889] = 119877[119890 + 119896119909 10038161003816100381610038161199091198901003816100381610038161003816 sign (119909119890)119910119890 + 119896119910 10038161003816100381610038161199101198901003816100381610038161003816 sign (119910119890)] (52)

where

119877 = [ cos120595 sin120595minus sin120595 cos120595] (53)

It is clear that |119877| = 1 which indicates that it is nonsingularThen we have

119890 = minus119896119909 10038161003816100381610038161199091198901003816100381610038161003816 sign (119909119890) + 120576119909119887119910119890 = minus119896119910 10038161003816100381610038161199101198901003816100381610038161003816 sign (119910119890) + 120576119910119887 (54)

where 120576119909119887 120576119910119887 are arbitrarily small errorsFurthermore consider the following Lyapunov function

candidate

119881119901 = 121199092119890 + 121199102119890 (55)

The time derivative of 119881119901 along the dynamics in (54) is suchthat

119901 = 119909119890119890 + 119910119890 119910119890= 119909119890 (minus119896119909 10038161003816100381610038161199091198901003816100381610038161003816 sign (119909119890) + 120576119909119887)

+ 119910119890 (minus119896119910 10038161003816100381610038161199101198901003816100381610038161003816 sign (119910119890) + 120576119910119887)= minus119896119909 100381610038161003816100381611990911989010038161003816100381610038162 minus 119896119910 100381610038161003816100381611991011989010038161003816100381610038162 + 119909119890120576119909119887 + 119910119890120576119910119887le minus05119896119909 100381610038161003816100381611990911989010038161003816100381610038162 minus 05119896119910 100381610038161003816100381611991011989010038161003816100381610038162 + 12057621199091198872119896119909 +

12057621199101198872119896119910= minus2120583119901119881119901 + 120588119901

(56)

where

120583119901 = min 05119896119909 05119896119910 120588119901 = 12057621199091198872119896119909 +

12057621199101198872119896119910 (57)

Also similar to the analysis in (42)sim(44) there exists 119879119901 gt 0such that for all 119905 gt 119879119901

1003817100381710038171003817100381712059411990110038171003817100381710038171003817 le radic 120588119901120583119901 (58)

where 120594119901 = 119909119890 119910119890From the reason that 120576119909119887 and 120576119910119887 are arbitrarily small

errors we know that 119909119890 and 119910119890 are UUB andwill be arbitrarilysmall

Also 119906 is continuously differentiable in the movingprocess of hovercraft Hence is bounded From (6) we have

= 119906119903 tan (120573) + 119877119906 + 120591119906119898 (59)

From (15) Remark 4 and the boundedness of 119909119890 and 119910119890we have that 119906119889 and 120573119889 are bounded Then 119906 V and 120573 arebounded from (5) and (17) Furthermore119877119906 is bounded from(3)Therefore it can be concluded that 119903will remain boundedfrom (7) and (59) This concludes the proof

Remark 6 In order to avoid the well-known chatteringproblem the sign function used in the control laws (26) and(27) can be replaced by hyperbolic tangent function whichis continuous such that sign(119904) = tanh(119896119867119904) where 119896119867 isa positive scalar which can be chosen to get a very goodapproximation

4 Simulations

Two different cases are implemented to verify the effective-ness and superiority of the proposed controller In simula-tions the main particulars and constraints of hovercraft areshown in Tables 1 and 2 The water surface is calm withoutwaves

8 Mathematical Problems in Engineering

Table 1 Main particulars of hovercraft

119898 (kg) 40000119869119911 (kgm2) 18 times 106119878PP (m2) 45119878LP (m2) 93119878HP (m2) 260119876 (m3s) 1408119881119908 (knots) 10119897sk (m) 65119861119888 (m) 89119897119888 (m) 236ℎ (m) 1119867hov (m) 59119878119888 (m2) 212120573119908 (deg) 45

Table 2 State and input constraints

Variable Maximum Minimum119906 (knots) 40 25120573 (deg) 8 minus8120591119906 (N) 80000 minus80000120591119903 (Nm) 1 times 105 minus1 times 105

The comparisons of three different methods are carriedout in each case The legend ldquoMethod Ardquo means the methodin [14] the legend ldquoMethod Brdquo means the method withoutstate and input saturation constraints

Saturation coefficients are

119896119904119906 = 121198961199081199061 = 11198961199081199062 = 9030001198961205851199061 = 31119896119904119903 = 12

1198961199081199031 = 11198961199081199032 = 6503001198961205851199031 = 381198961205851199062 = 0081198961205851199032 = 008

120590 = 3120590 = 1

(60)

Case 1 The reference trajectory parameters are

119909119889 (0) = 300m119910119889 (0) = 100m

120595119889 (0) = 45∘119906119889set (119905) = 35 knotsV119889set (119905) = 0119903119889set (119905) = 0

(61)

The initial values of hovercraft model are119909 (0) = 0119910 (0) = 0120595 (0) = 70∘119906 (0) = 35 knots120573 (0) = 0119903 (0) = 0

(62)

The controller parameters are

119896119909 = 06119896119910 = 061198961 = 111205781 = 0251205821 = 21198962 = 121205782 = 051205822 = 301205823 = 6120576119873 = 05

(63)

It is observed from Figures 3ndash8 that the proposed trajectorytracking controller is effective Tracking errors of all threemethods converge to arbitrarily small values and headingangle is bounded From the comparisons with Methods Aand B in Figures 9 and 10 the proposed controller canlimit the surge speed and the drift angle into the safe rangeeffectively Figures 11 and 12 show that the input saturation isalso handled by the proposed controller

Case 2 The reference trajectory parameters are

119909119889 (0) = minus200m119910119889 (0) = 50m120595119889 (0) = 45∘

119906119889set (119905) = 35 knotsV119889set (119905) = 0119903119889set (119905) = 01∘s

(64)

Mathematical Problems in Engineering 9

0 2000 4000 6000 8000 10000 12000

0

5000

10000

15000

Starting point

Proposed controllerMethod A

Method BDesired trajectory

x(m

)

y (m)

Figure 3 The actual and desired trajectory of hovercraft

0 200 400 600 800 1000 1200 140020

40

60

80

Time (s)

Proposed controllerMethod AMethod B

(d

eg)

Figure 4 The heading angle of hovercraft

0 200 400 600 800 1000 1200 1400

0

500

Time (s)

Proposed controllerMethod AMethod B

xe

(m)

minus500

minus1000

Figure 5 The surge position tracking error

The initial values of hovercraft model are119909 (0) = 0119910 (0) = 0120595 (0) = 30∘119906 (0) = 35 knots120573 (0) = 0119903 (0) = 0

(65)

The controller parameters are

119896119909 = 06119896119910 = 061198961 = 153

0 200 400 600 800 1000 1200 1400

0

500

1000

Time (s)

Proposed controllerMethod AMethod B

ye

(m)

minus500

Figure 6 The sway position tracking error

0 200 400 600 800 1000 1200 1400

0

10

Time (s)

Proposed controllerMethod AMethod B

e u(k

nots)

minus10

minus20

Figure 7 The surge velocity tracking error

0 200 400 600 800 1000 1200 1400

0

5

Time (s)

Proposed controllerMethod AMethod B

e (d

eg)

minus10

minus5

Figure 8 The drift angle tracking error

1205781 = 011205821 = 41198962 = 121205782 = 051205822 = 301205823 = 2120576119873 = 05

(66)

It is obvious from Figures 14ndash19 that only the proposedcontroller can track the trajectory successfully Figures 20 and21 show that the surge speed changes to negative values andthe drift angle exceeds the safety limit in the tracking control

10 Mathematical Problems in Engineering

0 200 400 600 800 1000 1200 140020

40

60

80

Time (s)

Proposed controller

u (k

nots)

Method AMethod B

Figure 9 The surge velocity of hovercraft

0 200 400 600 800 1000 1200 1400

0

10

Time (s)

Proposed controllerMethod AMethod B

(d

eg)

minus10

minus20

Figure 10 The drift angle of hovercraft

0 200 400 600 800 1000 1200 1400

0

2

4

Time (s)

0 50 1000

5

10

Proposed controllerMethod AMethod B

uc

(N)

times105

times104

Figure 11 The surge control law of hovercraft

process ofMethods A and BThese are absolutely not allowedfor hovercraft In contrast you can see from Figure 20 thatsurge speed can still be positive even large enough to avoidthe influence of the resistance humps under the control of theproposed controller And drift angle is also within the safetylimit from Figure 21 From Figures 22 and 23 we know thatthe input constraint ability of the proposed controller is effec-tive Figures 13 and 24 show the heave position of hovercraft

5 Conclusion

A safety-guaranteed trajectory tracking controller has beenproposed for underactuated hovercraft in this paper Thesafety-guaranteed auxiliary dynamic system is designed todeal with state and input constraints The velocity of hov-ercraft is constrained to eliminate the effect of resistance

0 200 400 600 800 1000 1200 1400minus4

0

Time (s)

0 10 20minus15minus10minus5

05

Proposed controllerMethod AMethod B

rc

(Nm

)

times105

times104

minus2

Figure 12 The yaw control law of hovercraft

0 200 400 600 800 1000 1200 1400minus245

minus24

minus235

Time (s)z

(m)

Proposed controllerMethod AMethod B

Figure 13 The heave position of hovercraft

minus2000 0 2000 4000 6000 8000 10000 12000minus1000

0

1000

2000

3000

Starting point

Proposed controllerMethod A

Method BDesired trajectory

minus200minus100

0100

x(m

)

y (m)

minus20 0 20 40 60 80

Figure 14 The actual and desired trajectory of hovercraft

0 200 400 600 800 1000 12000

50

100

150

Time (s)

Proposed controllerMethod AMethod B

(d

eg)

Figure 15 The heading angle of hovercraft

hump and obtain better stability The safety limit of driftangle is carried out effectively for safety in the high-speedtrajectory tracking process of hovercraftThe input saturationis handled High nonlinearity and model uncertainties areapproximated by RBFNNs Simulation results have been

Mathematical Problems in Engineering 11

0 200 400 600 800 1000 1200

0

100

200

300

Time (s)

Proposed controllerMethod AMethod B

xe

(m)

minus100

Figure 16 The surge position tracking error

0 200 400 600 800 1000 1200minus600

minus400

minus200

0

200

Time (s)

Proposed controllerMethod AMethod B

ye

(m)

Figure 17 The sway position tracking error

0 200 400 600 800 1000 1200

0

100

200

300

Time (s)

Proposed controllerMethod AMethod B

e u(k

nots)

minus100

Figure 18 The surge velocity tracking error of hovercraft

0 200 400 600 800 1000 1200

0

2

4

6

Time (s)

Proposed controllerMethod AMethod B

e (d

eg)

minus2

Figure 19 The drift angle tracking error of hovercraft

0 200 400 600 800 1000 1200

0

50

Time (s)

0 100 200

0

50

Proposed controllerMethod AMethod B

u(k

nots)

minus50minus50

minus100

Figure 20 The surge velocity of hovercraft

0 200 400 600 800 1000 1200

0

100

200

Time (s)

0 100 2000

20

40

Proposed controllerMethod AMethod B

(d

eg)

minus100

Figure 21 The drift angle of hovercraft

0 200 400 600 800 1000 1200

0

Time (s)

0 50 100

0

Proposed controllerMethod AMethod B

uc

(N)

minus5

minus10

times105

times104

minus5

minus10

Figure 22 The surge control law of hovercraft

0 200 400 600 800 1000 1200

0

10

20

Time (s)

0 10 20

05

1015

Proposed controllerMethod AMethod B

rc

(Nm

)

minus5

times109

times104

Figure 23 The yaw control law of hovercraft

12 Mathematical Problems in Engineering

0 200 400 600 800 1000 1200Time (s)

Proposed controllerMethod AMethod B

z(m

)

minus15

minus2

minus25

minus3

Figure 24 The heave position of hovercraft

presented to illustrate the effectiveness of the proposed con-troller

Conflicts of Interest

The authors declare that there are no conflicts of interestregarding the publication of this paper

Acknowledgments

The supports of the National Natural Science Foundationof China (Grant no 51309062) and the project ldquoResearchon Maneuverability of High Speed Hovercraftrdquo (Project no2007DFR80320) are gratefully acknowledged

References

[1] Y Liang and A Bliault Theory amp Design of Air Cushion CraftArnold 2000

[2] H Sira-Ramırez ldquoDynamic second-order sliding mode controlof the hovercraft vesselrdquo IEEE Transactions on Control SystemsTechnology vol 10 no 6 pp 860ndash865 2002

[3] J Aranda ldquoA Control for tracki-ng and stabilization of anunder-actuated nonlinear RC hovercraftrdquo International Feder-ation of Auto-matic Control 2006

[4] J Zhao and J Pang ldquoTrajectory control of underactuated hover-craftrdquo inProceedings of the 2010 8thWorldCongress on IntelligentControl and Automation (WCICA rsquo10) pp 3904ndash3907 July 2010

[5] RMorales H Sira-Ramırez and J A Somolinos ldquoLinear activedisturbance rejection control of the hovercraft vessel modelrdquoOcean Engineering vol 96 pp 100ndash108 2015

[6] G G Rigatos and G V Raffo ldquoInputndashoutput linearizing con-trol of the underactuated hovercraft using the derivative-freenonlinear kalman filterrdquo Unmanned Systems vol 03 no 02 pp127ndash142 2015

[7] K Shojaei ldquoTrajectory tracking control of autonomous under-actuated hovercraft vehicles with limited torquerdquo in Proceedingsof the 2014 2nd RSIISM International Conference on Roboticsand Mechatronics (ICRoM rsquo14) pp 468ndash473 October 2014

[8] K Shojaei ldquoNeural adaptive robust control of underactuatedmarine surface vehicles with input saturationrdquo Applied OceanResearch vol 53 pp 267ndash278 2015

[9] M Cohen T Miloh and G Zilman ldquoWave resistance of ahovercraft moving in water with nonrigid bottomrdquoOcean Engi-neering vol 28 no 11 pp 1461ndash1478 2001

[10] Y Yang Z K Zhang and M D Amp ldquoiscussion and practiceabout hump transition problem of high-density air medium-low speed ACVrdquo Ship amp Boat 2014

[11] H Fu ldquoAnalysis and consider- ation on safety of all-lift hover-craftrdquo Ship amp Boat 2008

[12] M Tao and W Chengjie Hovercraft performance and skirt-cushion system dynamics design National Defence IndustryPress 2012

[13] G Zilman ldquoMathematical simula- tion of hovercraft maneu-verin- grdquo Proceedings of the Twenty-Third American Towing tankConference pp 373ndash382 1993

[14] J Du X Hu M Krstic and Y Sun ldquoRobust dynamic position-ing of ships with disturbances under input saturationrdquo Auto-matica vol 73 pp 207ndash214 2016

[15] M Chen S S Ge and B Ren ldquoAdaptive tracking control ofuncertain MIMO nonlinear systems with input constraintsrdquoAutomatica vol 47 no 3 pp 452ndash465 2011

[16] S Li YWang J Tan and Y Zheng ldquoAdaptive RBFNNsintegralsliding mode control for a quadrotor aircraftrdquoNeurocomputingvol 216 pp 126ndash134 2016

[17] K Xia and W Huo ldquoRobust adaptive backstepping neuralnetworks control for spacecraft rendezvous and docking withinput saturationrdquo ISA Transactions vol 62 pp 249ndash257 2016

[18] J Feng and G-X Wen ldquoAdaptive NN consensus tracking con-trol of a class of nonlinear multi-agent systemsrdquo Neurocomput-ing vol 151 no 1 pp 288ndash295 2015

[19] T Elmokadem M Zribi and K Youcef-Toumi ldquoTrajectorytracking sliding mode control of underactuated AUVsrdquo Non-linear Dynamics vol 84 no 2 pp 1079ndash1091 2016

[20] T Elmokadem M Zribi and K Youcef-Toumi ldquoTerminal slid-ing mode control for the trajectory tracking of underactuatedAutonomousUnderwaterVehiclesrdquoOceanEngineering vol 129pp 613ndash625 2017

[21] V K Dyachenko Resistance of Air Cushion Vehicle CentralResearch Institute of ACAD Krylov 1999

Submit your manuscripts athttpswwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Safety-Guaranteed Trajectory Tracking Control for …downloads.hindawi.com/journals/mpe/2017/9452920.pdfSafety-Guaranteed Trajectory Tracking Control for the Underactuated Hovercraft

