1
Safeguarding Sensor Device Drivers Using Physical Constraints Gregory Brooks †‡ , Youchao Wang , and Phillip Stanley-Marbell University of Cambridge [1] K. Fu and W. Xu. Risks of trusting the physics of sensors. Communications of the ACM, 61(2):20–23, January 2018. [2] J. Lim and P. Stanley-Marbell. Newton: A language for describing physics. ArXiv Preprints, arXiv:1811.04626 [cs.PL], 2018. [3] Analog Devices, Analog devices advisory to ICSALERT-17-073-01.Technical Report, 2017. Inferring Plausible Attacks using Bayesian Statistics Abstract The measurand signals measured by sensors in a multi- sensor system are often constrained by physics — sensors can produce erroneous measurement values that violate the underlying physical constraints. Such errors in sensor measurements can cause software that uses sensor values to malfunction. Transduction attacks exploit this observation to induce sensors into generating erroneous measurement outputs. This work proposes using information about the constraints on the physics of signals to guard against transduction attacks. References: This research is supported by an Alan Turing Institute award TU/B/000096 under EPSRC grant EP/N510129/1 and by Royal Society grant RG170136. Measurements Implementation of the equation [3] relating acceleration to transduction attack stimulus signal, in Newton [2]. Sensors measure measurands in the physical world to produce measurements. Drivers make implicit assumptions on plausible values of measurements. This may compromise security [1]. Context Use a log-likelihood ratio to test for board resonance: Observation Structural mechanics of sensor placement imposes constraints on measurement values. Preliminary Results Device Driver Logic Microcontroller or Processor I2C SPI I2C SPI Sensor sensing element ADC Experimental setup Student. Presenting. LLR -24600 LLR +3731 Simulating a transduction attack stimulus using a mobile phone speaker and a small circuit board containing an accelerometer. The log-likelihood ratio (LLR) computed based on invariant from distinguishes between the control signal and sinusoidal transduction attack stimulus. Future Work Automate generating sensor interface hardware and software to detect transduction attacks from Newton [2] physical system specification, in Newton compiler. a = d 2 (d bd ) dt 2 =(Q bd d bd ) max ! 2 sin(! t) LLR = -2 N X i=1 1 1 p ((Q bd d bd ) max ) 2 ! 4 -a 2 i 1 2b e - |a i -μ| b - - �� -( ��- ) ��- - �� �� -( ��- ) ��

Safeguarding Sensor Device Drivers Using Physical ConstraintsSafeguarding Sensor Device Drivers Using Physical Constraints Gregory Brooks†‡, Youchao Wang‡, and Phillip Stanley-Marbell

  • Upload
    others

  • View
    21

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Safeguarding Sensor Device Drivers Using Physical ConstraintsSafeguarding Sensor Device Drivers Using Physical Constraints Gregory Brooks†‡, Youchao Wang‡, and Phillip Stanley-Marbell

Safeguarding Sensor Device Drivers Using Physical ConstraintsGregory Brooks†‡, Youchao Wang‡, and Phillip Stanley-MarbellUniversity of Cambridge

[1] K. Fu and W. Xu. Risks of trusting the physics of sensors. Communications of the ACM, 61(2):20–23, January 2018. [2] J. Lim and P. Stanley-Marbell. Newton: A language for describing physics. ArXiv Preprints, arXiv:1811.04626 [cs.PL], 2018. [3] Analog Devices, Analog devices advisory to ICSALERT-17-073-01.Technical Report, 2017.

Inferring Plausible Attacks using Bayesian Statistics

➂Abstract The measurand signals measured by sensors in a multi- sensor system are often constrained by physics — sensors can produce erroneous measurement values that violate the underlying physical constraints. Such errors in sensor measurements can cause software that uses sensor values to malfunction. Transduction attacks exploit this observation to induce sensors into generating erroneous measurement outputs. This work proposes using information about the constraints on the physics of signals to guard against transduction attacks.

References:This research is supported by an Alan Turing Institute award TU/B/000096 under EPSRC grant EP/N510129/1 and by Royal Society grant RG170136.

Measurements

Implementation of the equation [3] relating acceleration to transduction attack stimulus signal, in Newton [2].

Sensors measure measurands in the physical world to produce measurements. Drivers make implicit assumptions on plausible values of measurements. This may compromise security [1].

Context➀

Use a log-likelihood ratio to test for board resonance:

Observation➁

Structural mechanics of sensor placement imposes constraints on measurement values.

Preliminary Results④

Device Driver LogicMicrocontroller or Processor

I2C

SPI

I2C

SPI

Sensorsensing element

ADC

Experimental setup

‡ Student.† Presenting.

LLR ≈ -24600

LLR ≈ +3731

Simulating a transduction attack stimulus using a mobile phone speaker and a small circuit board containing an accelerometer.

