26
8/9/2019 S-55 3120 Lecture Slides 6 http://slidepdf.com/reader/full/s-55-3120-lecture-slides-6 1/26 A! Aalto University School of Science and Technology S-55.3120 Passive Filters Lecture 6: Elliptic (Cauer) filters Jarmo Virtanen | Page 1 / 26  |  S-55.3120 Lecture 6: Elliptic (Cauer) filters Copyright c 2010 Jarmo Virtanen

S-55 3120 Lecture Slides 6

  • Upload
    ilclod

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

Page 1: S-55 3120 Lecture Slides 6

8/9/2019 S-55 3120 Lecture Slides 6

http://slidepdf.com/reader/full/s-55-3120-lecture-slides-6 1/26

A!Aalto UniversitySchool of Scienceand Technology

S-55.3120 Passive Filters

Lecture 6: Elliptic (Cauer) filtersJarmo Virtanen

|Page 1 / 26   |   S-55.3120 Lecture 6: Elliptic (Cauer) filters

Copyright   c 2010 Jarmo Virtanen

Page 2: S-55 3120 Lecture Slides 6

8/9/2019 S-55 3120 Lecture Slides 6

http://slidepdf.com/reader/full/s-55-3120-lecture-slides-6 2/26

A!  Aalto University

School of Scienceand Technology

Elliptic (Cauer) filters

|S 21(jω)|2 =  1

1 +

 P 2n(ω)

Q 2p(ω)

Q p(ω) = (ω2 − ω22)(ω2 − ω2

4)(...)(ω2 − ω2p )

|Page 2 / 26   |   S-55.3120 Lecture 6: Elliptic (Cauer) filters

Copyright   c 2010 Jarmo Virtanen

Page 3: S-55 3120 Lecture Slides 6

8/9/2019 S-55 3120 Lecture Slides 6

http://slidepdf.com/reader/full/s-55-3120-lecture-slides-6 3/26

Page 4: S-55 3120 Lecture Slides 6

8/9/2019 S-55 3120 Lecture Slides 6

http://slidepdf.com/reader/full/s-55-3120-lecture-slides-6 4/26

Page 5: S-55 3120 Lecture Slides 6

8/9/2019 S-55 3120 Lecture Slides 6

http://slidepdf.com/reader/full/s-55-3120-lecture-slides-6 5/26A!  Aalto University

School of Scienceand Technology

Math tables of elliptic functions

◮  Complete elliptic integral of the first kind (K ):

K   =  K (m  =  k 2)  and  K ′

(m ) =  K (1−m )

◮  Jacobi elliptic sine function (sn): sn(u , k ) = sn(ε\α)

ε =   u K · 90o, α  = arcsin(k )

◮  Nome function  q :

q  =  q (m ) =  q (k 2) =  e−πK ′

/K 

if  k 2 << 1,   then  q (k 2) ≈   k 2

16

|Page 5 / 26   |   S-55.3120 Lecture 6: Elliptic (Cauer) filters

Copyright   c 2010 Jarmo Virtanen

Page 6: S-55 3120 Lecture Slides 6

8/9/2019 S-55 3120 Lecture Slides 6

http://slidepdf.com/reader/full/s-55-3120-lecture-slides-6 6/26A!  Aalto University

School of Scienceand Technology

0 1   1/k    ω

1

1

1 + ε21

1 + ε2

/k 20

|S 21( j ω)|2 =   11 + ε2R2

n (ω)

0

|Rn 

| ≤1, when  0

≤ω

 ≤1

|Rn | ≥ 1/k 0, when  ω ≥ 1/k 

|Page 6 / 26   |   S-55.3120 Lecture 6: Elliptic (Cauer) filters

Copyright   c 2010 Jarmo Virtanen

Page 7: S-55 3120 Lecture Slides 6

8/9/2019 S-55 3120 Lecture Slides 6

http://slidepdf.com/reader/full/s-55-3120-lecture-slides-6 7/26A!  Aalto University

School of Scienceand Technology

Elliptic filter

|S 21|2 =

  1

1 + ε2R2n (ω)

Equiripple both on pass and stop bands:

dRn 

dω= 0,   when

 |Rn (ω)| = 1,   except when |ω| = 1|Rn (ω)| = 1/k 0,   except when |ω| = 1/k 

⇒   dRn 

dω=  C n 

  [1− R2n ][1 − k 

2

0R2n ]