Mathematical Problems in Engineering 5

Finally the control laws are given by

120591119906119888 = 1119872119906 (minus1198961119904119906 minus 1205781 sign (119904119906) + 119889 minus 1205821119890119906 minus119872119906119877119906minus W119879119906H119906 (x119906) minus 120576119873 sign (119904119906) + 119896119904119906120585119906)

(26)

120591119903119888 = 1119872119903 ( 120573119889 minus 1198962119904119903 minus 1205782 sign (119904119903) minus 1205822 119890120573 minus 119863119903119908minus 1205823119890120573 minus W119879119903H119903 (x119903) minus 120576119873 sign (119904119903) + 119896119904119903120585119903)

(27)

where 1198961 1198962 1205781 1205782 119896119904119906 and 119896119904119903 are positive constants W119906 =W119906 +Wlowast119906 W119903 = W119903 +Wlowast119903 and119863119903119908 is defined in (20)

And the adaptive laws areW120603 = 120574120603119904120603H120603 (x120603) 120603 = 119906 119903 (28)

where 120574120603 is the adaptive coefficient

34 Stability Analysis

Theorem 5 If the state tracking errors (17) the desired states(15) the auxiliary dynamic system (25) the surge control law120591119906119888 (26) the yaw control law 120591119903119888 (27) and the adaptive laws(28) are applied to the hovercraft system represented by (6)and for any bounded initial condition the closed-loop controlsystem signals 119904119906 119904119903 120585119906 120585119903 119890119906 119890120573 119909119890 119910119890 and 119908119894119906 and 119908119894119903119894 = 1 2 119899 are uniformly ultimately bounded (UUB)The position and desired state tracking errors can be madearbitrarily small by appropriately selecting design parametersAnd the yaw motion will remain bounded

Proof The following Lyapunov function is defined

119881 = 121199042119906 + 121199042119903 + 12120574119906 W119879119906W119906 +12120574119903 W119879119903 W119903 +

121205852119906+ 121205852119903

(29)

From (19) (20) and (29) can be expressed as

= 119904119906 (119891119906 (x119906) + 119872119906120591119906 +119872119906119877119906 minus 119889 + 1205821119890119906)+ 119904119903 (119891119903 (x119903) + 119872119903120591119903 + 119863119903119908 minus 120573119889 + 1205822 119890120573 + 1205823119890120573)+ W119879119906

W119906120574119906 + W119879119903W119903120574119903 + 120585119906 120585119906 + 120585119903 120585119903

(30)

By defining 120591120603 = Δ120591120603 + 120591120603119888 and 120603 = 119906 119903 and using (22) (26)and (27) we have

= minus11989611199042119906 minus 1205781 10038161003816100381610038161199041199061003816100381610038161003816 + 119904119906 (minusW119879119906H119906 (x119906)) +119872119906119904119906Δ120591119906+ 119896119904119906119904119906120585119906 + (minus120576119873 10038161003816100381610038161199041199061003816100381610038161003816 + 120576119906119904119906) minus 11989621199042119903 minus 1205782 10038161003816100381610038161199041199031003816100381610038161003816+ 119904119903 (minusW119879119903H119903 (x119903)) +119872119903119904119903Δ120591119903 + 119896119904119903119904119903120585119903+ (minus120576119873 10038161003816100381610038161199041199031003816100381610038161003816 + 120576119903119904119903) + 1120574119906 W119879119906 W119906 + 1120574119903 W119879119903 W119903+ 120585119906 120585119906 + 120585119903 120585119903

(31)

By using |120576120603| le 120576119873 and 120603 = 119906 119903 (31) can be rewritten as

le minus11989611199042119906 minus 1205781 10038161003816100381610038161199041199061003816100381610038161003816 + 119904119906 (minusW119879119906H119906 (x119906)) minus 11989621199042119903minus 1205782 10038161003816100381610038161199041199031003816100381610038161003816 + 119904119903 (minusW119879119903H119903 (x119903)) + 119872119906119904119906Δ120591119906+ 119896119904119906119904119906120585119906 +119872119903119904119903Δ120591119903 + 119896119904119903119904119903120585119903 + 1120574119906 W119879119906 W119906+ 1120574119903 W119879119903 W119903 + 120585119906 120585119906 + 120585119903 120585119903

(32)

Substituting adaptive laws (28) into it yields

le minus11989611199042119906 +119872119906119904119906Δ120591119906 + 119896119904119906119904119906120585119906 + 120585119906 120585119906 minus 11989621199042119903+119872119903119904119903Δ120591119903 + 119896119904119903119904119903120585119903 + 120585119903 120585119903 (33)

The process of stability analysis is respectively discussed inthe following two cases

Case 1When 120585120603 ge 120590 in light of (25) andYoungrsquos inequalitywe have

120585120603 120585120603 = 120585120603Δ120581120603 minus 11989612058512060311205852120603 minus 1198961205851206032Δ1205812120603minus 10038161003816100381610038161198721206031199041206031003816100381610038161003816 1003816100381610038161003816120591120603 minus 1205911206031198881003816100381610038161003816

le 1198961205851206032Δ1205812120603 + 141198961205851206032 1205852120603 minus 11989612058512060311205852120603 minus 1198961205851206032Δ1205812120603minus 10038161003816100381610038161198721206031199041206031003816100381610038161003816 1003816100381610038161003816120591120603 minus 1205911206031198881003816100381610038161003816

= minus(1198961205851206031 minus 141198961205851206032)1205852120603 minus 10038161003816100381610038161198721206031199041206031003816100381610038161003816 1003816100381610038161003816120591120603 minus 1205911206031198881003816100381610038161003816

(34)

Substituting 120591120603 = Δ120591120603 + 120591120603119888 and (34) into (33) and usingYoungrsquos inequality yield

le minus11989611199042119906 + 119896119904119906119904119906120585119906 minus (1198961205851199061 minus 141198961205851199062)1205852119906 minus 11989621199042119903+ 119896119904119903119904119903120585119903 minus (1198961205851199031 minus 141198961205851199032)1205852119903

le minus (1198961 minus 05) 1199042119906 minus (1198961205851199061 minus 141198961205851199062 minus 051198962119904119906)1205852119906minus (1198962 minus 05) 1199042119903 minus (1198961205851199031 minus 141198961205851199032 minus 051198962119904119903)1205852119903minus 1198961W119879119906W119906120574119906 minus 1198962W119879119903 W119903120574119903 + 1198961W119879119906W119906120574119906+ 1198962W119879119903 W119903120574119903 le minus21205831119881 + 1205881

(35)

6 Mathematical Problems in Engineering

where

1205831 = min(1198961 minus 05) (1198961205851199061 minus 141198961205851199062 minus 051198962119904119906) (1198962 minus 05) (1198961205851199031 minus 141198961205851199032 minus 051198962119904119903)

1205881 = 1198961120574119906 W119879119906W119906 +1198962120574119903 W119879119903 W119903

(36)

Case 2 When 120585120603 lt 120590 in light of (25) and Youngrsquos ine-quality we have

120585120603 120585120603 = 120585120603deadzone (Δ120581120603 120590) le 051205852120603 + 05Δ12058121206030511989621199041206031205852120603 = 11989621199041206031205852120603 minus 0511989621199041206031205852120603 le minus0511989621199041206031205852120603 + 11989621199041206031205902 (37)

Substituting (37) into (33) and using Youngrsquos inequality yield

le minus11989611199042119906 +119872119906119904119906Δ120591119906 + 119896119904119906119904119906120585119906 + 051205852119906 + 05Δ1205812119906minus 11989621199042119903 +119872119903119904119903Δ120591119903 + 119896119904119903119904119903120585119903 + 051205852119903 + 05Δ1205812119903

le minus (1198961 minus 1) 1199042119906 minus (1198962 minus 1) 1199042119903 + 051198722119906Δ1205912119906+ 051198722119903Δ1205912119903 + 0511989621199041199061205852119906 + 0511989621199041199031205852119903 + 051205852119906+ 05Δ1205812119906 + 051205852119903 + 05Δ1205812119903

le minus (1198961 minus 1) 1199042119906 minus (1198962 minus 1) 1199042119903 minus 051205852119906 (1198962119904119906 minus 1)minus 051205852119903 (1198962119904119903 minus 1) + 051198722119906Δ1205912119906 + 051198722119903Δ1205912119903+ 11989621199041199061205902 + 11989621199041199031205902 + 05Δ1205812119906 + 05Δ1205812119903

le minus21205832119881 + 1205882

(38)

where

1205832 = min (1198961 minus 1) (051198962119904119906 minus 05) (1198962 minus 1) (051198962119904119903 minus 05)

1205882 = 1198961120574119906 W119879119906W119906 +1198962120574119903 W119879119903 W119903 + 051198722119906Δ1205912119906

+ 051198722119903Δ1205912119903 + (1198962119904119906 + 1198962119904119903) 1205902 + (Δ1205812119906 + Δ1205812119903)2

(39)

Synthesizing (35) and (38) we have

le minus2120583119881 + 120588 (40)

where 120583 = min1205831 1205832 and 120588 = max1205881 1205882 with the designparameters 1198961 1198962 119896119904119906 119896119904119903 1198961205851199061 1198961205851199062 1198961205851199031 and 1198961205851199032 satisfying

1198961 gt 11198962 gt 1119896119904119906 gt 1119896119904119903 gt 1

1198961205851199061 minus 141198961205851199062 minus 051198962119904119906 gt 01198961205851199031 minus 141198961205851199032 minus 051198962119904119903 gt 0

(41)

Solving (40) we have

0 le 119881 (119905) le 1205882120583 + [119881 (0) minus 1205882120583] 119890minus2120583119905 (42)

It is obviously seen that 119881(119905) is UUB for all 119881(0) le 1198610 with1198610 being any positive constant Therefore in the light of (29)we know that 119904119906 119904119903 120585119906 120585119903 and 119908119894119906 and 119908119894119903 119894 = 1 2 119899 areUUB for all 119881(0) le 1198610 It can be expressed as

10038171003817100381710038171205941003817100381710038171003817 le radic 120588120583 + 2 [119881 (0) minus 1205882120583] 119890minus2120583119905 (43)

where 120594 = 119904119906 119904119903 120585119906 120585119903 119908119894119906 119908119894119903It implies that there exists 119879 gt 0 such that for all 119905 gt 119879

10038171003817100381710038171205941003817100381710038171003817 le radic 120588120583 (44)

where radic120588120583 can be made arbitrarily small by appropriatelyselecting the design parameters

Further the following dynamics are obtained from (18)and (44)

119890119906 + 1205821 int1199050119890119906 119889120591 = 120576119906

119890120573 + 1205822119890120573 + 1205823 int1199050119890120573 119889120591 = 120576120573

(45)

where 120576119906 and 120576120573 are arbitrarily small errorsTo prove that 119890119906 and 119890120573 are UUB the Lyapunov function

is given by

119881119904 = 12 (int1199050119890119906 119889120591)2 + 121198902120573 (46)

The time derivative of this Lyapunov function along thedynamics in (45) is such that

119904 = 119890119906 int1199050119890119906 119889120591 + 119890120573 119890120573

= minus1205821 (int1199050119890119906 119889120591)2 minus 12058221198902120573 + 120576119906 int119905

0119890119906 119889120591

minus 1205823119890120573 int1199050119890120573 119889120591 + 120576120573119890120573

(47)

Mathematical Problems in Engineering 7

From Youngrsquos inequality the following fact is obtained

120576119906 int1199050119890119906 119889120591 le 051205821 (int119905

0119890119906 119889120591)2 + 05 12057621199061205821

minus1205823119890120573 int1199050119890120573 119889120591 le 120582211989021205732 + 120582321205822 (int

119905

0119890120573 119889120591)2

120576120573119890120573 le 02512058221198902120573 + 12057621205731205822

(48)

Then

119904 le minus051205821 (int1199050119890119906 119889120591)2 minus 02512058221198902120573 + 05 12057621199061205821

+ 0512058231205822 (int119905

0119890120573 119889120591)2 + 12057621205731205822 = minus2120583119904119881119904 + 120588119904

(49)

where

120583119904 = min 051205821 0251205822 120588119904 = 05 12057621199061205821 + 0512058231205822 (int

119905

0119890120573 119889120591)2 + 12057621205731205822

(50)

Similar to the analysis in (42)sim(44) there exists 119879119904 gt 0 suchthat for all 119905 gt 119879119904

10038171003817100381710038171205941199041003817100381710038171003817 le radic 120588119904120583119904 (51)

where 120594119904 = int1199050119890119906 119889120591 119890120573

It is obvious that int1199050119890119906 119889120591 and 119890120573 are UUB and will be

arbitrarily small by choosing suitable parametersFrom 119904119906 = 119890119906 + 1205821 int1199050 119890119906 119889120591 we know 119890119906 will be arbitrarily

small From (6) and (15) we have

[ 119906 minus 119906119889119906 tan120573 minus 119906119889 tan120573119889] = 119877[119890 + 119896119909 10038161003816100381610038161199091198901003816100381610038161003816 sign (119909119890)119910119890 + 119896119910 10038161003816100381610038161199101198901003816100381610038161003816 sign (119910119890)] (52)

where

119877 = [ cos120595 sin120595minus sin120595 cos120595] (53)

It is clear that |119877| = 1 which indicates that it is nonsingularThen we have

119890 = minus119896119909 10038161003816100381610038161199091198901003816100381610038161003816 sign (119909119890) + 120576119909119887119910119890 = minus119896119910 10038161003816100381610038161199101198901003816100381610038161003816 sign (119910119890) + 120576119910119887 (54)

where 120576119909119887 120576119910119887 are arbitrarily small errorsFurthermore consider the following Lyapunov function

candidate

119881119901 = 121199092119890 + 121199102119890 (55)

The time derivative of 119881119901 along the dynamics in (54) is suchthat

119901 = 119909119890119890 + 119910119890 119910119890= 119909119890 (minus119896119909 10038161003816100381610038161199091198901003816100381610038161003816 sign (119909119890) + 120576119909119887)

+ 119910119890 (minus119896119910 10038161003816100381610038161199101198901003816100381610038161003816 sign (119910119890) + 120576119910119887)= minus119896119909 100381610038161003816100381611990911989010038161003816100381610038162 minus 119896119910 100381610038161003816100381611991011989010038161003816100381610038162 + 119909119890120576119909119887 + 119910119890120576119910119887le minus05119896119909 100381610038161003816100381611990911989010038161003816100381610038162 minus 05119896119910 100381610038161003816100381611991011989010038161003816100381610038162 + 12057621199091198872119896119909 +

12057621199101198872119896119910= minus2120583119901119881119901 + 120588119901

(56)

where

120583119901 = min 05119896119909 05119896119910 120588119901 = 12057621199091198872119896119909 +

12057621199101198872119896119910 (57)

Also similar to the analysis in (42)sim(44) there exists 119879119901 gt 0such that for all 119905 gt 119879119901

1003817100381710038171003817100381712059411990110038171003817100381710038171003817 le radic 120588119901120583119901 (58)

where 120594119901 = 119909119890 119910119890From the reason that 120576119909119887 and 120576119910119887 are arbitrarily small

errors we know that 119909119890 and 119910119890 are UUB andwill be arbitrarilysmall

Also 119906 is continuously differentiable in the movingprocess of hovercraft Hence is bounded From (6) we have

= 119906119903 tan (120573) + 119877119906 + 120591119906119898 (59)

From (15) Remark 4 and the boundedness of 119909119890 and 119910119890we have that 119906119889 and 120573119889 are bounded Then 119906 V and 120573 arebounded from (5) and (17) Furthermore119877119906 is bounded from(3)Therefore it can be concluded that 119903will remain boundedfrom (7) and (59) This concludes the proof

Remark 6 In order to avoid the well-known chatteringproblem the sign function used in the control laws (26) and(27) can be replaced by hyperbolic tangent function whichis continuous such that sign(119904) = tanh(119896119867119904) where 119896119867 isa positive scalar which can be chosen to get a very goodapproximation

4 Simulations

Two different cases are implemented to verify the effective-ness and superiority of the proposed controller In simula-tions the main particulars and constraints of hovercraft areshown in Tables 1 and 2 The water surface is calm withoutwaves

