28
S 4 C 3 S 6

S4S4 C3C3 S6S6. p z, (d xz, d yz ) s A’ 1 (p x, p y ): E’ p z : A” 2 (d x2 – y2, d xy ): E’ (d xz, d yz ): E’’ d z2 : A’ 1

  • View
    217

  • Download
    2

Embed Size (px)

Citation preview

Page 1: S4S4 C3C3 S6S6. p z, (d xz, d yz ) s A’ 1 (p x, p y ): E’ p z : A” 2 (d x2 – y2, d xy ): E’ (d xz, d yz ): E’’ d z2 : A’ 1

S4

C3

S6

Page 2: S4S4 C3C3 S6S6. p z, (d xz, d yz ) s A’ 1 (p x, p y ): E’ p z : A” 2 (d x2 – y2, d xy ): E’ (d xz, d yz ): E’’ d z2 : A’ 1

H2N

Si

NH2

NH2

H2N

Si

NH2

NH2

etc.

Page 3: S4S4 C3C3 S6S6. p z, (d xz, d yz ) s A’ 1 (p x, p y ): E’ p z : A” 2 (d x2 – y2, d xy ): E’ (d xz, d yz ): E’’ d z2 : A’ 1

pz, (dxz, dyz)

s A’1(px , py): E’pz: A”2

(dx2 – y2, dxy): E’(dxz, dyz): E’’dz2: A’1

Page 4: S4S4 C3C3 S6S6. p z, (d xz, d yz ) s A’ 1 (p x, p y ): E’ p z : A” 2 (d x2 – y2, d xy ): E’ (d xz, d yz ): E’’ d z2 : A’ 1

3 0 -1 -3 0 1

Page 5: S4S4 C3C3 S6S6. p z, (d xz, d yz ) s A’ 1 (p x, p y ): E’ p z : A” 2 (d x2 – y2, d xy ): E’ (d xz, d yz ): E’’ d z2 : A’ 1

f) Now shift to the C3vpoint group and obtain the irreducible reps to which the pi bonding NH2 unit orbitals belong.

E 2C3 3v

3 0 1

= A1 + E

Page 6: S4S4 C3C3 S6S6. p z, (d xz, d yz ) s A’ 1 (p x, p y ): E’ p z : A” 2 (d x2 – y2, d xy ): E’ (d xz, d yz ): E’’ d z2 : A’ 1

^^

RRh

lP

jj

jj

A1

E1 E2

Page 7: S4S4 C3C3 S6S6. p z, (d xz, d yz ) s A’ 1 (p x, p y ): E’ p z : A” 2 (d x2 – y2, d xy ): E’ (d xz, d yz ): E’’ d z2 : A’ 1

A1

E1 E2

On going from C3v to D3h maintain same behavior for the C3v operations (E, C3 and v). Thus A1 in C3v could be either A’1 or A’’2. Choose A2’’ since it is antisym for h.Likewise, E could be either E’ or E’’ Choose E’’ since it is antisym for h.Thus A”2 and E’

Page 8: S4S4 C3C3 S6S6. p z, (d xz, d yz ) s A’ 1 (p x, p y ): E’ p z : A” 2 (d x2 – y2, d xy ): E’ (d xz, d yz ): E’’ d z2 : A’ 1

A2”

E” (1)E” (2)

Si Orbitalss A’1(px , py): E’Pz: A”2

(x2 – y2, xy): E’(xz, yz): E’’z2: A’1

i) Show bonding between the Si orbitals and the symmetry adapted NH2 orbitals

Page 9: S4S4 C3C3 S6S6. p z, (d xz, d yz ) s A’ 1 (p x, p y ): E’ p z : A” 2 (d x2 – y2, d xy ): E’ (d xz, d yz ): E’’ d z2 : A’ 1
Page 10: S4S4 C3C3 S6S6. p z, (d xz, d yz ) s A’ 1 (p x, p y ): E’ p z : A” 2 (d x2 – y2, d xy ): E’ (d xz, d yz ): E’’ d z2 : A’ 1
Page 11: S4S4 C3C3 S6S6. p z, (d xz, d yz ) s A’ 1 (p x, p y ): E’ p z : A” 2 (d x2 – y2, d xy ): E’ (d xz, d yz ): E’’ d z2 : A’ 1
Page 12: S4S4 C3C3 S6S6. p z, (d xz, d yz ) s A’ 1 (p x, p y ): E’ p z : A” 2 (d x2 – y2, d xy ): E’ (d xz, d yz ): E’’ d z2 : A’ 1

i x,z

E C2(y)

C2(y)

x,z i = C2(y)

Page 13: S4S4 C3C3 S6S6. p z, (d xz, d yz ) s A’ 1 (p x, p y ): E’ p z : A” 2 (d x2 – y2, d xy ): E’ (d xz, d yz ): E’’ d z2 : A’ 1

i

E C2(y)

C2’(-xy)xy,z

C2’(-xy)

Page 14: S4S4 C3C3 S6S6. p z, (d xz, d yz ) s A’ 1 (p x, p y ): E’ p z : A” 2 (d x2 – y2, d xy ): E’ (d xz, d yz ): E’’ d z2 : A’ 1

x,z

E C2(y)