[1− ω2][1 − k 2ω2]

Solution is obtained with the elliptic integrals

|Page 7 / 26   |   S-55.3120 Lecture 6: Elliptic (Cauer) filters

Copyright   c 2010 Jarmo Virtanen

Page 8: S-55 3120 Lecture Slides 6

8/9/2019 S-55 3120 Lecture Slides 6

http://slidepdf.com/reader/full/s-55-3120-lecture-slides-6 8/26A!  Aalto University

School of Scienceand Technology

Design formula of an elliptic filter

1. integrate over the pass band (0 ≤ ω ≤ 1,  Rn   alternates  n times between  0...1  and  0...

−1)

1 0

dRn  [1 −R2

n ][1− k 20R2n ]

=  C n 

1 0

dω [1 − ω2][1 − k 2ω2]

⇒ nK (k 0) =  nK 0  =  C n K (k ) =  C n K 

2. integrate  1 ≤ ω ≤ 1/k   (Rn   : 1 → 1/k 0):

1/k 0 1

dRn √ ...

=  C n 

1/k  1

dω√ ...

⇒  jK (k ′

0) =  jK ′

0  =  jC n K (k ′

) =  jC n K ′

|Page 8 / 26   |   S-55.3120 Lecture 6: Elliptic (Cauer) filters

Copyright   c 2010 Jarmo Virtanen

Page 9: S-55 3120 Lecture Slides 6

8/9/2019 S-55 3120 Lecture Slides 6

http://slidepdf.com/reader/full/s-55-3120-lecture-slides-6 9/26A!  Aalto University

School of Scienceand Technology

Design formula of an elliptic filter (cont)

Combining the two equations from the previous slide gives us thedesign formula for the elliptic filters:

nK ′

K = K 

0

K 0

What is needed:

◮   selectivity factor  k  (sharpness of the filter)

◮   stop band attenuation  k 0  (at  ω  = 1/k )

◮  K   =  K (k ),  K 0  =  K (k 0),  K ′

=  K (k ′

) and  K ′

0  =  K (k ′

0)

⇒   order  n 

|Page 9 / 26   |   S-55.3120 Lecture 6: Elliptic (Cauer) filters

Copyright   c 2010 Jarmo Virtanen

Page 10: S-55 3120 Lecture Slides 6

8/9/2019 S-55 3120 Lecture Slides 6

http://slidepdf.com/reader/full/s-55-3120-lecture-slides-6 10/26A!  Aalto University

School of Scienceand Technology

Design formula of an elliptic filter (cont)

Nome function  q  =  e−πK ′

/K ,  q 0  =  e−πK ′

0/K 0 :

nK ′

K = K 

0

K 0⇒ q n  =  q 0

Attenuation at pass and stop bands:

Ap  = 10 lg[1 + ε2]  and  As  = 10 lg[1 + ε2/k 20 ]  ⇒Approximation: if  k 0  << 1, then  k 20 ≈ 16q 0  = 16q n 

As ≈ 10{lg[10Ap/10 − 1] − n  · lg(q ) − 1.2}

Design specifications determine  As,  Ap  and  k  (→ q ), the order  n of the filter is obtained from the equation above

|Page 10 / 26   |   S-55.3120 Lecture 6: Elliptic (Cauer) filters

Copyright   c 2010 Jarmo Virtanen

Page 11: S-55 3120 Lecture Slides 6

8/9/2019 S-55 3120 Lecture Slides 6

http://slidepdf.com/reader/full/s-55-3120-lecture-slides-6 11/26

Page 12: S-55 3120 Lecture Slides 6

8/9/2019 S-55 3120 Lecture Slides 6

http://slidepdf.com/reader/full/s-55-3120-lecture-slides-6 12/26

Page 13: S-55 3120 Lecture Slides 6

8/9/2019 S-55 3120 Lecture Slides 6

http://slidepdf.com/reader/full/s-55-3120-lecture-slides-6 13/26A!