8 Mathematical Problems in Engineering

Table 1 Main particulars of hovercraft

119898 (kg) 40000119869119911 (kgm2) 18 times 106119878PP (m2) 45119878LP (m2) 93119878HP (m2) 260119876 (m3s) 1408119881119908 (knots) 10119897sk (m) 65119861119888 (m) 89119897119888 (m) 236ℎ (m) 1119867hov (m) 59119878119888 (m2) 212120573119908 (deg) 45

Table 2 State and input constraints

Variable Maximum Minimum119906 (knots) 40 25120573 (deg) 8 minus8120591119906 (N) 80000 minus80000120591119903 (Nm) 1 times 105 minus1 times 105

The comparisons of three different methods are carriedout in each case The legend ldquoMethod Ardquo means the methodin [14] the legend ldquoMethod Brdquo means the method withoutstate and input saturation constraints

Saturation coefficients are

119896119904119906 = 121198961199081199061 = 11198961199081199062 = 9030001198961205851199061 = 31119896119904119903 = 12

1198961199081199031 = 11198961199081199032 = 6503001198961205851199031 = 381198961205851199062 = 0081198961205851199032 = 008

120590 = 3120590 = 1

(60)

Case 1 The reference trajectory parameters are

119909119889 (0) = 300m119910119889 (0) = 100m

120595119889 (0) = 45∘119906119889set (119905) = 35 knotsV119889set (119905) = 0119903119889set (119905) = 0

(61)

The initial values of hovercraft model are119909 (0) = 0119910 (0) = 0120595 (0) = 70∘119906 (0) = 35 knots120573 (0) = 0119903 (0) = 0

(62)

The controller parameters are

119896119909 = 06119896119910 = 061198961 = 111205781 = 0251205821 = 21198962 = 121205782 = 051205822 = 301205823 = 6120576119873 = 05

(63)

It is observed from Figures 3ndash8 that the proposed trajectorytracking controller is effective Tracking errors of all threemethods converge to arbitrarily small values and headingangle is bounded From the comparisons with Methods Aand B in Figures 9 and 10 the proposed controller canlimit the surge speed and the drift angle into the safe rangeeffectively Figures 11 and 12 show that the input saturation isalso handled by the proposed controller

Case 2 The reference trajectory parameters are

119909119889 (0) = minus200m119910119889 (0) = 50m120595119889 (0) = 45∘

119906119889set (119905) = 35 knotsV119889set (119905) = 0119903119889set (119905) = 01∘s

(64)

Mathematical Problems in Engineering 9

0 2000 4000 6000 8000 10000 12000

0

5000

10000

15000

Starting point

Proposed controllerMethod A

Method BDesired trajectory

x(m

)

y (m)

Figure 3 The actual and desired trajectory of hovercraft

0 200 400 600 800 1000 1200 140020

40

60

80

Time (s)

Proposed controllerMethod AMethod B

(d

eg)

Figure 4 The heading angle of hovercraft

0 200 400 600 800 1000 1200 1400

0

500

Time (s)

Proposed controllerMethod AMethod B

xe

(m)

minus500

minus1000

Figure 5 The surge position tracking error

The initial values of hovercraft model are119909 (0) = 0119910 (0) = 0120595 (0) = 30∘119906 (0) = 35 knots120573 (0) = 0119903 (0) = 0

(65)

The controller parameters are

119896119909 = 06119896119910 = 061198961 = 153

0 200 400 600 800 1000 1200 1400

0

500

1000

Time (s)

Proposed controllerMethod AMethod B

ye

(m)

minus500

Figure 6 The sway position tracking error

0 200 400 600 800 1000 1200 1400

0

10

Time (s)

Proposed controllerMethod AMethod B

e u(k

nots)

minus10

minus20

Figure 7 The surge velocity tracking error

0 200 400 600 800 1000 1200 1400

0

5

Time (s)

Proposed controllerMethod AMethod B

e (d

eg)

minus10

minus5

Figure 8 The drift angle tracking error

1205781 = 011205821 = 41198962 = 121205782 = 051205822 = 301205823 = 2120576119873 = 05

(66)

It is obvious from Figures 14ndash19 that only the proposedcontroller can track the trajectory successfully Figures 20 and21 show that the surge speed changes to negative values andthe drift angle exceeds the safety limit in the tracking control

10 Mathematical Problems in Engineering

0 200 400 600 800 1000 1200 140020

40

60

80

Time (s)

Proposed controller

u (k

nots)

Method AMethod B

Figure 9 The surge velocity of hovercraft

0 200 400 600 800 1000 1200 1400

0

10

Time (s)

Proposed controllerMethod AMethod B

(d

eg)

minus10

minus20

Figure 10 The drift angle of hovercraft

0 200 400 600 800 1000 1200 1400

0

2

4

Time (s)

0 50 1000

5

10

Proposed controllerMethod AMethod B

uc

(N)

times105

times104

Figure 11 The surge control law of hovercraft

process ofMethods A and BThese are absolutely not allowedfor hovercraft In contrast you can see from Figure 20 thatsurge speed can still be positive even large enough to avoidthe influence of the resistance humps under the control of theproposed controller And drift angle is also within the safetylimit from Figure 21 From Figures 22 and 23 we know thatthe input constraint ability of the proposed controller is effec-tive Figures 13 and 24 show the heave position of hovercraft

5 Conclusion

A safety-guaranteed trajectory tracking controller has beenproposed for underactuated hovercraft in this paper Thesafety-guaranteed auxiliary dynamic system is designed todeal with state and input constraints The velocity of hov-ercraft is constrained to eliminate the effect of resistance

0 200 400 600 800 1000 1200 1400minus4

0

Time (s)

0 10 20minus15minus10minus5

05

Proposed controllerMethod AMethod B

rc

(Nm

)

times105

times104

minus2

Figure 12 The yaw control law of hovercraft

0 200 400 600 800 1000 1200 1400minus245

minus24

minus235

Time (s)z

(m)

Proposed controllerMethod AMethod B

Figure 13 The heave position of hovercraft

minus2000 0 2000 4000 6000 8000 10000 12000minus1000

0

1000

2000

3000

Starting point

Proposed controllerMethod A

Method BDesired trajectory

minus200minus100

0100

x(m

)

y (m)

minus20 0 20 40 60 80

Figure 14 The actual and desired trajectory of hovercraft

0 200 400 600 800 1000 12000

50

100

150

Time (s)

Proposed controllerMethod AMethod B

(d

eg)

Figure 15 The heading angle of hovercraft

hump and obtain better stability The safety limit of driftangle is carried out effectively for safety in the high-speedtrajectory tracking process of hovercraftThe input saturationis handled High nonlinearity and model uncertainties areapproximated by RBFNNs Simulation results have been

Mathematical Problems in Engineering 11

0 200 400 600 800 1000 1200

0

100

200

300

Time (s)

Proposed controllerMethod AMethod B

xe

(m)

minus100

Figure 16 The surge position tracking error

0 200 400 600 800 1000 1200minus600

minus400

minus200

0

200

Time (s)

Proposed controllerMethod AMethod B

ye

(m)

Figure 17 The sway position tracking error

0 200 400 600 800 1000 1200

0

100

200

300

Time (s)

Proposed controllerMethod AMethod B

e u(k

nots)

minus100

Figure 18 The surge velocity tracking error of hovercraft

0 200 400 600 800 1000 1200

0

2

4

6

Time (s)

Proposed controllerMethod AMethod B

e (d

eg)

minus2

Figure 19 The drift angle tracking error of hovercraft

0 200 400 600 800 1000 1200

0

50

Time (s)

0 100 200

0

50

Proposed controllerMethod AMethod B

u(k

nots)

minus50minus50

minus100

Figure 20 The surge velocity of hovercraft

0 200 400 600 800 1000 1200

0

100

200

Time (s)

0 100 2000

20

40

Proposed controllerMethod AMethod B

(d

eg)

minus100

Figure 21 The drift angle of hovercraft

0 200 400 600 800 1000 1200

0

Time (s)

0 50 100

0

Proposed controllerMethod AMethod B

uc

(N)

minus5

minus10

times105

times104

minus5

minus10

Figure 22 The surge control law of hovercraft

0 200 400 600 800 1000 1200

0

10

20

Time (s)

0 10 20

05

1015

Proposed controllerMethod AMethod B

rc

(Nm

)

minus5

times109

times104

Figure 23 The yaw control law of hovercraft

12 Mathematical Problems in Engineering

0 200 400 600 800 1000 1200Time (s)

Proposed controllerMethod AMethod B

z(m

)

minus15

minus2

minus25

minus3

Figure 24 The heave position of hovercraft

presented to illustrate the effectiveness of the proposed con-troller

Conflicts of Interest

The authors declare that there are no conflicts of interestregarding the publication of this paper

Acknowledgments

The supports of the National Natural Science Foundationof China (Grant no 51309062) and the project ldquoResearchon Maneuverability of High Speed Hovercraftrdquo (Project no2007DFR80320) are gratefully acknowledged

References

[1] Y Liang and A Bliault Theory amp Design of Air Cushion CraftArnold 2000

[2] H Sira-Ramırez ldquoDynamic second-order sliding mode controlof the hovercraft vesselrdquo IEEE Transactions on Control SystemsTechnology vol 10 no 6 pp 860ndash865 2002

[3] J Aranda ldquoA Control for tracki-ng and stabilization of anunder-actuated nonlinear RC hovercraftrdquo International Feder-ation of Auto-matic Control 2006

[4] J Zhao and J Pang ldquoTrajectory control of underactuated hover-craftrdquo inProceedings of the 2010 8thWorldCongress on IntelligentControl and Automation (WCICA rsquo10) pp 3904ndash3907 July 2010

[5] RMorales H Sira-Ramırez and J A Somolinos ldquoLinear activedisturbance rejection control of the hovercraft vessel modelrdquoOcean Engineering vol 96 pp 100ndash108 2015

[6] G G Rigatos and G V Raffo ldquoInputndashoutput linearizing con-trol of the underactuated hovercraft using the derivative-freenonlinear kalman filterrdquo Unmanned Systems vol 03 no 02 pp127ndash142 2015

[7] K Shojaei ldquoTrajectory tracking control of autonomous under-actuated hovercraft vehicles with limited torquerdquo in Proceedingsof the 2014 2nd RSIISM International Conference on Roboticsand Mechatronics (ICRoM rsquo14) pp 468ndash473 October 2014

[8] K Shojaei ldquoNeural adaptive robust control of underactuatedmarine surface vehicles with input saturationrdquo Applied OceanResearch vol 53 pp 267ndash278 2015

[9] M Cohen T Miloh and G Zilman ldquoWave resistance of ahovercraft moving in water with nonrigid bottomrdquoOcean Engi-neering vol 28 no 11 pp 1461ndash1478 2001

[10] Y Yang Z K Zhang and M D Amp ldquoiscussion and practiceabout hump transition problem of high-density air medium-low speed ACVrdquo Ship amp Boat 2014

[11] H Fu ldquoAnalysis and consider- ation on safety of all-lift hover-craftrdquo Ship amp Boat 2008

[12] M Tao and W Chengjie Hovercraft performance and skirt-cushion system dynamics design National Defence IndustryPress 2012

[13] G Zilman ldquoMathematical simula- tion of hovercraft maneu-verin- grdquo Proceedings of the Twenty-Third American Towing tankConference pp 373ndash382 1993

[14] J Du X Hu M Krstic and Y Sun ldquoRobust dynamic position-ing of ships with disturbances under input saturationrdquo Auto-matica vol 73 pp 207ndash214 2016

[15] M Chen S S Ge and B Ren ldquoAdaptive tracking control ofuncertain MIMO nonlinear systems with input constraintsrdquoAutomatica vol 47 no 3 pp 452ndash465 2011

[16] S Li YWang J Tan and Y Zheng ldquoAdaptive RBFNNsintegralsliding mode control for a quadrotor aircraftrdquoNeurocomputingvol 216 pp 126ndash134 2016

[17] K Xia and W Huo ldquoRobust adaptive backstepping neuralnetworks control for spacecraft rendezvous and docking withinput saturationrdquo ISA Transactions vol 62 pp 249ndash257 2016

[18] J Feng and G-X Wen ldquoAdaptive NN consensus tracking con-trol of a class of nonlinear multi-agent systemsrdquo Neurocomput-ing vol 151 no 1 pp 288ndash295 2015

[19] T Elmokadem M Zribi and K Youcef-Toumi ldquoTrajectorytracking sliding mode control of underactuated AUVsrdquo Non-linear Dynamics vol 84 no 2 pp 1079ndash1091 2016

[20] T Elmokadem M Zribi and K Youcef-Toumi ldquoTerminal slid-ing mode control for the trajectory tracking of underactuatedAutonomousUnderwaterVehiclesrdquoOceanEngineering vol 129pp 613ndash625 2017

[21] V K Dyachenko Resistance of Air Cushion Vehicle CentralResearch Institute of ACAD Krylov 1999

Submit your manuscripts athttpswwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Safety-Guaranteed Trajectory Tracking Control for …downloads.hindawi.com/journals/mpe/2017/9452920.pdfSafety-Guaranteed Trajectory Tracking Control for the Underactuated Hovercraft

6 Mathematical Problems in Engineering

where

1205831 = min(1198961 minus 05) (1198961205851199061 minus 141198961205851199062 minus 051198962119904119906) (1198962 minus 05) (1198961205851199031 minus 141198961205851199032 minus 051198962119904119903)

1205881 = 1198961120574119906 W119879119906W119906 +1198962120574119903 W119879119903 W119903

(36)

Case 2 When 120585120603 lt 120590 in light of (25) and Youngrsquos ine-quality we have

120585120603 120585120603 = 120585120603deadzone (Δ120581120603 120590) le 051205852120603 + 05Δ12058121206030511989621199041206031205852120603 = 11989621199041206031205852120603 minus 0511989621199041206031205852120603 le minus0511989621199041206031205852120603 + 11989621199041206031205902 (37)

Substituting (37) into (33) and using Youngrsquos inequality yield

le minus11989611199042119906 +119872119906119904119906Δ120591119906 + 119896119904119906119904119906120585119906 + 051205852119906 + 05Δ1205812119906minus 11989621199042119903 +119872119903119904119903Δ120591119903 + 119896119904119903119904119903120585119903 + 051205852119903 + 05Δ1205812119903

le minus (1198961 minus 1) 1199042119906 minus (1198962 minus 1) 1199042119903 + 051198722119906Δ1205912119906+ 051198722119903Δ1205912119903 + 0511989621199041199061205852119906 + 0511989621199041199031205852119903 + 051205852119906+ 05Δ1205812119906 + 051205852119903 + 05Δ1205812119903

le minus (1198961 minus 1) 1199042119906 minus (1198962 minus 1) 1199042119903 minus 051205852119906 (1198962119904119906 minus 1)minus 051205852119903 (1198962119904119903 minus 1) + 051198722119906Δ1205912119906 + 051198722119903Δ1205912119903+ 11989621199041199061205902 + 11989621199041199031205902 + 05Δ1205812119906 + 05Δ1205812119903

le minus21205832119881 + 1205882

(38)

where

1205832 = min (1198961 minus 1) (051198962119904119906 minus 05) (1198962 minus 1) (051198962119904119903 minus 05)

1205882 = 1198961120574119906 W119879119906W119906 +1198962120574119903 W119879119903 W119903 + 051198722119906Δ1205912119906

+ 051198722119903Δ1205912119903 + (1198962119904119906 + 1198962119904119903) 1205902 + (Δ1205812119906 + Δ1205812119903)2

(39)

Synthesizing (35) and (38) we have

le minus2120583119881 + 120588 (40)

where 120583 = min1205831 1205832 and 120588 = max1205881 1205882 with the designparameters 1198961 1198962 119896119904119906 119896119904119903 1198961205851199061 1198961205851199062 1198961205851199031 and 1198961205851199032 satisfying

1198961 gt 11198962 gt 1119896119904119906 gt 1119896119904119903 gt 1

1198961205851199061 minus 141198961205851199062 minus 051198962119904119906 gt 01198961205851199031 minus 141198961205851199032 minus 051198962119904119903 gt 0

(41)

Solving (40) we have

0 le 119881 (119905) le 1205882120583 + [119881 (0) minus 1205882120583] 119890minus2120583119905 (42)

It is obviously seen that 119881(119905) is UUB for all 119881(0) le 1198610 with1198610 being any positive constant Therefore in the light of (29)we know that 119904119906 119904119903 120585119906 120585119903 and 119908119894119906 and 119908119894119903 119894 = 1 2 119899 areUUB for all 119881(0) le 1198610 It can be expressed as