C4 (z)xy,z

C2’(-xy)

C4 (z) C2 (z)

Page 15: S4S4 C3C3 S6S6. p z, (d xz, d yz ) s A’ 1 (p x, p y ): E’ p z : A” 2 (d x2 – y2, d xy ): E’ (d xz, d yz ): E’’ d z2 : A’ 1

E C2(y)

xy,z

C2’(-xy)

C4 (z) C2 (z)

C2 (z)

xy,z

xy,z

Page 16: S4S4 C3C3 S6S6. p z, (d xz, d yz ) s A’ 1 (p x, p y ): E’ p z : A” 2 (d x2 – y2, d xy ): E’ (d xz, d yz ): E’’ d z2 : A’ 1

E C2(y)

C2’(-xy)

C4 (z)

C2 (z)

h

xy,z

h

xy,z

C2’(-xy)

D4h

Page 17: S4S4 C3C3 S6S6. p z, (d xz, d yz ) s A’ 1 (p x, p y ): E’ p z : A” 2 (d x2 – y2, d xy ): E’ (d xz, d yz ): E’’ d z2 : A’ 1

Coordination number 1

Very rare, bulky ligands, linear structures, no possible isomers

Page 18: S4S4 C3C3 S6S6. p z, (d xz, d yz ) s A’ 1 (p x, p y ): E’ p z : A” 2 (d x2 – y2, d xy ): E’ (d xz, d yz ): E’’ d z2 : A’ 1

Coordination number 2

Also rare, typical of d10, linear structures, no possible isomers

Page 19: S4S4 C3C3 S6S6. p z, (d xz, d yz ) s A’ 1 (p x, p y ): E’ p z : A” 2 (d x2 – y2, d xy ): E’ (d xz, d yz ): E’’ d z2 : A’ 1

Coordination number 3

Also typical of d10, trigonal planar structures (rarely T-shaped), no possible isomers

Page 20: S4S4 C3C3 S6S6. p z, (d xz, d yz ) s A’ 1 (p x, p y ): E’ p z : A” 2 (d x2 – y2, d xy ): E’ (d xz, d yz ): E’’ d z2 : A’ 1

Coordination number 4

L4

L1

M

L3

L2

L2

M

L1 L2

L1

L1

M

L1 L2

L2

cis

transTetrahedral(2 enantiomers if all ligands different)

Square planar(2 geometrical isomer

for two types of ligands)typical of d8

Very common

Page 21: S4S4 C3C3 S6S6. p z, (d xz, d yz ) s A’ 1 (p x, p y ): E’ p z : A” 2 (d x2 – y2, d xy ): E’ (d xz, d yz ): E’’ d z2 : A’ 1

Tetrahedral

Square planar

Page 22: S4S4 C3C3 S6S6. p z, (d xz, d yz ) s A’ 1 (p x, p y ): E’ p z : A” 2 (d x2 – y2, d xy ): E’ (d xz, d yz ): E’’ d z2 : A’ 1

Coordination number 5

Trigonal bipyramidal (tbp) Square-based pyramidal sbp)

Very similar energies, they may easily interconvert in solution (fluxionality)

Le M

Le

Le

La

La

Lb

MLb Lb

Lb

La

Page 23: S4S4 C3C3 S6S6. p z, (d xz, d yz ) s A’ 1 (p x, p y ): E’ p z : A” 2 (d x2 – y2, d xy ): E’ (d xz, d yz ): E’’ d z2 : A’ 1
Page 24: S4S4 C3C3 S6S6. p z, (d xz, d yz ) s A’ 1 (p x, p y ): E’ p z : A” 2 (d x2 – y2, d xy ): E’ (d xz, d yz ): E’’ d z2 : A’ 1

Coordination number 6

M

Octahedralmost common

Trigonal prismless common

Page 25: S4S4 C3C3 S6S6. p z, (d xz, d yz ) s A’ 1 (p x, p y ): E’ p z : A” 2 (d x2 – y2, d xy ): E’ (d xz, d yz ): E’’ d z2 : A’ 1

Some possible isomers in octahedral complexes

B

M

A B

B

A

B

B

M

B B

B

A

A

cis-MA2B4 trans-MA2B4

B

MB A

A

A

B

B

MB B

A

A

A

fac-MA3B3 mer-MA3B3

Page 26: S4S4 C3C3 S6S6. p z, (d xz, d yz ) s A’ 1 (p x, p y ): E’ p z : A” 2 (d x2 – y2, d xy ): E’ (d xz, d yz ): E’’ d z2 : A’ 1

Some examples of trigonal prismatic structures

Page 27: S4S4 C3C3 S6S6. p z, (d xz, d yz ) s A’ 1 (p x, p y ): E’ p z : A” 2 (d x2 – y2, d xy ): E’ (d xz, d yz ): E’’ d z2 : A’ 1

Coordination number 7

M M

Pentagonal bipyramidal

Capped octahedral Cappedtrigonal prismatic

M

Page 28: S4S4 C3C3 S6S6. p z, (d xz, d yz ) s A’ 1 (p x, p y ): E’ p z : A” 2 (d x2 – y2, d xy ): E’ (d xz, d yz ): E’’ d z2 : A’ 1

Examples of coordination number 7