  Aalto UniversitySchool of Scienceand Technology

Pass band minima and stop band maxima

Pass band minima (|Rn   = 1|), i.e., largest attenuation at passband:

n   odd:   n  even:

ω̂i   = sn( (2i − 1)K n 

, k ) ω̂i   = sn( 2iK n 

, k )

i  = 1, 2, ..., (n − 1)/2   i   = 0, 1, 2, ..., (n /2) − 1

Stop band maxima (|Rn | = 1/k 0), i.e, smallest attenuation at

the stop band:  ω̃i   =   1k ̂ωi 

|Page 13 / 26   |   S-55.3120 Lecture 6: Elliptic (Cauer) filters

Copyright   c 2010 Jarmo Virtanen

Ell fil |S (j )|2

Page 14: S-55 3120 Lecture Slides 6

8/9/2019 S-55 3120 Lecture Slides 6

http://slidepdf.com/reader/full/s-55-3120-lecture-slides-6 14/26A!

  Aalto UniversitySchool of Scienceand Technology

Elliptic filter |S 21(jω)|2

It can be shown, that

Rn (ω) = sn(z , k 0),   where

z   =

 nK 0

K sn−1(ω, k ),   n  odd

z   =

 nK 0

K  sn−1

(ω, k ) + K 0,   n  even

Rn (ω) =  1

k 0Rn (  1

k ω)

|S 21( j ω)|2 =  1

1 + ε2R2n (ω)

|Page 14 / 26   |   S-55.3120 Lecture 6: Elliptic (Cauer) filters

Copyright   c 2010 Jarmo Virtanen

|S |2

Page 15: S-55 3120 Lecture Slides 6

8/9/2019 S-55 3120 Lecture Slides 6

http://slidepdf.com/reader/full/s-55-3120-lecture-slides-6 15/26

A!  Aalto University

School of Scienceand Technology

Example: Determine expression of  |S 21|2 for an elliptic filter,whose parameters are  k  = 1/2,  n  = 3  and ripple, i.e., themaximum value of the reflection coefficient at the pass band is20% (

→Ap 

 ≈0.1773 dB).

Reflection zeros:

ω00  = 0  (always when  n   is odd)

ω01  = sn(2K 

3   , 0.5) = sn(60o\300) ≈ 0.88103

Transmission zeros:

ω∞  =  1

k ω00

=

∞and  ω1  =

  1

k ω01 ≈2.2701

Parameter  ε:

ε2 =  1

1 − |S 11|2 − 1 =

  1

24

|Page 15 / 26   |   S-55.3120 Lecture 6: Elliptic (Cauer) filters

Copyright   c 2010 Jarmo Virtanen

Page 16: S-55 3120 Lecture Slides 6

8/9/2019 S-55 3120 Lecture Slides 6

http://slidepdf.com/reader/full/s-55-3120-lecture-slides-6 16/26

A!  Aalto University

School of Scienceand Technology

Rn (ω):

Rn (ω) = H ω(ω2 − ω2

01)

ω2 − ω21

H   is obtained from |Rn (1)| = 1  (cut-off frequency of the passband):

H   = 1 · (1− ω2

01)

|1 − ω2

1| −1

≈18.5595

Transducer power gain:

|S 21|2 =  1

1 + ε2R2n (ω)

=  24(ω2 − 2.27012)2

24(ω2 − 2.27012)2 + 344.454ω2(ω2 − 0.881032)2

|Page 16 / 26   |   S-55.3120 Lecture 6: Elliptic (Cauer) filters

Copyright   c 2010 Jarmo Virtanen

Elli ti filt A B d C t

Page 17: S-55 3120 Lecture Slides 6

8/9/2019 S-55 3120 Lecture Slides 6

http://slidepdf.com/reader/full/s-55-3120-lecture-slides-6 17/26

A!  Aalto University

School of Scienceand Technology

Elliptic filters: A-, B-, and C-type

◮   A-type

Even order → |S 21(∞)|2 =  1

1 + ε2/k 20

An elliptic filter having even order can not be realized with TL

or πL type low-pass filter because these filter topologies havetransmission zero at the infinity (S 21(∞) = 0). A frequencytransformation must be used to obtain realizable filter (B- orC-type).