10038171003817100381710038171205941003817100381710038171003817 le radic 120588120583 + 2 [119881 (0) minus 1205882120583] 119890minus2120583119905 (43)

where 120594 = 119904119906 119904119903 120585119906 120585119903 119908119894119906 119908119894119903It implies that there exists 119879 gt 0 such that for all 119905 gt 119879

10038171003817100381710038171205941003817100381710038171003817 le radic 120588120583 (44)

where radic120588120583 can be made arbitrarily small by appropriatelyselecting the design parameters

Further the following dynamics are obtained from (18)and (44)

119890119906 + 1205821 int1199050119890119906 119889120591 = 120576119906

119890120573 + 1205822119890120573 + 1205823 int1199050119890120573 119889120591 = 120576120573

(45)

where 120576119906 and 120576120573 are arbitrarily small errorsTo prove that 119890119906 and 119890120573 are UUB the Lyapunov function

is given by

119881119904 = 12 (int1199050119890119906 119889120591)2 + 121198902120573 (46)

The time derivative of this Lyapunov function along thedynamics in (45) is such that

119904 = 119890119906 int1199050119890119906 119889120591 + 119890120573 119890120573

= minus1205821 (int1199050119890119906 119889120591)2 minus 12058221198902120573 + 120576119906 int119905

0119890119906 119889120591

minus 1205823119890120573 int1199050119890120573 119889120591 + 120576120573119890120573

(47)

Mathematical Problems in Engineering 7

From Youngrsquos inequality the following fact is obtained

120576119906 int1199050119890119906 119889120591 le 051205821 (int119905

0119890119906 119889120591)2 + 05 12057621199061205821

minus1205823119890120573 int1199050119890120573 119889120591 le 120582211989021205732 + 120582321205822 (int

119905

0119890120573 119889120591)2

120576120573119890120573 le 02512058221198902120573 + 12057621205731205822

(48)

Then

119904 le minus051205821 (int1199050119890119906 119889120591)2 minus 02512058221198902120573 + 05 12057621199061205821

+ 0512058231205822 (int119905

0119890120573 119889120591)2 + 12057621205731205822 = minus2120583119904119881119904 + 120588119904

(49)

where

120583119904 = min 051205821 0251205822 120588119904 = 05 12057621199061205821 + 0512058231205822 (int

119905

0119890120573 119889120591)2 + 12057621205731205822

(50)

Similar to the analysis in (42)sim(44) there exists 119879119904 gt 0 suchthat for all 119905 gt 119879119904

10038171003817100381710038171205941199041003817100381710038171003817 le radic 120588119904120583119904 (51)

where 120594119904 = int1199050119890119906 119889120591 119890120573

It is obvious that int1199050119890119906 119889120591 and 119890120573 are UUB and will be

arbitrarily small by choosing suitable parametersFrom 119904119906 = 119890119906 + 1205821 int1199050 119890119906 119889120591 we know 119890119906 will be arbitrarily

small From (6) and (15) we have

[ 119906 minus 119906119889119906 tan120573 minus 119906119889 tan120573119889] = 119877[119890 + 119896119909 10038161003816100381610038161199091198901003816100381610038161003816 sign (119909119890)119910119890 + 119896119910 10038161003816100381610038161199101198901003816100381610038161003816 sign (119910119890)] (52)

where

119877 = [ cos120595 sin120595minus sin120595 cos120595] (53)

It is clear that |119877| = 1 which indicates that it is nonsingularThen we have

119890 = minus119896119909 10038161003816100381610038161199091198901003816100381610038161003816 sign (119909119890) + 120576119909119887119910119890 = minus119896119910 10038161003816100381610038161199101198901003816100381610038161003816 sign (119910119890) + 120576119910119887 (54)

where 120576119909119887 120576119910119887 are arbitrarily small errorsFurthermore consider the following Lyapunov function

candidate

119881119901 = 121199092119890 + 121199102119890 (55)

The time derivative of 119881119901 along the dynamics in (54) is suchthat

119901 = 119909119890119890 + 119910119890 119910119890= 119909119890 (minus119896119909 10038161003816100381610038161199091198901003816100381610038161003816 sign (119909119890) + 120576119909119887)

+ 119910119890 (minus119896119910 10038161003816100381610038161199101198901003816100381610038161003816 sign (119910119890) + 120576119910119887)= minus119896119909 100381610038161003816100381611990911989010038161003816100381610038162 minus 119896119910 100381610038161003816100381611991011989010038161003816100381610038162 + 119909119890120576119909119887 + 119910119890120576119910119887le minus05119896119909 100381610038161003816100381611990911989010038161003816100381610038162 minus 05119896119910 100381610038161003816100381611991011989010038161003816100381610038162 + 12057621199091198872119896119909 +

12057621199101198872119896119910= minus2120583119901119881119901 + 120588119901

(56)

where

120583119901 = min 05119896119909 05119896119910 120588119901 = 12057621199091198872119896119909 +

12057621199101198872119896119910 (57)

Also similar to the analysis in (42)sim(44) there exists 119879119901 gt 0such that for all 119905 gt 119879119901

1003817100381710038171003817100381712059411990110038171003817100381710038171003817 le radic 120588119901120583119901 (58)

where 120594119901 = 119909119890 119910119890From the reason that 120576119909119887 and 120576119910119887 are arbitrarily small

errors we know that 119909119890 and 119910119890 are UUB andwill be arbitrarilysmall

Also 119906 is continuously differentiable in the movingprocess of hovercraft Hence is bounded From (6) we have

= 119906119903 tan (120573) + 119877119906 + 120591119906119898 (59)

From (15) Remark 4 and the boundedness of 119909119890 and 119910119890we have that 119906119889 and 120573119889 are bounded Then 119906 V and 120573 arebounded from (5) and (17) Furthermore119877119906 is bounded from(3)Therefore it can be concluded that 119903will remain boundedfrom (7) and (59) This concludes the proof

Remark 6 In order to avoid the well-known chatteringproblem the sign function used in the control laws (26) and(27) can be replaced by hyperbolic tangent function whichis continuous such that sign(119904) = tanh(119896119867119904) where 119896119867 isa positive scalar which can be chosen to get a very goodapproximation

4 Simulations

Two different cases are implemented to verify the effective-ness and superiority of the proposed controller In simula-tions the main particulars and constraints of hovercraft areshown in Tables 1 and 2 The water surface is calm withoutwaves

8 Mathematical Problems in Engineering

Table 1 Main particulars of hovercraft

119898 (kg) 40000119869119911 (kgm2) 18 times 106119878PP (m2) 45119878LP (m2) 93119878HP (m2) 260119876 (m3s) 1408119881119908 (knots) 10119897sk (m) 65119861119888 (m) 89119897119888 (m) 236ℎ (m) 1119867hov (m) 59119878119888 (m2) 212120573119908 (deg) 45

Table 2 State and input constraints

Variable Maximum Minimum119906 (knots) 40 25120573 (deg) 8 minus8120591119906 (N) 80000 minus80000120591119903 (Nm) 1 times 105 minus1 times 105

The comparisons of three different methods are carriedout in each case The legend ldquoMethod Ardquo means the methodin [14] the legend ldquoMethod Brdquo means the method withoutstate and input saturation constraints

Saturation coefficients are

119896119904119906 = 121198961199081199061 = 11198961199081199062 = 9030001198961205851199061 = 31119896119904119903 = 12

1198961199081199031 = 11198961199081199032 = 6503001198961205851199031 = 381198961205851199062 = 0081198961205851199032 = 008

120590 = 3120590 = 1

(60)

Case 1 The reference trajectory parameters are

119909119889 (0) = 300m119910119889 (0) = 100m

120595119889 (0) = 45∘119906119889set (119905) = 35 knotsV119889set (119905) = 0119903119889set (119905) = 0

(61)

The initial values of hovercraft model are119909 (0) = 0119910 (0) = 0120595 (0) = 70∘119906 (0) = 35 knots120573 (0) = 0119903 (0) = 0

(62)

The controller parameters are

119896119909 = 06119896119910 = 061198961 = 111205781 = 0251205821 = 21198962 = 121205782 = 051205822 = 301205823 = 6120576119873 = 05

(63)

It is observed from Figures 3ndash8 that the proposed trajectorytracking controller is effective Tracking errors of all threemethods converge to arbitrarily small values and headingangle is bounded From the comparisons with Methods Aand B in Figures 9 and 10 the proposed controller canlimit the surge speed and the drift angle into the safe rangeeffectively Figures 11 and 12 show that the input saturation isalso handled by the proposed controller

Case 2 The reference trajectory parameters are

119909119889 (0) = minus200m119910119889 (0) = 50m120595119889 (0) = 45∘

119906119889set (119905) = 35 knotsV119889set (119905) = 0119903119889set (119905) = 01∘s

(64)

Mathematical Problems in Engineering 9

0 2000 4000 6000 8000 10000 12000

0

5000

10000

15000

Starting point

Proposed controllerMethod A

Method BDesired trajectory

x(m

)

y (m)

Figure 3 The actual and desired trajectory of hovercraft

0 200 400 600 800 1000 1200 140020

40

60

80

Time (s)

Proposed controllerMethod AMethod B

(d

eg)

Figure 4 The heading angle of hovercraft

0 200 400 600 800 1000 1200 1400

0

500

Time (s)

Proposed controllerMethod AMethod B

xe

(m)

minus500

minus1000

Figure 5 The surge position tracking error

The initial values of hovercraft model are119909 (0) = 0119910 (0) = 0120595 (0) = 30∘119906 (0) = 35 knots120573 (0) = 0119903 (0) = 0

(65)

The controller parameters are

119896119909 = 06119896119910 = 061198961 = 153

0 200 400 600 800 1000 1200 1400

0

500

1000

Time (s)

Proposed controllerMethod AMethod B

ye

(m)

minus500

Figure 6 The sway position tracking error

0 200 400 600 800 1000 1200 1400

0

10

Time (s)

Proposed controllerMethod AMethod B

e u(k

nots)

minus10

minus20

Figure 7 The surge velocity tracking error

0 200 400 600 800 1000 1200 1400

0

5

Time (s)

Proposed controllerMethod AMethod B

e (d

eg)

minus10

minus5

Figure 8 The drift angle tracking error

1205781 = 011205821 = 41198962 = 121205782 = 051205822 = 301205823 = 2120576119873 = 05

(66)

It is obvious from Figures 14ndash19 that only the proposedcontroller can track the trajectory successfully Figures 20 and21 show that the surge speed changes to negative values andthe drift angle exceeds the safety limit in the tracking control

10 Mathematical Problems in Engineering

0 200 400 600 800 1000 1200 140020

40

60

80

Time (s)

Proposed controller

u (k

nots)

Method AMethod B

Figure 9 The surge velocity of hovercraft

0 200 400 600 800 1000 1200 1400

0

10

Time (s)

Proposed controllerMethod AMethod B

(d

eg)

minus10

minus20

Figure 10 The drift angle of hovercraft

0 200 400 600 800 1000 1200 1400

0

2

4

Time (s)

0 50 1000

5

10

Proposed controllerMethod AMethod B

uc

(N)

times105

times104

Figure 11 The surge control law of hovercraft

process ofMethods A and BThese are absolutely not allowedfor hovercraft In contrast you can see from Figure 20 thatsurge speed can still be positive even large enough to avoidthe influence of the resistance humps under the control of theproposed controller And drift angle is also within the safetylimit from Figure 21 From Figures 22 and 23 we know thatthe input constraint ability of the proposed controller is effec-tive Figures 13 and 24 show the heave position of hovercraft

5 Conclusion

A safety-guaranteed trajectory tracking controller has beenproposed for underactuated hovercraft in this paper Thesafety-guaranteed auxiliary dynamic system is designed todeal with state and input constraints The velocity of hov-ercraft is constrained to eliminate the effect of resistance

0 200 400 600 800 1000 1200 1400minus4

0

Time (s)

0 10 20minus15minus10minus5

05

Proposed controllerMethod AMethod B

rc

(Nm

)

times105

times104

minus2

Figure 12 The yaw control law of hovercraft

0 200 400 600 800 1000 1200 1400minus245

minus24

minus235

Time (s)z

(m)

Proposed controllerMethod AMethod B

Figure 13 The heave position of hovercraft

minus2000 0 2000 4000 6000 8000 10000 12000minus1000

0

1000

2000

3000

Starting point

Proposed controllerMethod A

Method BDesired trajectory

minus200minus100

0100

x(m

)

y (m)

minus20 0 20 40 60 80

Figure 14 The actual and desired trajectory of hovercraft

0 200 400 600 800 1000 12000

50

100

150

Time (s)

Proposed controllerMethod AMethod B

(d

eg)

Figure 15 The heading angle of hovercraft

hump and obtain better stability The safety limit of driftangle is carried out effectively for safety in the high-speedtrajectory tracking process of hovercraftThe input saturationis handled High nonlinearity and model uncertainties areapproximated by RBFNNs Simulation results have been

Mathematical Problems in Engineering 11

0 200 400 600 800 1000 1200

0

100

200

300

Time (s)

Proposed controllerMethod AMethod B

xe

(m)

minus100

Figure 16 The surge position tracking error

0 200 400 600 800 1000 1200minus600

minus400

minus200

0

200

Time (s)

Proposed controllerMethod AMethod B

ye

(m)

Figure 17 The sway position tracking error

0 200 400 600 800 1000 1200

0

100

200

300

Time (s)

Proposed controllerMethod AMethod B

e u(k

nots)

minus100

Figure 18 The surge velocity tracking error of hovercraft

0 200 400 600 800 1000 1200

0

2

4

6

Time (s)

Proposed controllerMethod AMethod B

e (d

eg)

minus2

Figure 19 The drift angle tracking error of hovercraft

0 200 400 600 800 1000 1200

0

50

Time (s)

0 100 200

0

50

Proposed controllerMethod AMethod B

u(k

nots)

minus50minus50

minus100

Figure 20 The surge velocity of hovercraft

0 200 400 600 800 1000 1200

0

100

200

Time (s)

0 100 2000

20

40

Proposed controllerMethod AMethod B

(d

eg)

minus100

Figure 21 The drift angle of hovercraft

0 200 400 600 800 1000 1200

0

Time (s)

0 50 100

0

Proposed controllerMethod AMethod B

uc

(N)

minus5

minus10

times105

times104

minus5

minus10

Figure 22 The surge control law of hovercraft

0 200 400 600 800 1000 1200

0

10

20

Time (s)

0 10 20

05

1015

Proposed controllerMethod AMethod B

rc

(Nm

)

minus5

times109

times104

Figure 23 The yaw control law of hovercraft

12 Mathematical Problems in Engineering

0 200 400 600 800 1000 1200Time (s)

Proposed controllerMethod AMethod B

z(m

)

minus15

minus2

minus25

minus3

Figure 24 The heave position of hovercraft

presented to illustrate the effectiveness of the proposed con-troller

Conflicts of Interest

The authors declare that there are no conflicts of interestregarding the publication of this paper

Acknowledgments

The supports of the National Natural Science Foundationof China (Grant no 51309062) and the project ldquoResearchon Maneuverability of High Speed Hovercraftrdquo (Project no2007DFR80320) are gratefully acknowledged

References

[1] Y Liang and A Bliault Theory amp Design of Air Cushion CraftArnold 2000

[2] H Sira-Ramırez ldquoDynamic second-order sliding mode controlof the hovercraft vesselrdquo IEEE Transactions on Control SystemsTechnology vol 10 no 6 pp 860ndash865 2002

[3] J Aranda ldquoA Control for tracki-ng and stabilization of anunder-actuated nonlinear RC hovercraftrdquo International Feder-ation of Auto-matic Control 2006

[4] J Zhao and J Pang ldquoTrajectory control of underactuated hover-craftrdquo inProceedings of the 2010 8thWorldCongress on IntelligentControl and Automation (WCICA rsquo10) pp 3904ndash3907 July 2010

[5] RMorales H Sira-Ramırez and J A Somolinos ldquoLinear activedisturbance rejection control of the hovercraft vessel modelrdquoOcean Engineering vol 96 pp 100ndash108 2015

[6] G G Rigatos and G V Raffo ldquoInputndashoutput linearizing con-trol of the underactuated hovercraft using the derivative-freenonlinear kalman filterrdquo Unmanned Systems vol 03 no 02 pp127ndash142 2015