The log-likelihood ratio (LLR) computed based on invariant from ➁ distinguishes between the control signal and sinusoidal transduction attack stimulus.

Future WorkAutomate generating sensor interface hardware and software to detect transduction attacks from Newton [2] physical system specification, in Newton compiler.

a =d2(dbd)

dt2= (Qbddbd)

max!2 sin(!t)<latexit sha1_base64="JN35rxZ1pTHN04MQjMluwgGvUXk=">AAACNnicdVDLbhMxFPWUVymvFJZsroiQ0k3kGbU0WSBVsGGFWom0lTJJdMfjSa3anpF9BzUazV+x4DdYwoINILZ8As4DCRAcydLxOffIviertPLE+cdo69r1Gzdvbd/euXP33v0Hnd2Hp76snZAjUerSnWfopVZWjkiRlueVk2gyLc+yy5dL/+ytdF6V9g0tKjkxOLeqUAIpSLPOa4TnkBYO RZNPE+jlsybL2722yYGmSRvM3slKgo0zbQxetZCWRs4xJFKvbG99A9qbdbq8nxzw4eEAeP+Ax8P9JBDOB8NnHOJAluiyDY5nnQ9pXoraSEtCo/fjmFc0adCRElq2O2ntZYXiEudyHKhFI/2kWe3dwtOg5FCULhxLsFJ/TzRovF+YLEwapAv/t7cU/+WNayoGk0bZqiZpxfqhotZAJSxLhFw5KUgvAkHhVPgriAsMJVKoOnTwa1H4PzlN+nHgJ/vdoxebNrbZY/aE9VjMDtkRe8WO2YgJ9o59Yl/Y1+h99Dn6Fn1fj25Fm8wj9geiHz8BTnOqxA==</latexit><latexit sha1_base64="JN35rxZ1pTHN04MQjMluwgGvUXk=">AAACNnicdVDLbhMxFPWUVymvFJZsroiQ0k3kGbU0WSBVsGGFWom0lTJJdMfjSa3anpF9BzUazV+x4DdYwoINILZ8As4DCRAcydLxOffIviertPLE+cdo69r1Gzdvbd/euXP33v0Hnd2Hp76snZAjUerSnWfopVZWjkiRlueVk2gyLc+yy5dL/+ytdF6V9g0tKjkxOLeqUAIpSLPOa4TnkBYO RZNPE+jlsybL2722yYGmSRvM3slKgo0zbQxetZCWRs4xJFKvbG99A9qbdbq8nxzw4eEAeP+Ax8P9JBDOB8NnHOJAluiyDY5nnQ9pXoraSEtCo/fjmFc0adCRElq2O2ntZYXiEudyHKhFI/2kWe3dwtOg5FCULhxLsFJ/TzRovF+YLEwapAv/t7cU/+WNayoGk0bZqiZpxfqhotZAJSxLhFw5KUgvAkHhVPgriAsMJVKoOnTwa1H4PzlN+nHgJ/vdoxebNrbZY/aE9VjMDtkRe8WO2YgJ9o59Yl/Y1+h99Dn6Fn1fj25Fm8wj9geiHz8BTnOqxA==</latexit><latexit sha1_base64="JN35rxZ1pTHN04MQjMluwgGvUXk=">AAACNnicdVDLbhMxFPWUVymvFJZsroiQ0k3kGbU0WSBVsGGFWom0lTJJdMfjSa3anpF9BzUazV+x4DdYwoINILZ8As4DCRAcydLxOffIviertPLE+cdo69r1Gzdvbd/euXP33v0Hnd2Hp76snZAjUerSnWfopVZWjkiRlueVk2gyLc+yy5dL/+ytdF6V9g0tKjkxOLeqUAIpSLPOa4TnkBYO RZNPE+jlsybL2722yYGmSRvM3slKgo0zbQxetZCWRs4xJFKvbG99A9qbdbq8nxzw4eEAeP+Ax8P9JBDOB8NnHOJAluiyDY5nnQ9pXoraSEtCo/fjmFc0adCRElq2O2ntZYXiEudyHKhFI/2kWe3dwtOg5FCULhxLsFJ/TzRovF+YLEwapAv/t7cU/+WNayoGk0bZqiZpxfqhotZAJSxLhFw5KUgvAkHhVPgriAsMJVKoOnTwa1H4PzlN+nHgJ/vdoxebNrbZY/aE9VjMDtkRe8WO2YgJ9o59Yl/Y1+h99Dn6Fn1fj25Fm8wj9geiHz8BTnOqxA==</latexit><latexit sha1_base64="JN35rxZ1pTHN04MQjMluwgGvUXk=">AAACNnicdVDLbhMxFPWUVymvFJZsroiQ0k3kGbU0WSBVsGGFWom0lTJJdMfjSa3anpF9BzUazV+x4DdYwoINILZ8As4DCRAcydLxOffIviertPLE+cdo69r1Gzdvbd/euXP33v0Hnd2Hp76snZAjUerSnWfopVZWjkiRlueVk2gyLc+yy5dL/+ytdF6V9g0tKjkxOLeqUAIpSLPOa4TnkBYO RZNPE+jlsybL2722yYGmSRvM3slKgo0zbQxetZCWRs4xJFKvbG99A9qbdbq8nxzw4eEAeP+Ax8P9JBDOB8NnHOJAluiyDY5nnQ9pXoraSEtCo/fjmFc0adCRElq2O2ntZYXiEudyHKhFI/2kWe3dwtOg5FCULhxLsFJ/TzRovF+YLEwapAv/t7cU/+WNayoGk0bZqiZpxfqhotZAJSxLhFw5KUgvAkHhVPgriAsMJVKoOnTwa1H4PzlN+nHgJ/vdoxebNrbZY/aE9VjMDtkRe8WO2YgJ9o59Yl/Y1+h99Dn6Fn1fj25Fm8wj9geiHz8BTnOqxA==</latexit>