[7] K Shojaei ldquoTrajectory tracking control of autonomous under-actuated hovercraft vehicles with limited torquerdquo in Proceedingsof the 2014 2nd RSIISM International Conference on Roboticsand Mechatronics (ICRoM rsquo14) pp 468ndash473 October 2014

[8] K Shojaei ldquoNeural adaptive robust control of underactuatedmarine surface vehicles with input saturationrdquo Applied OceanResearch vol 53 pp 267ndash278 2015

[9] M Cohen T Miloh and G Zilman ldquoWave resistance of ahovercraft moving in water with nonrigid bottomrdquoOcean Engi-neering vol 28 no 11 pp 1461ndash1478 2001

[10] Y Yang Z K Zhang and M D Amp ldquoiscussion and practiceabout hump transition problem of high-density air medium-low speed ACVrdquo Ship amp Boat 2014

[11] H Fu ldquoAnalysis and consider- ation on safety of all-lift hover-craftrdquo Ship amp Boat 2008

[12] M Tao and W Chengjie Hovercraft performance and skirt-cushion system dynamics design National Defence IndustryPress 2012

[13] G Zilman ldquoMathematical simula- tion of hovercraft maneu-verin- grdquo Proceedings of the Twenty-Third American Towing tankConference pp 373ndash382 1993

[14] J Du X Hu M Krstic and Y Sun ldquoRobust dynamic position-ing of ships with disturbances under input saturationrdquo Auto-matica vol 73 pp 207ndash214 2016

[15] M Chen S S Ge and B Ren ldquoAdaptive tracking control ofuncertain MIMO nonlinear systems with input constraintsrdquoAutomatica vol 47 no 3 pp 452ndash465 2011

[16] S Li YWang J Tan and Y Zheng ldquoAdaptive RBFNNsintegralsliding mode control for a quadrotor aircraftrdquoNeurocomputingvol 216 pp 126ndash134 2016

[17] K Xia and W Huo ldquoRobust adaptive backstepping neuralnetworks control for spacecraft rendezvous and docking withinput saturationrdquo ISA Transactions vol 62 pp 249ndash257 2016

[18] J Feng and G-X Wen ldquoAdaptive NN consensus tracking con-trol of a class of nonlinear multi-agent systemsrdquo Neurocomput-ing vol 151 no 1 pp 288ndash295 2015

[19] T Elmokadem M Zribi and K Youcef-Toumi ldquoTrajectorytracking sliding mode control of underactuated AUVsrdquo Non-linear Dynamics vol 84 no 2 pp 1079ndash1091 2016

[20] T Elmokadem M Zribi and K Youcef-Toumi ldquoTerminal slid-ing mode control for the trajectory tracking of underactuatedAutonomousUnderwaterVehiclesrdquoOceanEngineering vol 129pp 613ndash625 2017

[21] V K Dyachenko Resistance of Air Cushion Vehicle CentralResearch Institute of ACAD Krylov 1999

Submit your manuscripts athttpswwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 7: Safety-Guaranteed Trajectory Tracking Control for …downloads.hindawi.com/journals/mpe/2017/9452920.pdfSafety-Guaranteed Trajectory Tracking Control for the Underactuated Hovercraft

Mathematical Problems in Engineering 7

From Youngrsquos inequality the following fact is obtained

120576119906 int1199050119890119906 119889120591 le 051205821 (int119905

0119890119906 119889120591)2 + 05 12057621199061205821

minus1205823119890120573 int1199050119890120573 119889120591 le 120582211989021205732 + 120582321205822 (int

119905

0119890120573 119889120591)2

120576120573119890120573 le 02512058221198902120573 + 12057621205731205822

(48)

Then

119904 le minus051205821 (int1199050119890119906 119889120591)2 minus 02512058221198902120573 + 05 12057621199061205821

+ 0512058231205822 (int119905

0119890120573 119889120591)2 + 12057621205731205822 = minus2120583119904119881119904 + 120588119904

(49)

where

120583119904 = min 051205821 0251205822 120588119904 = 05 12057621199061205821 + 0512058231205822 (int

119905

0119890120573 119889120591)2 + 12057621205731205822

(50)

Similar to the analysis in (42)sim(44) there exists 119879119904 gt 0 suchthat for all 119905 gt 119879119904

10038171003817100381710038171205941199041003817100381710038171003817 le radic 120588119904120583119904 (51)

where 120594119904 = int1199050119890119906 119889120591 119890120573

It is obvious that int1199050119890119906 119889120591 and 119890120573 are UUB and will be

arbitrarily small by choosing suitable parametersFrom 119904119906 = 119890119906 + 1205821 int1199050 119890119906 119889120591 we know 119890119906 will be arbitrarily

small From (6) and (15) we have

[ 119906 minus 119906119889119906 tan120573 minus 119906119889 tan120573119889] = 119877[119890 + 119896119909 10038161003816100381610038161199091198901003816100381610038161003816 sign (119909119890)119910119890 + 119896119910 10038161003816100381610038161199101198901003816100381610038161003816 sign (119910119890)] (52)

where

119877 = [ cos120595 sin120595minus sin120595 cos120595] (53)

It is clear that |119877| = 1 which indicates that it is nonsingularThen we have

119890 = minus119896119909 10038161003816100381610038161199091198901003816100381610038161003816 sign (119909119890) + 120576119909119887119910119890 = minus119896119910 10038161003816100381610038161199101198901003816100381610038161003816 sign (119910119890) + 120576119910119887 (54)

where 120576119909119887 120576119910119887 are arbitrarily small errorsFurthermore consider the following Lyapunov function

candidate

119881119901 = 121199092119890 + 121199102119890 (55)

The time derivative of 119881119901 along the dynamics in (54) is suchthat

119901 = 119909119890119890 + 119910119890 119910119890= 119909119890 (minus119896119909 10038161003816100381610038161199091198901003816100381610038161003816 sign (119909119890) + 120576119909119887)

+ 119910119890 (minus119896119910 10038161003816100381610038161199101198901003816100381610038161003816 sign (119910119890) + 120576119910119887)= minus119896119909 100381610038161003816100381611990911989010038161003816100381610038162 minus 119896119910 100381610038161003816100381611991011989010038161003816100381610038162 + 119909119890120576119909119887 + 119910119890120576119910119887le minus05119896119909 100381610038161003816100381611990911989010038161003816100381610038162 minus 05119896119910 100381610038161003816100381611991011989010038161003816100381610038162 + 12057621199091198872119896119909 +

12057621199101198872119896119910= minus2120583119901119881119901 + 120588119901

(56)

where

120583119901 = min 05119896119909 05119896119910 120588119901 = 12057621199091198872119896119909 +

12057621199101198872119896119910 (57)

Also similar to the analysis in (42)sim(44) there exists 119879119901 gt 0such that for all 119905 gt 119879119901

1003817100381710038171003817100381712059411990110038171003817100381710038171003817 le radic 120588119901120583119901 (58)

where 120594119901 = 119909119890 119910119890From the reason that 120576119909119887 and 120576119910119887 are arbitrarily small

errors we know that 119909119890 and 119910119890 are UUB andwill be arbitrarilysmall

Also 119906 is continuously differentiable in the movingprocess of hovercraft Hence is bounded From (6) we have

= 119906119903 tan (120573) + 119877119906 + 120591119906119898 (59)

From (15) Remark 4 and the boundedness of 119909119890 and 119910119890we have that 119906119889 and 120573119889 are bounded Then 119906 V and 120573 arebounded from (5) and (17) Furthermore119877119906 is bounded from(3)Therefore it can be concluded that 119903will remain boundedfrom (7) and (59) This concludes the proof

Remark 6 In order to avoid the well-known chatteringproblem the sign function used in the control laws (26) and(27) can be replaced by hyperbolic tangent function whichis continuous such that sign(119904) = tanh(119896119867119904) where 119896119867 isa positive scalar which can be chosen to get a very goodapproximation

4 Simulations

Two different cases are implemented to verify the effective-ness and superiority of the proposed controller In simula-tions the main particulars and constraints of hovercraft areshown in Tables 1 and 2 The water surface is calm withoutwaves

8 Mathematical Problems in Engineering

Table 1 Main particulars of hovercraft

119898 (kg) 40000119869119911 (kgm2) 18 times 106119878PP (m2) 45119878LP (m2) 93119878HP (m2) 260119876 (m3s) 1408119881119908 (knots) 10119897sk (m) 65119861119888 (m) 89119897119888 (m) 236ℎ (m) 1119867hov (m) 59119878119888 (m2) 212120573119908 (deg) 45

Table 2 State and input constraints

Variable Maximum Minimum119906 (knots) 40 25120573 (deg) 8 minus8120591119906 (N) 80000 minus80000120591119903 (Nm) 1 times 105 minus1 times 105

The comparisons of three different methods are carriedout in each case The legend ldquoMethod Ardquo means the methodin [14] the legend ldquoMethod Brdquo means the method withoutstate and input saturation constraints

Saturation coefficients are

119896119904119906 = 121198961199081199061 = 11198961199081199062 = 9030001198961205851199061 = 31119896119904119903 = 12

1198961199081199031 = 11198961199081199032 = 6503001198961205851199031 = 381198961205851199062 = 0081198961205851199032 = 008

120590 = 3120590 = 1

(60)

Case 1 The reference trajectory parameters are

119909119889 (0) = 300m119910119889 (0) = 100m

120595119889 (0) = 45∘119906119889set (119905) = 35 knotsV119889set (119905) = 0119903119889set (119905) = 0

(61)

The initial values of hovercraft model are119909 (0) = 0119910 (0) = 0120595 (0) = 70∘119906 (0) = 35 knots120573 (0) = 0119903 (0) = 0

(62)

The controller parameters are

119896119909 = 06119896119910 = 061198961 = 111205781 = 0251205821 = 21198962 = 121205782 = 051205822 = 301205823 = 6120576119873 = 05

(63)

It is observed from Figures 3ndash8 that the proposed trajectorytracking controller is effective Tracking errors of all threemethods converge to arbitrarily small values and headingangle is bounded From the comparisons with Methods Aand B in Figures 9 and 10 the proposed controller canlimit the surge speed and the drift angle into the safe rangeeffectively Figures 11 and 12 show that the input saturation isalso handled by the proposed controller

Case 2 The reference trajectory parameters are

119909119889 (0) = minus200m119910119889 (0) = 50m120595119889 (0) = 45∘

119906119889set (119905) = 35 knotsV119889set (119905) = 0119903119889set (119905) = 01∘s

(64)

Mathematical Problems in Engineering 9

0 2000 4000 6000 8000 10000 12000

0

5000

10000

15000

Starting point

Proposed controllerMethod A

Method BDesired trajectory

x(m

)

y (m)

Figure 3 The actual and desired trajectory of hovercraft

0 200 400 600 800 1000 1200 140020

40

60

80

Time (s)

Proposed controllerMethod AMethod B

(d

eg)

Figure 4 The heading angle of hovercraft

0 200 400 600 800 1000 1200 1400

0

500

Time (s)

Proposed controllerMethod AMethod B

xe

(m)

minus500

minus1000

Figure 5 The surge position tracking error

The initial values of hovercraft model are119909 (0) = 0119910 (0) = 0120595 (0) = 30∘119906 (0) = 35 knots120573 (0) = 0119903 (0) = 0

(65)

The controller parameters are

119896119909 = 06119896119910 = 061198961 = 153

0 200 400 600 800 1000 1200 1400

0

500

1000

Time (s)

Proposed controllerMethod AMethod B

ye

(m)

minus500

Figure 6 The sway position tracking error

0 200 400 600 800 1000 1200 1400

0

10

Time (s)

Proposed controllerMethod AMethod B

e u(k

nots)

minus10

minus20

Figure 7 The surge velocity tracking error

0 200 400 600 800 1000 1200 1400

0

5

Time (s)

Proposed controllerMethod AMethod B

e (d

eg)

minus10

minus5

Figure 8 The drift angle tracking error

1205781 = 011205821 = 41198962 = 121205782 = 051205822 = 301205823 = 2120576119873 = 05

(66)

It is obvious from Figures 14ndash19 that only the proposedcontroller can track the trajectory successfully Figures 20 and21 show that the surge speed changes to negative values andthe drift angle exceeds the safety limit in the tracking control

10 Mathematical Problems in Engineering

0 200 400 600 800 1000 1200 140020

40

60

80

Time (s)

Proposed controller

u (k

nots)

Method AMethod B

Figure 9 The surge velocity of hovercraft

0 200 400 600 800 1000 1200 1400

0

10

Time (s)

Proposed controllerMethod AMethod B

(d

eg)

minus10

minus20

Figure 10 The drift angle of hovercraft

0 200 400 600 800 1000 1200 1400

0

2

4

Time (s)

0 50 1000

5

10

Proposed controllerMethod AMethod B

uc

(N)

times105

times104

Figure 11 The surge control law of hovercraft

process ofMethods A and BThese are absolutely not allowedfor hovercraft In contrast you can see from Figure 20 thatsurge speed can still be positive even large enough to avoidthe influence of the resistance humps under the control of theproposed controller And drift angle is also within the safetylimit from Figure 21 From Figures 22 and 23 we know thatthe input constraint ability of the proposed controller is effec-tive Figures 13 and 24 show the heave position of hovercraft

5 Conclusion

A safety-guaranteed trajectory tracking controller has beenproposed for underactuated hovercraft in this paper Thesafety-guaranteed auxiliary dynamic system is designed todeal with state and input constraints The velocity of hov-ercraft is constrained to eliminate the effect of resistance

0 200 400 600 800 1000 1200 1400minus4

0

Time (s)

0 10 20minus15minus10minus5

05

Proposed controllerMethod AMethod B

rc

(Nm

)

times105

times104

minus2

Figure 12 The yaw control law of hovercraft

0 200 400 600 800 1000 1200 1400minus245

minus24

minus235

Time (s)z

(m)

Proposed controllerMethod AMethod B

Figure 13 The heave position of hovercraft

minus2000 0 2000 4000 6000 8000 10000 12000minus1000

0

1000

2000

3000

Starting point

Proposed controllerMethod A

Method BDesired trajectory

minus200minus100

0100

x(m

)

y (m)

minus20 0 20 40 60 80

Figure 14 The actual and desired trajectory of hovercraft

0 200 400 600 800 1000 12000

50

100

150

Time (s)

Proposed controllerMethod AMethod B

(d

eg)

Figure 15 The heading angle of hovercraft

hump and obtain better stability The safety limit of driftangle is carried out effectively for safety in the high-speedtrajectory tracking process of hovercraftThe input saturationis handled High nonlinearity and model uncertainties areapproximated by RBFNNs Simulation results have been

Mathematical Problems in Engineering 11

0 200 400 600 800 1000 1200

0

100

200

300

Time (s)

Proposed controllerMethod AMethod B

xe

(m)

minus100

Figure 16 The surge position tracking error

0 200 400 600 800 1000 1200minus600

minus400

minus200

0

200

Time (s)

Proposed controllerMethod AMethod B

ye

(m)

Figure 17 The sway position tracking error

0 200 400 600 800 1000 1200

0

100

200

300

Time (s)

Proposed controllerMethod AMethod B

e u(k

nots)

minus100

Figure 18 The surge velocity tracking error of hovercraft

0 200 400 600 800 1000 1200

0

2

4

6

Time (s)

Proposed controllerMethod AMethod B

e (d

eg)

minus2

Figure 19 The drift angle tracking error of hovercraft

0 200 400 600 800 1000 1200

0

50

Time (s)

0 100 200

0

50

Proposed controllerMethod AMethod B

u(k

nots)

minus50minus50

minus100

Figure 20 The surge velocity of hovercraft

0 200 400 600 800 1000 1200

0

100

200

Time (s)

0 100 2000

20

40

Proposed controllerMethod AMethod B

(d

eg)

minus100

Figure 21 The drift angle of hovercraft

0 200 400 600 800 1000 1200

0

Time (s)

0 50 100

0

Proposed controllerMethod AMethod B

uc

(N)

minus5

minus10

times105

times104

minus5

minus10

Figure 22 The surge control law of hovercraft

0 200 400 600 800 1000 1200

0

10

20

Time (s)

0 10 20

05

1015

Proposed controllerMethod AMethod B

rc

(Nm

)

minus5

times109

times104

Figure 23 The yaw control law of hovercraft

12 Mathematical Problems in Engineering

0 200 400 600 800 1000 1200Time (s)

Proposed controllerMethod AMethod B

z(m

)

minus15

minus2

minus25

minus3

Figure 24 The heave position of hovercraft

presented to illustrate the effectiveness of the proposed con-troller

Conflicts of Interest

The authors declare that there are no conflicts of interestregarding the publication of this paper

Acknowledgments

The supports of the National Natural Science Foundationof China (Grant no 51309062) and the project ldquoResearchon Maneuverability of High Speed Hovercraftrdquo (Project no2007DFR80320) are gratefully acknowledged

References

[1] Y Liang and A Bliault Theory amp Design of Air Cushion CraftArnold 2000

[2] H Sira-Ramırez ldquoDynamic second-order sliding mode controlof the hovercraft vesselrdquo IEEE Transactions on Control SystemsTechnology vol 10 no 6 pp 860ndash865 2002

[3] J Aranda ldquoA Control for tracki-ng and stabilization of anunder-actuated nonlinear RC hovercraftrdquo International Feder-ation of Auto-matic Control 2006

[4] J Zhao and J Pang ldquoTrajectory control of underactuated hover-craftrdquo inProceedings of the 2010 8thWorldCongress on IntelligentControl and Automation (WCICA rsquo10) pp 3904ndash3907 July 2010

[5] RMorales H Sira-Ramırez and J A Somolinos ldquoLinear activedisturbance rejection control of the hovercraft vessel modelrdquoOcean Engineering vol 96 pp 100ndash108 2015

[6] G G Rigatos and G V Raffo ldquoInputndashoutput linearizing con-trol of the underactuated hovercraft using the derivative-freenonlinear kalman filterrdquo Unmanned Systems vol 03 no 02 pp127ndash142 2015

[7] K Shojaei ldquoTrajectory tracking control of autonomous under-actuated hovercraft vehicles with limited torquerdquo in Proceedingsof the 2014 2nd RSIISM International Conference on Roboticsand Mechatronics (ICRoM rsquo14) pp 468ndash473 October 2014

[8] K Shojaei ldquoNeural adaptive robust control of underactuatedmarine surface vehicles with input saturationrdquo Applied OceanResearch vol 53 pp 267ndash278 2015

[9] M Cohen T Miloh and G Zilman ldquoWave resistance of ahovercraft moving in water with nonrigid bottomrdquoOcean Engi-neering vol 28 no 11 pp 1461ndash1478 2001

[10] Y Yang Z K Zhang and M D Amp ldquoiscussion and practiceabout hump transition problem of high-density air medium-low speed ACVrdquo Ship amp Boat 2014

[11] H Fu ldquoAnalysis and consider- ation on safety of all-lift hover-craftrdquo Ship amp Boat 2008

[12] M Tao and W Chengjie Hovercraft performance and skirt-cushion system dynamics design National Defence IndustryPress 2012

[13] G Zilman ldquoMathematical simula- tion of hovercraft maneu-verin- grdquo Proceedings of the Twenty-Third American Towing tankConference pp 373ndash382 1993

[14] J Du X Hu M Krstic and Y Sun ldquoRobust dynamic position-ing of ships with disturbances under input saturationrdquo Auto-matica vol 73 pp 207ndash214 2016

[15] M Chen S S Ge and B Ren ldquoAdaptive tracking control ofuncertain MIMO nonlinear systems with input constraintsrdquoAutomatica vol 47 no 3 pp 452ndash465 2011

[16] S Li YWang J Tan and Y Zheng ldquoAdaptive RBFNNsintegralsliding mode control for a quadrotor aircraftrdquoNeurocomputingvol 216 pp 126ndash134 2016

[17] K Xia and W Huo ldquoRobust adaptive backstepping neuralnetworks control for spacecraft rendezvous and docking withinput saturationrdquo ISA Transactions vol 62 pp 249ndash257 2016

[18] J Feng and G-X Wen ldquoAdaptive NN consensus tracking con-trol of a class of nonlinear multi-agent systemsrdquo Neurocomput-ing vol 151 no 1 pp 288ndash295 2015

[19] T Elmokadem M Zribi and K Youcef-Toumi ldquoTrajectorytracking sliding mode control of underactuated AUVsrdquo Non-linear Dynamics vol 84 no 2 pp 1079ndash1091 2016

[20] T Elmokadem M Zribi and K Youcef-Toumi ldquoTerminal slid-ing mode control for the trajectory tracking of underactuatedAutonomousUnderwaterVehiclesrdquoOceanEngineering vol 129pp 613ndash625 2017

[21] V K Dyachenko Resistance of Air Cushion Vehicle CentralResearch Institute of ACAD Krylov 1999

Submit your manuscripts athttpswwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 8: Safety-Guaranteed Trajectory Tracking Control for …downloads.hindawi.com/journals/mpe/2017/9452920.pdfSafety-Guaranteed Trajectory Tracking Control for the Underactuated Hovercraft

8 Mathematical Problems in Engineering

Table 1 Main particulars of hovercraft

119898 (kg) 40000119869119911 (kgm2) 18 times 106119878PP (m2) 45119878LP (m2) 93119878HP (m2) 260119876 (m3s) 1408119881119908 (knots) 10119897sk (m) 65119861119888 (m) 89119897119888 (m) 236ℎ (m) 1119867hov (m) 59119878119888 (m2) 212120573119908 (deg) 45

Table 2 State and input constraints

Variable Maximum Minimum119906 (knots) 40 25120573 (deg) 8 minus8120591119906 (N) 80000 minus80000120591119903 (Nm) 1 times 105 minus1 times 105

The comparisons of three different methods are carriedout in each case The legend ldquoMethod Ardquo means the methodin [14] the legend ldquoMethod Brdquo means the method withoutstate and input saturation constraints

Saturation coefficients are

119896119904119906 = 121198961199081199061 = 11198961199081199062 = 9030001198961205851199061 = 31119896119904119903 = 12

1198961199081199031 = 11198961199081199032 = 6503001198961205851199031 = 381198961205851199062 = 0081198961205851199032 = 008

120590 = 3120590 = 1

(60)

Case 1 The reference trajectory parameters are

119909119889 (0) = 300m119910119889 (0) = 100m

120595119889 (0) = 45∘119906119889set (119905) = 35 knotsV119889set (119905) = 0119903119889set (119905) = 0

(61)

The initial values of hovercraft model are119909 (0) = 0119910 (0) = 0120595 (0) = 70∘119906 (0) = 35 knots120573 (0) = 0119903 (0) = 0

(62)

The controller parameters are

119896119909 = 06119896119910 = 061198961 = 111205781 = 0251205821 = 21198962 = 121205782 = 051205822 = 301205823 = 6120576119873 = 05

(63)

It is observed from Figures 3ndash8 that the proposed trajectorytracking controller is effective Tracking errors of all threemethods converge to arbitrarily small values and headingangle is bounded From the comparisons with Methods Aand B in Figures 9 and 10 the proposed controller canlimit the surge speed and the drift angle into the safe rangeeffectively Figures 11 and 12 show that the input saturation isalso handled by the proposed controller

Case 2 The reference trajectory parameters are

119909119889 (0) = minus200m119910119889 (0) = 50m120595119889 (0) = 45∘

119906119889set (119905) = 35 knotsV119889set (119905) = 0119903119889set (119905) = 01∘s

(64)

Mathematical Problems in Engineering 9

0 2000 4000 6000 8000 10000 12000

0

5000

10000

15000

Starting point

Proposed controllerMethod A

Method BDesired trajectory

x(m

)

y (m)

Figure 3 The actual and desired trajectory of hovercraft

0 200 400 600 800 1000 1200 140020

40

60

80

Time (s)

Proposed controllerMethod AMethod B

(d

eg)

Figure 4 The heading angle of hovercraft

0 200 400 600 800 1000 1200 1400

0

500

Time (s)

Proposed controllerMethod AMethod B

xe

(m)

minus500

minus1000

Figure 5 The surge position tracking error

The initial values of hovercraft model are119909 (0) = 0119910 (0) = 0120595 (0) = 30∘119906 (0) = 35 knots120573 (0) = 0119903 (0) = 0

(65)

The controller parameters are

119896119909 = 06119896119910 = 061198961 = 153

0 200 400 600 800 1000 1200 1400

0

500

1000

Time (s)

Proposed controllerMethod AMethod B

ye

(m)

minus500

Figure 6 The sway position tracking error

0 200 400 600 800 1000 1200 1400

0

10

Time (s)

Proposed controllerMethod AMethod B

e u(k

nots)

minus10

minus20

Figure 7 The surge velocity tracking error

0 200 400 600 800 1000 1200 1400

0

5

Time (s)

Proposed controllerMethod AMethod B

e (d

eg)

minus10

minus5

Figure 8 The drift angle tracking error

1205781 = 011205821 = 41198962 = 121205782 = 051205822 = 301205823 = 2120576119873 = 05

(66)

It is obvious from Figures 14ndash19 that only the proposedcontroller can track the trajectory successfully Figures 20 and21 show that the surge speed changes to negative values andthe drift angle exceeds the safety limit in the tracking control

10 Mathematical Problems in Engineering

0 200 400 600 800 1000 1200 140020

40

60

80

Time (s)

Proposed controller

u (k

nots)

Method AMethod B

Figure 9 The surge velocity of hovercraft

0 200 400 600 800 1000 1200 1400

0

10

Time (s)

Proposed controllerMethod AMethod B

(d

eg)

minus10

minus20

Figure 10 The drift angle of hovercraft

0 200 400 600 800 1000 1200 1400

0

2

4

Time (s)

0 50 1000

5

10

Proposed controllerMethod AMethod B

uc

(N)

times105

times104

Figure 11 The surge control law of hovercraft

process ofMethods A and BThese are absolutely not allowedfor hovercraft In contrast you can see from Figure 20 thatsurge speed can still be positive even large enough to avoidthe influence of the resistance humps under the control of theproposed controller And drift angle is also within the safetylimit from Figure 21 From Figures 22 and 23 we know thatthe input constraint ability of the proposed controller is effec-tive Figures 13 and 24 show the heave position of hovercraft

5 Conclusion

A safety-guaranteed trajectory tracking controller has beenproposed for underactuated hovercraft in this paper Thesafety-guaranteed auxiliary dynamic system is designed todeal with state and input constraints The velocity of hov-ercraft is constrained to eliminate the effect of resistance

0 200 400 600 800 1000 1200 1400minus4

0

Time (s)

0 10 20minus15minus10minus5

05

Proposed controllerMethod AMethod B

rc

(Nm

)

times105

times104

minus2

Figure 12 The yaw control law of hovercraft

0 200 400 600 800 1000 1200 1400minus245

minus24

minus235

Time (s)z

(m)

Proposed controllerMethod AMethod B

Figure 13 The heave position of hovercraft

minus2000 0 2000 4000 6000 8000 10000 12000minus1000

0

1000

2000

3000

Starting point

Proposed controllerMethod A

Method BDesired trajectory

minus200minus100

0100

x(m

)

y (m)

minus20 0 20 40 60 80

Figure 14 The actual and desired trajectory of hovercraft

0 200 400 600 800 1000 12000

50

100

150

Time (s)

Proposed controllerMethod AMethod B

(d

eg)

Figure 15 The heading angle of hovercraft

hump and obtain better stability The safety limit of driftangle is carried out effectively for safety in the high-speedtrajectory tracking process of hovercraftThe input saturationis handled High nonlinearity and model uncertainties areapproximated by RBFNNs Simulation results have been

Mathematical Problems in Engineering 11

0 200 400 600 800 1000 1200

0

100

200

300

Time (s)

Proposed controllerMethod AMethod B

xe

(m)

minus100

Figure 16 The surge position tracking error

0 200 400 600 800 1000 1200minus600

minus400

minus200

0

200

Time (s)

Proposed controllerMethod AMethod B

ye

(m)

Figure 17 The sway position tracking error

0 200 400 600 800 1000 1200

0

100

200

300

Time (s)

Proposed controllerMethod AMethod B

e u(k

nots)

minus100

Figure 18 The surge velocity tracking error of hovercraft

0 200 400 600 800 1000 1200

0

2

4

6

Time (s)

Proposed controllerMethod AMethod B

e (d

eg)

minus2

Figure 19 The drift angle tracking error of hovercraft

0 200 400 600 800 1000 1200

0

50

Time (s)

0 100 200

0

50

Proposed controllerMethod AMethod B

u(k

nots)

minus50minus50

minus100

Figure 20 The surge velocity of hovercraft

0 200 400 600 800 1000 1200

0

100

200

Time (s)

0 100 2000

20

40

Proposed controllerMethod AMethod B

(d

eg)

minus100

Figure 21 The drift angle of hovercraft

0 200 400 600 800 1000 1200

0

Time (s)

0 50 100

0

Proposed controllerMethod AMethod B

uc

(N)

minus5

minus10

times105

times104

minus5

minus10

Figure 22 The surge control law of hovercraft

0 200 400 600 800 1000 1200

0

10

20

Time (s)

0 10 20

05

1015

Proposed controllerMethod AMethod B

rc

(Nm

)

minus5

times109

times104

Figure 23 The yaw control law of hovercraft

12 Mathematical Problems in Engineering

0 200 400 600 800 1000 1200Time (s)

Proposed controllerMethod AMethod B

z(m

)

minus15

minus2

minus25

minus3

Figure 24 The heave position of hovercraft

presented to illustrate the effectiveness of the proposed con-troller

Conflicts of Interest

The authors declare that there are no conflicts of interestregarding the publication of this paper

Acknowledgments

The supports of the National Natural Science Foundationof China (Grant no 51309062) and the project ldquoResearchon Maneuverability of High Speed Hovercraftrdquo (Project no2007DFR80320) are gratefully acknowledged

References

[1] Y Liang and A Bliault Theory amp Design of Air Cushion CraftArnold 2000

[2] H Sira-Ramırez ldquoDynamic second-order sliding mode controlof the hovercraft vesselrdquo IEEE Transactions on Control SystemsTechnology vol 10 no 6 pp 860ndash865 2002

[3] J Aranda ldquoA Control for tracki-ng and stabilization of anunder-actuated nonlinear RC hovercraftrdquo International Feder-ation of Auto-matic Control 2006

[4] J Zhao and J Pang ldquoTrajectory control of underactuated hover-craftrdquo inProceedings of the 2010 8thWorldCongress on IntelligentControl and Automation (WCICA rsquo10) pp 3904ndash3907 July 2010

[5] RMorales H Sira-Ramırez and J A Somolinos ldquoLinear activedisturbance rejection control of the hovercraft vessel modelrdquoOcean Engineering vol 96 pp 100ndash108 2015

[6] G G Rigatos and G V Raffo ldquoInputndashoutput linearizing con-trol of the underactuated hovercraft using the derivative-freenonlinear kalman filterrdquo Unmanned Systems vol 03 no 02 pp127ndash142 2015

[7] K Shojaei ldquoTrajectory tracking control of autonomous under-actuated hovercraft vehicles with limited torquerdquo in Proceedingsof the 2014 2nd RSIISM International Conference on Roboticsand Mechatronics (ICRoM rsquo14) pp 468ndash473 October 2014

[8] K Shojaei ldquoNeural adaptive robust control of underactuatedmarine surface vehicles with input saturationrdquo Applied OceanResearch vol 53 pp 267ndash278 2015

[9] M Cohen T Miloh and G Zilman ldquoWave resistance of ahovercraft moving in water with nonrigid bottomrdquoOcean Engi-neering vol 28 no 11 pp 1461ndash1478 2001

[10] Y Yang Z K Zhang and M D Amp ldquoiscussion and practiceabout hump transition problem of high-density air medium-low speed ACVrdquo Ship amp Boat 2014

[11] H Fu ldquoAnalysis and consider- ation on safety of all-lift hover-craftrdquo Ship amp Boat 2008

[12] M Tao and W Chengjie Hovercraft performance and skirt-cushion system dynamics design National Defence IndustryPress 2012

[13] G Zilman ldquoMathematical simula- tion of hovercraft maneu-verin- grdquo Proceedings of the Twenty-Third American Towing tankConference pp 373ndash382 1993

[14] J Du X Hu M Krstic and Y Sun ldquoRobust dynamic position-ing of ships with disturbances under input saturationrdquo Auto-matica vol 73 pp 207ndash214 2016