LLR = �2NX

i=1

1⇡

����1p

((Qbddbd)max)2!4�a2i

����

12be

⇣� |ai�µ|

b

<latexit sha1_base64="uXQUzQYLaxzq3kJ3vG8gzezC9gk=">AAACqnicdVFdb9MwFHXC1yhfZTzyYlFN6iRaOVHH2gekCV54mKZtomtR3USO47TW4iSzHUTl+s/xD3jk3+C0nQYIrmT7+Nwv+9ykyrnSCP30/Hv3Hzx8tPe49eTps+cv2i/3r1RZS8rGtMxLOU2IYjkv2FhznbNpJRkRSc4myfXHxj/5yqTiZfFZryo2F2RR8IxToh0Vt79DLIheSmFOTy8tfA97IcSqFrHh7hLYyJxZiDNJqNnugTW44hbnLNNreMepG6nNhu12L2KTpBamm+MwMoJ8s1jyxVIfRiEuBVuQaAB7kMQ8Cq2rv/Gt7V2LMLGQRbt6vS29duE9LGoXl9yWs7bVitsd1A+P0Oh4CFH/CAWjQegAQsPROwQDBxrrgJ2dx+0fOC1pLVihaU6UmgWo0nNDpOY0Z7aFa8UqQq/Jgs0cLIhgam42Wlt44JgUZqV0q9Bww/6eYYhQaiXc+w8aYdXfvob8l29W62w4N7yoas0Kum2U1TnUJWwGB1MuGdX5ygFCJXdvhXRJnDDajddpcPtR+H9wFfYDhy8GnZMPOzX2wGvwBnRBAI7BCfgEzsEYUK/rnXkTb+q/9S/9L/5sG+p7u5xX4A/z018wY9Nb</latexit><latexit sha1_base64="uXQUzQYLaxzq3kJ3vG8gzezC9gk=">AAACqnicdVFdb9MwFHXC1yhfZTzyYlFN6iRaOVHH2gekCV54mKZtomtR3USO47TW4iSzHUTl+s/xD3jk3+C0nQYIrmT7+Nwv+9ykyrnSCP30/Hv3Hzx8tPe49eTps+cv2i/3r1RZS8rGtMxLOU2IYjkv2FhznbNpJRkRSc4myfXHxj/5yqTiZfFZryo2F2RR8IxToh0Vt79DLIheSmFOTy8tfA97IcSqFrHh7hLYyJxZiDNJqNnugTW44hbnLNNreMepG6nNhu12L2KTpBamm+MwMoJ8s1jyxVIfRiEuBVuQaAB7kMQ8Cq2rv/Gt7V2LMLGQRbt6vS29duE9LGoXl9yWs7bVitsd1A+P0Oh4CFH/CAWjQegAQsPROwQDBxrrgJ2dx+0fOC1pLVihaU6UmgWo0nNDpOY0Z7aFa8UqQq/Jgs0cLIhgam42Wlt44JgUZqV0q9Bww/6eYYhQaiXc+w8aYdXfvob8l29W62w4N7yoas0Kum2U1TnUJWwGB1MuGdX5ygFCJXdvhXRJnDDajddpcPtR+H9wFfYDhy8GnZMPOzX2wGvwBnRBAI7BCfgEzsEYUK/rnXkTb+q/9S/9L/5sG+p7u5xX4A/z018wY9Nb</latexit><latexit sha1_base64="uXQUzQYLaxzq3kJ3vG8gzezC9gk=">AAACqnicdVFdb9MwFHXC1yhfZTzyYlFN6iRaOVHH2gekCV54mKZtomtR3USO47TW4iSzHUTl+s/xD3jk3+C0nQYIrmT7+Nwv+9ykyrnSCP30/Hv3Hzx8tPe49eTps+cv2i/3r1RZS8rGtMxLOU2IYjkv2FhznbNpJRkRSc4myfXHxj/5yqTiZfFZryo2F2RR8IxToh0Vt79DLIheSmFOTy8tfA97IcSqFrHh7hLYyJxZiDNJqNnugTW44hbnLNNreMepG6nNhu12L2KTpBamm+MwMoJ8s1jyxVIfRiEuBVuQaAB7kMQ8Cq2rv/Gt7V2LMLGQRbt6vS29duE9LGoXl9yWs7bVitsd1A+P0Oh4CFH/CAWjQegAQsPROwQDBxrrgJ2dx+0fOC1pLVihaU6UmgWo0nNDpOY0Z7aFa8UqQq/Jgs0cLIhgam42Wlt44JgUZqV0q9Bww/6eYYhQaiXc+w8aYdXfvob8l29W62w4N7yoas0Kum2U1TnUJWwGB1MuGdX5ygFCJXdvhXRJnDDajddpcPtR+H9wFfYDhy8GnZMPOzX2wGvwBnRBAI7BCfgEzsEYUK/rnXkTb+q/9S/9L/5sG+p7u5xX4A/z018wY9Nb</latexit><latexit sha1_base64="uXQUzQYLaxzq3kJ3vG8gzezC9gk=">AAACqnicdVFdb9MwFHXC1yhfZTzyYlFN6iRaOVHH2gekCV54mKZtomtR3USO47TW4iSzHUTl+s/xD3jk3+C0nQYIrmT7+Nwv+9ykyrnSCP30/Hv3Hzx8tPe49eTps+cv2i/3r1RZS8rGtMxLOU2IYjkv2FhznbNpJRkRSc4myfXHxj/5yqTiZfFZryo2F2RR8IxToh0Vt79DLIheSmFOTy8tfA97IcSqFrHh7hLYyJxZiDNJqNnugTW44hbnLNNreMepG6nNhu12L2KTpBamm+MwMoJ8s1jyxVIfRiEuBVuQaAB7kMQ8Cq2rv/Gt7V2LMLGQRbt6vS29duE9LGoXl9yWs7bVitsd1A+P0Oh4CFH/CAWjQegAQsPROwQDBxrrgJ2dx+0fOC1pLVihaU6UmgWo0nNDpOY0Z7aFa8UqQq/Jgs0cLIhgam42Wlt44JgUZqV0q9Bww/6eYYhQaiXc+w8aYdXfvob8l29W62w4N7yoas0Kum2U1TnUJWwGB1MuGdX5ygFCJXdvhXRJnDDajddpcPtR+H9wFfYDhy8GnZMPOzX2wGvwBnRBAI7BCfgEzsEYUK/rnXkTb+q/9S/9L/5sG+p7u5xX4A/z018wY9Nb</latexit>