[15] M Chen S S Ge and B Ren ldquoAdaptive tracking control ofuncertain MIMO nonlinear systems with input constraintsrdquoAutomatica vol 47 no 3 pp 452ndash465 2011

[16] S Li YWang J Tan and Y Zheng ldquoAdaptive RBFNNsintegralsliding mode control for a quadrotor aircraftrdquoNeurocomputingvol 216 pp 126ndash134 2016

[17] K Xia and W Huo ldquoRobust adaptive backstepping neuralnetworks control for spacecraft rendezvous and docking withinput saturationrdquo ISA Transactions vol 62 pp 249ndash257 2016

[18] J Feng and G-X Wen ldquoAdaptive NN consensus tracking con-trol of a class of nonlinear multi-agent systemsrdquo Neurocomput-ing vol 151 no 1 pp 288ndash295 2015

[19] T Elmokadem M Zribi and K Youcef-Toumi ldquoTrajectorytracking sliding mode control of underactuated AUVsrdquo Non-linear Dynamics vol 84 no 2 pp 1079ndash1091 2016

[20] T Elmokadem M Zribi and K Youcef-Toumi ldquoTerminal slid-ing mode control for the trajectory tracking of underactuatedAutonomousUnderwaterVehiclesrdquoOceanEngineering vol 129pp 613ndash625 2017

[21] V K Dyachenko Resistance of Air Cushion Vehicle CentralResearch Institute of ACAD Krylov 1999

Submit your manuscripts athttpswwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 9: Safety-Guaranteed Trajectory Tracking Control for …downloads.hindawi.com/journals/mpe/2017/9452920.pdfSafety-Guaranteed Trajectory Tracking Control for the Underactuated Hovercraft

Mathematical Problems in Engineering 9

0 2000 4000 6000 8000 10000 12000

0

5000

10000

15000

Starting point

Proposed controllerMethod A

Method BDesired trajectory

x(m

)

y (m)

Figure 3 The actual and desired trajectory of hovercraft

0 200 400 600 800 1000 1200 140020

40

60

80

Time (s)

Proposed controllerMethod AMethod B

(d

eg)

Figure 4 The heading angle of hovercraft

0 200 400 600 800 1000 1200 1400

0

500

Time (s)

Proposed controllerMethod AMethod B

xe

(m)

minus500

minus1000

Figure 5 The surge position tracking error

The initial values of hovercraft model are119909 (0) = 0119910 (0) = 0120595 (0) = 30∘119906 (0) = 35 knots120573 (0) = 0119903 (0) = 0

(65)

The controller parameters are

119896119909 = 06119896119910 = 061198961 = 153

0 200 400 600 800 1000 1200 1400

0

500

1000

Time (s)

Proposed controllerMethod AMethod B

ye

(m)

minus500

Figure 6 The sway position tracking error

0 200 400 600 800 1000 1200 1400

0

10

Time (s)

Proposed controllerMethod AMethod B

e u(k

nots)

minus10

minus20

Figure 7 The surge velocity tracking error

0 200 400 600 800 1000 1200 1400

0

5

Time (s)

Proposed controllerMethod AMethod B

e (d

eg)

minus10

minus5

Figure 8 The drift angle tracking error

1205781 = 011205821 = 41198962 = 121205782 = 051205822 = 301205823 = 2120576119873 = 05

(66)

It is obvious from Figures 14ndash19 that only the proposedcontroller can track the trajectory successfully Figures 20 and21 show that the surge speed changes to negative values andthe drift angle exceeds the safety limit in the tracking control

10 Mathematical Problems in Engineering

0 200 400 600 800 1000 1200 140020

40

60

80

Time (s)

Proposed controller

u (k

nots)

Method AMethod B

Figure 9 The surge velocity of hovercraft

0 200 400 600 800 1000 1200 1400

0

10

Time (s)

Proposed controllerMethod AMethod B

(d

eg)

minus10

minus20

Figure 10 The drift angle of hovercraft

0 200 400 600 800 1000 1200 1400

0

2

4

Time (s)

0 50 1000

5

10

Proposed controllerMethod AMethod B

uc

(N)

times105

times104

Figure 11 The surge control law of hovercraft

process ofMethods A and BThese are absolutely not allowedfor hovercraft In contrast you can see from Figure 20 thatsurge speed can still be positive even large enough to avoidthe influence of the resistance humps under the control of theproposed controller And drift angle is also within the safetylimit from Figure 21 From Figures 22 and 23 we know thatthe input constraint ability of the proposed controller is effec-tive Figures 13 and 24 show the heave position of hovercraft

5 Conclusion

A safety-guaranteed trajectory tracking controller has beenproposed for underactuated hovercraft in this paper Thesafety-guaranteed auxiliary dynamic system is designed todeal with state and input constraints The velocity of hov-ercraft is constrained to eliminate the effect of resistance

0 200 400 600 800 1000 1200 1400minus4

0

Time (s)

0 10 20minus15minus10minus5

05

Proposed controllerMethod AMethod B

rc

(Nm

)

times105

times104

minus2

Figure 12 The yaw control law of hovercraft

0 200 400 600 800 1000 1200 1400minus245

minus24

minus235

Time (s)z

(m)

Proposed controllerMethod AMethod B

Figure 13 The heave position of hovercraft

minus2000 0 2000 4000 6000 8000 10000 12000minus1000

0

1000

2000

3000

Starting point

Proposed controllerMethod A

Method BDesired trajectory

minus200minus100

0100

x(m

)

y (m)

minus20 0 20 40 60 80

Figure 14 The actual and desired trajectory of hovercraft

0 200 400 600 800 1000 12000

50

100

150

Time (s)

Proposed controllerMethod AMethod B

(d

eg)

Figure 15 The heading angle of hovercraft

hump and obtain better stability The safety limit of driftangle is carried out effectively for safety in the high-speedtrajectory tracking process of hovercraftThe input saturationis handled High nonlinearity and model uncertainties areapproximated by RBFNNs Simulation results have been

Mathematical Problems in Engineering 11

0 200 400 600 800 1000 1200

0

100

200

300

Time (s)

Proposed controllerMethod AMethod B

xe

(m)

minus100

Figure 16 The surge position tracking error

0 200 400 600 800 1000 1200minus600

minus400

minus200

0

200

Time (s)

Proposed controllerMethod AMethod B

ye

(m)

Figure 17 The sway position tracking error

0 200 400 600 800 1000 1200

0

100

200

300

Time (s)

Proposed controllerMethod AMethod B

e u(k

nots)

minus100

Figure 18 The surge velocity tracking error of hovercraft

0 200 400 600 800 1000 1200

0

2

4

6

Time (s)

Proposed controllerMethod AMethod B

e (d

eg)

minus2

Figure 19 The drift angle tracking error of hovercraft

0 200 400 600 800 1000 1200

0

50

Time (s)

0 100 200

0

50

Proposed controllerMethod AMethod B

u(k

nots)

minus50minus50

minus100

Figure 20 The surge velocity of hovercraft

0 200 400 600 800 1000 1200

0

100

200

Time (s)

0 100 2000

20

40

Proposed controllerMethod AMethod B

(d

eg)

minus100

Figure 21 The drift angle of hovercraft

0 200 400 600 800 1000 1200

0

Time (s)

0 50 100

0

Proposed controllerMethod AMethod B

uc

(N)

minus5

minus10

times105

times104

minus5

minus10

Figure 22 The surge control law of hovercraft

0 200 400 600 800 1000 1200

0

10

20

Time (s)

0 10 20

05

1015

Proposed controllerMethod AMethod B

rc

(Nm

)

minus5

times109

times104

Figure 23 The yaw control law of hovercraft

12 Mathematical Problems in Engineering

0 200 400 600 800 1000 1200Time (s)

Proposed controllerMethod AMethod B

z(m

)

minus15

minus2

minus25

minus3

Figure 24 The heave position of hovercraft

presented to illustrate the effectiveness of the proposed con-troller

Conflicts of Interest

The authors declare that there are no conflicts of interestregarding the publication of this paper

Acknowledgments

The supports of the National Natural Science Foundationof China (Grant no 51309062) and the project ldquoResearchon Maneuverability of High Speed Hovercraftrdquo (Project no2007DFR80320) are gratefully acknowledged

References

[1] Y Liang and A Bliault Theory amp Design of Air Cushion CraftArnold 2000

[2] H Sira-Ramırez ldquoDynamic second-order sliding mode controlof the hovercraft vesselrdquo IEEE Transactions on Control SystemsTechnology vol 10 no 6 pp 860ndash865 2002

[3] J Aranda ldquoA Control for tracki-ng and stabilization of anunder-actuated nonlinear RC hovercraftrdquo International Feder-ation of Auto-matic Control 2006

[4] J Zhao and J Pang ldquoTrajectory control of underactuated hover-craftrdquo inProceedings of the 2010 8thWorldCongress on IntelligentControl and Automation (WCICA rsquo10) pp 3904ndash3907 July 2010

[5] RMorales H Sira-Ramırez and J A Somolinos ldquoLinear activedisturbance rejection control of the hovercraft vessel modelrdquoOcean Engineering vol 96 pp 100ndash108 2015

[6] G G Rigatos and G V Raffo ldquoInputndashoutput linearizing con-trol of the underactuated hovercraft using the derivative-freenonlinear kalman filterrdquo Unmanned Systems vol 03 no 02 pp127ndash142 2015

[7] K Shojaei ldquoTrajectory tracking control of autonomous under-actuated hovercraft vehicles with limited torquerdquo in Proceedingsof the 2014 2nd RSIISM International Conference on Roboticsand Mechatronics (ICRoM rsquo14) pp 468ndash473 October 2014

[8] K Shojaei ldquoNeural adaptive robust control of underactuatedmarine surface vehicles with input saturationrdquo Applied OceanResearch vol 53 pp 267ndash278 2015

[9] M Cohen T Miloh and G Zilman ldquoWave resistance of ahovercraft moving in water with nonrigid bottomrdquoOcean Engi-neering vol 28 no 11 pp 1461ndash1478 2001

[10] Y Yang Z K Zhang and M D Amp ldquoiscussion and practiceabout hump transition problem of high-density air medium-low speed ACVrdquo Ship amp Boat 2014

[11] H Fu ldquoAnalysis and consider- ation on safety of all-lift hover-craftrdquo Ship amp Boat 2008

[12] M Tao and W Chengjie Hovercraft performance and skirt-cushion system dynamics design National Defence IndustryPress 2012

[13] G Zilman ldquoMathematical simula- tion of hovercraft maneu-verin- grdquo Proceedings of the Twenty-Third American Towing tankConference pp 373ndash382 1993

[14] J Du X Hu M Krstic and Y Sun ldquoRobust dynamic position-ing of ships with disturbances under input saturationrdquo Auto-matica vol 73 pp 207ndash214 2016

[15] M Chen S S Ge and B Ren ldquoAdaptive tracking control ofuncertain MIMO nonlinear systems with input constraintsrdquoAutomatica vol 47 no 3 pp 452ndash465 2011

[16] S Li YWang J Tan and Y Zheng ldquoAdaptive RBFNNsintegralsliding mode control for a quadrotor aircraftrdquoNeurocomputingvol 216 pp 126ndash134 2016

[17] K Xia and W Huo ldquoRobust adaptive backstepping neuralnetworks control for spacecraft rendezvous and docking withinput saturationrdquo ISA Transactions vol 62 pp 249ndash257 2016

[18] J Feng and G-X Wen ldquoAdaptive NN consensus tracking con-trol of a class of nonlinear multi-agent systemsrdquo Neurocomput-ing vol 151 no 1 pp 288ndash295 2015

[19] T Elmokadem M Zribi and K Youcef-Toumi ldquoTrajectorytracking sliding mode control of underactuated AUVsrdquo Non-linear Dynamics vol 84 no 2 pp 1079ndash1091 2016

[20] T Elmokadem M Zribi and K Youcef-Toumi ldquoTerminal slid-ing mode control for the trajectory tracking of underactuatedAutonomousUnderwaterVehiclesrdquoOceanEngineering vol 129pp 613ndash625 2017

[21] V K Dyachenko Resistance of Air Cushion Vehicle CentralResearch Institute of ACAD Krylov 1999

Submit your manuscripts athttpswwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 10: Safety-Guaranteed Trajectory Tracking Control for …downloads.hindawi.com/journals/mpe/2017/9452920.pdfSafety-Guaranteed Trajectory Tracking Control for the Underactuated Hovercraft

10 Mathematical Problems in Engineering

0 200 400 600 800 1000 1200 140020

40

60

80

Time (s)

Proposed controller

u (k

nots)

Method AMethod B

Figure 9 The surge velocity of hovercraft

0 200 400 600 800 1000 1200 1400

0

10

Time (s)

Proposed controllerMethod AMethod B

(d

eg)

minus10

minus20

Figure 10 The drift angle of hovercraft

0 200 400 600 800 1000 1200 1400

0

2

4

Time (s)

0 50 1000

5

10

Proposed controllerMethod AMethod B

uc

(N)

times105

times104

Figure 11 The surge control law of hovercraft

process ofMethods A and BThese are absolutely not allowedfor hovercraft In contrast you can see from Figure 20 thatsurge speed can still be positive even large enough to avoidthe influence of the resistance humps under the control of theproposed controller And drift angle is also within the safetylimit from Figure 21 From Figures 22 and 23 we know thatthe input constraint ability of the proposed controller is effec-tive Figures 13 and 24 show the heave position of hovercraft

5 Conclusion

A safety-guaranteed trajectory tracking controller has beenproposed for underactuated hovercraft in this paper Thesafety-guaranteed auxiliary dynamic system is designed todeal with state and input constraints The velocity of hov-ercraft is constrained to eliminate the effect of resistance

0 200 400 600 800 1000 1200 1400minus4

0

Time (s)

0 10 20minus15minus10minus5

05

Proposed controllerMethod AMethod B

rc

(Nm

)

times105

times104

minus2

Figure 12 The yaw control law of hovercraft

0 200 400 600 800 1000 1200 1400minus245

minus24

minus235

Time (s)z

(m)

Proposed controllerMethod AMethod B

Figure 13 The heave position of hovercraft

minus2000 0 2000 4000 6000 8000 10000 12000minus1000

0

1000

2000

3000

Starting point

Proposed controllerMethod A

Method BDesired trajectory

minus200minus100

0100

x(m

)

y (m)

minus20 0 20 40 60 80

Figure 14 The actual and desired trajectory of hovercraft

0 200 400 600 800 1000 12000

50

100

150

Time (s)

Proposed controllerMethod AMethod B

(d

eg)

Figure 15 The heading angle of hovercraft

hump and obtain better stability The safety limit of driftangle is carried out effectively for safety in the high-speedtrajectory tracking process of hovercraftThe input saturationis handled High nonlinearity and model uncertainties areapproximated by RBFNNs Simulation results have been

Mathematical Problems in Engineering 11

0 200 400 600 800 1000 1200

0

100

200

300

Time (s)

Proposed controllerMethod AMethod B

xe

(m)

minus100

Figure 16 The surge position tracking error

0 200 400 600 800 1000 1200minus600

minus400

minus200

0

200

Time (s)

Proposed controllerMethod AMethod B

ye

(m)

Figure 17 The sway position tracking error

0 200 400 600 800 1000 1200

0

100

200

300

Time (s)

Proposed controllerMethod AMethod B

e u(k

nots)

minus100

Figure 18 The surge velocity tracking error of hovercraft

0 200 400 600 800 1000 1200

0

2

4

6

Time (s)

Proposed controllerMethod AMethod B

e (d

eg)

minus2

Figure 19 The drift angle tracking error of hovercraft

0 200 400 600 800 1000 1200

0

50

Time (s)

0 100 200

0

50

Proposed controllerMethod AMethod B

u(k

nots)

minus50minus50

minus100

Figure 20 The surge velocity of hovercraft

0 200 400 600 800 1000 1200

0

100

200

Time (s)

0 100 2000

20

40

Proposed controllerMethod AMethod B

(d

eg)

minus100

Figure 21 The drift angle of hovercraft

0 200 400 600 800 1000 1200

0

Time (s)

0 50 100

0

Proposed controllerMethod AMethod B

uc

(N)

minus5

minus10

times105

times104

minus5

minus10

Figure 22 The surge control law of hovercraft

0 200 400 600 800 1000 1200

0

10

20

Time (s)