-��� -��� ��� ��� ���������������������������

�������� �������� �-���� (������������ - �������)

������������������

Mean: 0.0248108, Stdev.: 0.115268Kurtosis: 1.66154 (3 is Gaussian), Skewness: -0.21255,

Coefficient of Variation of Abs[data]: 0.51737,Min: -0.168945, Max: 0.194824,

Significant Decimal Digits in Measurement Batch: 0Significant Binary Digits in Measurement Batch: 1

Est. Dist.: MixtureDistribution[{0.554123, 0.385767, 0.06011},{NormalDistribution[-0.0739557, 0.0837394],

NormalDistribution[0.120384, 0.0623194], NormalDistribution[0.237334,0.026112]}]

The null hypothesis that the data is distributed accordingto the NormalDistribution[x.. , y

.

. ] is rejected at the 5.percent level based on the Cramér-von Mises test.

��� ��� ��� ��� ��� ������

���

���

���

���

���

������������� ���

�����������

-���� -���� ���� ���� ���� ���� ��������

����

����

����

������� �������� �-���� (������������ - �������)

������������������

Mean: 0.0146101, Stdev.: 0.00556009Kurtosis: 3.96345 (3 is Gaussian), Skewness: 0.215582,

Coefficient of Variation of Abs[data]: 0.377685,Min: -0.00390625, Max: 0.0302734,

Significant Decimal Digits in Measurement Batch: 0Significant Binary Digits in Measurement Batch: 0

Est. Dist.: UniformDistribution[{-0.0919813, 0.123943}]The null hypothesis that the data is distributed according

to the NormalDistribution[x.. , y.. ] is rejected at the 5.

percent level based on the Cramér-von Mises test.

��� ��� ��� ��� ��� ������

���

���

���

���

���

������������� ���

�����������