0 10 20

05

1015

Proposed controllerMethod AMethod B

rc

(Nm

)

minus5

times109

times104

Figure 23 The yaw control law of hovercraft

12 Mathematical Problems in Engineering

0 200 400 600 800 1000 1200Time (s)

Proposed controllerMethod AMethod B

z(m

)

minus15

minus2

minus25

minus3

Figure 24 The heave position of hovercraft

presented to illustrate the effectiveness of the proposed con-troller

Conflicts of Interest

The authors declare that there are no conflicts of interestregarding the publication of this paper

Acknowledgments

The supports of the National Natural Science Foundationof China (Grant no 51309062) and the project ldquoResearchon Maneuverability of High Speed Hovercraftrdquo (Project no2007DFR80320) are gratefully acknowledged

References

[1] Y Liang and A Bliault Theory amp Design of Air Cushion CraftArnold 2000

[2] H Sira-Ramırez ldquoDynamic second-order sliding mode controlof the hovercraft vesselrdquo IEEE Transactions on Control SystemsTechnology vol 10 no 6 pp 860ndash865 2002

[3] J Aranda ldquoA Control for tracki-ng and stabilization of anunder-actuated nonlinear RC hovercraftrdquo International Feder-ation of Auto-matic Control 2006

[4] J Zhao and J Pang ldquoTrajectory control of underactuated hover-craftrdquo inProceedings of the 2010 8thWorldCongress on IntelligentControl and Automation (WCICA rsquo10) pp 3904ndash3907 July 2010

[5] RMorales H Sira-Ramırez and J A Somolinos ldquoLinear activedisturbance rejection control of the hovercraft vessel modelrdquoOcean Engineering vol 96 pp 100ndash108 2015

[6] G G Rigatos and G V Raffo ldquoInputndashoutput linearizing con-trol of the underactuated hovercraft using the derivative-freenonlinear kalman filterrdquo Unmanned Systems vol 03 no 02 pp127ndash142 2015

[7] K Shojaei ldquoTrajectory tracking control of autonomous under-actuated hovercraft vehicles with limited torquerdquo in Proceedingsof the 2014 2nd RSIISM International Conference on Roboticsand Mechatronics (ICRoM rsquo14) pp 468ndash473 October 2014

[8] K Shojaei ldquoNeural adaptive robust control of underactuatedmarine surface vehicles with input saturationrdquo Applied OceanResearch vol 53 pp 267ndash278 2015

[9] M Cohen T Miloh and G Zilman ldquoWave resistance of ahovercraft moving in water with nonrigid bottomrdquoOcean Engi-neering vol 28 no 11 pp 1461ndash1478 2001

[10] Y Yang Z K Zhang and M D Amp ldquoiscussion and practiceabout hump transition problem of high-density air medium-low speed ACVrdquo Ship amp Boat 2014

[11] H Fu ldquoAnalysis and consider- ation on safety of all-lift hover-craftrdquo Ship amp Boat 2008

[12] M Tao and W Chengjie Hovercraft performance and skirt-cushion system dynamics design National Defence IndustryPress 2012

[13] G Zilman ldquoMathematical simula- tion of hovercraft maneu-verin- grdquo Proceedings of the Twenty-Third American Towing tankConference pp 373ndash382 1993

[14] J Du X Hu M Krstic and Y Sun ldquoRobust dynamic position-ing of ships with disturbances under input saturationrdquo Auto-matica vol 73 pp 207ndash214 2016

[15] M Chen S S Ge and B Ren ldquoAdaptive tracking control ofuncertain MIMO nonlinear systems with input constraintsrdquoAutomatica vol 47 no 3 pp 452ndash465 2011

[16] S Li YWang J Tan and Y Zheng ldquoAdaptive RBFNNsintegralsliding mode control for a quadrotor aircraftrdquoNeurocomputingvol 216 pp 126ndash134 2016

[17] K Xia and W Huo ldquoRobust adaptive backstepping neuralnetworks control for spacecraft rendezvous and docking withinput saturationrdquo ISA Transactions vol 62 pp 249ndash257 2016

[18] J Feng and G-X Wen ldquoAdaptive NN consensus tracking con-trol of a class of nonlinear multi-agent systemsrdquo Neurocomput-ing vol 151 no 1 pp 288ndash295 2015

[19] T Elmokadem M Zribi and K Youcef-Toumi ldquoTrajectorytracking sliding mode control of underactuated AUVsrdquo Non-linear Dynamics vol 84 no 2 pp 1079ndash1091 2016

[20] T Elmokadem M Zribi and K Youcef-Toumi ldquoTerminal slid-ing mode control for the trajectory tracking of underactuatedAutonomousUnderwaterVehiclesrdquoOceanEngineering vol 129pp 613ndash625 2017

[21] V K Dyachenko Resistance of Air Cushion Vehicle CentralResearch Institute of ACAD Krylov 1999

Submit your manuscripts athttpswwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 11: Safety-Guaranteed Trajectory Tracking Control for …downloads.hindawi.com/journals/mpe/2017/9452920.pdfSafety-Guaranteed Trajectory Tracking Control for the Underactuated Hovercraft

Mathematical Problems in Engineering 11

0 200 400 600 800 1000 1200

0

100

200

300

Time (s)

Proposed controllerMethod AMethod B

xe

(m)

minus100

Figure 16 The surge position tracking error

0 200 400 600 800 1000 1200minus600

minus400

minus200

0

200

Time (s)

Proposed controllerMethod AMethod B

ye

(m)

Figure 17 The sway position tracking error

0 200 400 600 800 1000 1200

0

100

200

300

Time (s)

Proposed controllerMethod AMethod B

e u(k

nots)

minus100

Figure 18 The surge velocity tracking error of hovercraft

0 200 400 600 800 1000 1200

0

2

4

6

Time (s)

Proposed controllerMethod AMethod B

e (d

eg)

minus2

Figure 19 The drift angle tracking error of hovercraft

0 200 400 600 800 1000 1200

0

50

Time (s)

0 100 200

0

50

Proposed controllerMethod AMethod B

u(k

nots)

minus50minus50

minus100

Figure 20 The surge velocity of hovercraft

0 200 400 600 800 1000 1200

0

100

200

Time (s)

0 100 2000

20

40

Proposed controllerMethod AMethod B

(d

eg)

minus100

Figure 21 The drift angle of hovercraft

0 200 400 600 800 1000 1200

0

Time (s)

0 50 100

0

Proposed controllerMethod AMethod B

uc

(N)

minus5

minus10

times105

times104

minus5

minus10

Figure 22 The surge control law of hovercraft

0 200 400 600 800 1000 1200

0

10

20

Time (s)

0 10 20

05

1015

Proposed controllerMethod AMethod B

rc

(Nm

)

minus5

times109

times104

Figure 23 The yaw control law of hovercraft

12 Mathematical Problems in Engineering

0 200 400 600 800 1000 1200Time (s)

Proposed controllerMethod AMethod B

z(m

)

minus15

minus2

minus25

minus3

Figure 24 The heave position of hovercraft

presented to illustrate the effectiveness of the proposed con-troller

Conflicts of Interest

The authors declare that there are no conflicts of interestregarding the publication of this paper

Acknowledgments

The supports of the National Natural Science Foundationof China (Grant no 51309062) and the project ldquoResearchon Maneuverability of High Speed Hovercraftrdquo (Project no2007DFR80320) are gratefully acknowledged

References

[1] Y Liang and A Bliault Theory amp Design of Air Cushion CraftArnold 2000

[2] H Sira-Ramırez ldquoDynamic second-order sliding mode controlof the hovercraft vesselrdquo IEEE Transactions on Control SystemsTechnology vol 10 no 6 pp 860ndash865 2002

[3] J Aranda ldquoA Control for tracki-ng and stabilization of anunder-actuated nonlinear RC hovercraftrdquo International Feder-ation of Auto-matic Control 2006

[4] J Zhao and J Pang ldquoTrajectory control of underactuated hover-craftrdquo inProceedings of the 2010 8thWorldCongress on IntelligentControl and Automation (WCICA rsquo10) pp 3904ndash3907 July 2010

[5] RMorales H Sira-Ramırez and J A Somolinos ldquoLinear activedisturbance rejection control of the hovercraft vessel modelrdquoOcean Engineering vol 96 pp 100ndash108 2015

[6] G G Rigatos and G V Raffo ldquoInputndashoutput linearizing con-trol of the underactuated hovercraft using the derivative-freenonlinear kalman filterrdquo Unmanned Systems vol 03 no 02 pp127ndash142 2015

[7] K Shojaei ldquoTrajectory tracking control of autonomous under-actuated hovercraft vehicles with limited torquerdquo in Proceedingsof the 2014 2nd RSIISM International Conference on Roboticsand Mechatronics (ICRoM rsquo14) pp 468ndash473 October 2014

[8] K Shojaei ldquoNeural adaptive robust control of underactuatedmarine surface vehicles with input saturationrdquo Applied OceanResearch vol 53 pp 267ndash278 2015

[9] M Cohen T Miloh and G Zilman ldquoWave resistance of ahovercraft moving in water with nonrigid bottomrdquoOcean Engi-neering vol 28 no 11 pp 1461ndash1478 2001

[10] Y Yang Z K Zhang and M D Amp ldquoiscussion and practiceabout hump transition problem of high-density air medium-low speed ACVrdquo Ship amp Boat 2014

[11] H Fu ldquoAnalysis and consider- ation on safety of all-lift hover-craftrdquo Ship amp Boat 2008

[12] M Tao and W Chengjie Hovercraft performance and skirt-cushion system dynamics design National Defence IndustryPress 2012

[13] G Zilman ldquoMathematical simula- tion of hovercraft maneu-verin- grdquo Proceedings of the Twenty-Third American Towing tankConference pp 373ndash382 1993

[14] J Du X Hu M Krstic and Y Sun ldquoRobust dynamic position-ing of ships with disturbances under input saturationrdquo Auto-matica vol 73 pp 207ndash214 2016

[15] M Chen S S Ge and B Ren ldquoAdaptive tracking control ofuncertain MIMO nonlinear systems with input constraintsrdquoAutomatica vol 47 no 3 pp 452ndash465 2011

[16] S Li YWang J Tan and Y Zheng ldquoAdaptive RBFNNsintegralsliding mode control for a quadrotor aircraftrdquoNeurocomputingvol 216 pp 126ndash134 2016

[17] K Xia and W Huo ldquoRobust adaptive backstepping neuralnetworks control for spacecraft rendezvous and docking withinput saturationrdquo ISA Transactions vol 62 pp 249ndash257 2016

[18] J Feng and G-X Wen ldquoAdaptive NN consensus tracking con-trol of a class of nonlinear multi-agent systemsrdquo Neurocomput-ing vol 151 no 1 pp 288ndash295 2015

[19] T Elmokadem M Zribi and K Youcef-Toumi ldquoTrajectorytracking sliding mode control of underactuated AUVsrdquo Non-linear Dynamics vol 84 no 2 pp 1079ndash1091 2016

[20] T Elmokadem M Zribi and K Youcef-Toumi ldquoTerminal slid-ing mode control for the trajectory tracking of underactuatedAutonomousUnderwaterVehiclesrdquoOceanEngineering vol 129pp 613ndash625 2017

[21] V K Dyachenko Resistance of Air Cushion Vehicle CentralResearch Institute of ACAD Krylov 1999

Submit your manuscripts athttpswwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 12: Safety-Guaranteed Trajectory Tracking Control for …downloads.hindawi.com/journals/mpe/2017/9452920.pdfSafety-Guaranteed Trajectory Tracking Control for the Underactuated Hovercraft

12 Mathematical Problems in Engineering

0 200 400 600 800 1000 1200Time (s)

Proposed controllerMethod AMethod B

z(m

)

minus15

minus2

minus25

minus3

Figure 24 The heave position of hovercraft

presented to illustrate the effectiveness of the proposed con-troller

Conflicts of Interest

The authors declare that there are no conflicts of interestregarding the publication of this paper

Acknowledgments

The supports of the National Natural Science Foundationof China (Grant no 51309062) and the project ldquoResearchon Maneuverability of High Speed Hovercraftrdquo (Project no2007DFR80320) are gratefully acknowledged

References

[1] Y Liang and A Bliault Theory amp Design of Air Cushion CraftArnold 2000

[2] H Sira-Ramırez ldquoDynamic second-order sliding mode controlof the hovercraft vesselrdquo IEEE Transactions on Control SystemsTechnology vol 10 no 6 pp 860ndash865 2002

[3] J Aranda ldquoA Control for tracki-ng and stabilization of anunder-actuated nonlinear RC hovercraftrdquo International Feder-ation of Auto-matic Control 2006

[4] J Zhao and J Pang ldquoTrajectory control of underactuated hover-craftrdquo inProceedings of the 2010 8thWorldCongress on IntelligentControl and Automation (WCICA rsquo10) pp 3904ndash3907 July 2010

[5] RMorales H Sira-Ramırez and J A Somolinos ldquoLinear activedisturbance rejection control of the hovercraft vessel modelrdquoOcean Engineering vol 96 pp 100ndash108 2015

[6] G G Rigatos and G V Raffo ldquoInputndashoutput linearizing con-trol of the underactuated hovercraft using the derivative-freenonlinear kalman filterrdquo Unmanned Systems vol 03 no 02 pp127ndash142 2015

[7] K Shojaei ldquoTrajectory tracking control of autonomous under-actuated hovercraft vehicles with limited torquerdquo in Proceedingsof the 2014 2nd RSIISM International Conference on Roboticsand Mechatronics (ICRoM rsquo14) pp 468ndash473 October 2014

[8] K Shojaei ldquoNeural adaptive robust control of underactuatedmarine surface vehicles with input saturationrdquo Applied OceanResearch vol 53 pp 267ndash278 2015

[9] M Cohen T Miloh and G Zilman ldquoWave resistance of ahovercraft moving in water with nonrigid bottomrdquoOcean Engi-neering vol 28 no 11 pp 1461ndash1478 2001

[10] Y Yang Z K Zhang and M D Amp ldquoiscussion and practiceabout hump transition problem of high-density air medium-low speed ACVrdquo Ship amp Boat 2014

[11] H Fu ldquoAnalysis and consider- ation on safety of all-lift hover-craftrdquo Ship amp Boat 2008

[12] M Tao and W Chengjie Hovercraft performance and skirt-cushion system dynamics design National Defence IndustryPress 2012

[13] G Zilman ldquoMathematical simula- tion of hovercraft maneu-verin- grdquo Proceedings of the Twenty-Third American Towing tankConference pp 373ndash382 1993

[14] J Du X Hu M Krstic and Y Sun ldquoRobust dynamic position-ing of ships with disturbances under input saturationrdquo Auto-matica vol 73 pp 207ndash214 2016

[15] M Chen S S Ge and B Ren ldquoAdaptive tracking control ofuncertain MIMO nonlinear systems with input constraintsrdquoAutomatica vol 47 no 3 pp 452ndash465 2011

[16] S Li YWang J Tan and Y Zheng ldquoAdaptive RBFNNsintegralsliding mode control for a quadrotor aircraftrdquoNeurocomputingvol 216 pp 126ndash134 2016

[17] K Xia and W Huo ldquoRobust adaptive backstepping neuralnetworks control for spacecraft rendezvous and docking withinput saturationrdquo ISA Transactions vol 62 pp 249ndash257 2016

[18] J Feng and G-X Wen ldquoAdaptive NN consensus tracking con-trol of a class of nonlinear multi-agent systemsrdquo Neurocomput-ing vol 151 no 1 pp 288ndash295 2015

[19] T Elmokadem M Zribi and K Youcef-Toumi ldquoTrajectorytracking sliding mode control of underactuated AUVsrdquo Non-linear Dynamics vol 84 no 2 pp 1079ndash1091 2016

[20] T Elmokadem M Zribi and K Youcef-Toumi ldquoTerminal slid-ing mode control for the trajectory tracking of underactuatedAutonomousUnderwaterVehiclesrdquoOceanEngineering vol 129pp 613ndash625 2017

[21] V K Dyachenko Resistance of Air Cushion Vehicle CentralResearch Institute of ACAD Krylov 1999

Submit your manuscripts athttpswwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 13: Safety-Guaranteed Trajectory Tracking Control for …downloads.hindawi.com/journals/mpe/2017/9452920.pdfSafety-Guaranteed Trajectory Tracking Control for the Underactuated Hovercraft

Submit your manuscripts athttpswwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of