Odd order can be realized with TL11  or πL00  type circuit,termination resistors are equal.

|Page 17 / 26   |   S-55.3120 Lecture 6: Elliptic (Cauer) filters

Copyright   c 2010 Jarmo Virtanen

Page 18: S-55 3120 Lecture Slides 6

8/9/2019 S-55 3120 Lecture Slides 6

http://slidepdf.com/reader/full/s-55-3120-lecture-slides-6 18/26

A!  Aalto University

School of Scienceand Technology

◮   B-type

Transfer the largest transmission zero  ω1  = 1/[k ω01]  to theinfinity. The frequency transformation is:

ω̃2 =  (1− k 2ω2

01)ω2

1

−k 2ω2

01ω2

k̃  =  k  ·  1− ω2

01

1− k 2ω201

<  k 

Termination resistors:  Rg

 =  RL

|Page 18 / 26   |   S-55.3120 Lecture 6: Elliptic (Cauer) filters

Copyright   c 2010 Jarmo Virtanen

Page 19: S-55 3120 Lecture Slides 6

8/9/2019 S-55 3120 Lecture Slides 6

http://slidepdf.com/reader/full/s-55-3120-lecture-slides-6 19/26

A!  Aalto University

School of Scienceand Technology

◮   C-typeAs in the case of B-type, but transform also the smallest

reflection zero to the origin (ω01 → 0). The response lookslike the response of an A-type filter having order (n − 1), i.e.,S 21(0) = 1,   S 21(∞) = 0. The frequency transformationused is:

ω̄2 =   (ω21 − 1)(ω2 − ω201)(1− ω2

01)(ω21 − ω2)

k̄  =  k  ·

  1 − ω201

1

−k 2ω2

01

 <  k̃  <  k 

Termination resistors:  Rg  =  RL

|Page 19 / 26   |   S-55.3120 Lecture 6: Elliptic (Cauer) filters

Copyright   c 2010 Jarmo Virtanen

Page 20: S-55 3120 Lecture Slides 6

8/9/2019 S-55 3120 Lecture Slides 6

http://slidepdf.com/reader/full/s-55-3120-lecture-slides-6 20/26

A!  Aalto University

School of Scienceand Technology

Example: Investigate change in the sharpness of A-, B- and C-typefilter, when  Ap  = 1 dB,  As  = 32.5 dB,  n  = 4  and  k  = 0.766.

ω01  = sn(K 

4 , k ) = sn(22.5o\50o) = 0.4559

⇒ ω1  = 1/[0.766 · 0.4559] = 2.864

B-type:   k̃  ≈ 0.950k C-type:   k̄  = 0.9502k  ≈ 0.903k 

|Page 20 / 26   |   S-55.3120 Lecture 6: Elliptic (Cauer) filters

Copyright   c 2010 Jarmo Virtanen

Elliptic filters: using filter tables

Page 21: S-55 3120 Lecture Slides 6

8/9/2019 S-55 3120 Lecture Slides 6

http://slidepdf.com/reader/full/s-55-3120-lecture-slides-6 21/26

A!  Aalto University

School of Scienceand Technology

Elliptic filters: using filter tables

Filter tables have types A and B (A odd, B even)

C 052030 =   C   Cauer 

05  n 

20  max |S 11|(%)

30  θ=arcsin(k )

Ap  = −10 lg[1 − |S 11|2max]

Data in the tables: order  n ,  Ap,  As, modulus angle  θ  (A-type),sharpness  ω̂s  = 1/k  (A) or  ω̂s  = 1/k̃  (B), transmission zerosω̂∞1,...

Low-pass filter:  ω̂s  =  f s/ f p

High-pass filter:  ω̂s  =  f p/ f s

Band-pass filter:  ω̂s  =  B s/B p   (B  =  B p)

Band-stop filter:  ω̂s  =  B p/B s   (B  =  B p)

|Page 21 / 26   |   S-55.3120 Lecture 6: Elliptic (Cauer) filters

Copyright   c 2010 Jarmo Virtanen

Elliptic low pass filter

Page 22: S-55 3120 Lecture Slides 6

8/9/2019 S-55 3120 Lecture Slides 6

http://slidepdf.com/reader/full/s-55-3120-lecture-slides-6 22/26

A!  Aalto University

School of Scienceand Technology

Elliptic low-pass filter

0   2π f p   2π f s   ω

−As

−Ap

0

|S 21|2

dB

ω̂s  =  f s

 f p

|Page 22 / 26   |   S-55.3120 Lecture 6: Elliptic (Cauer) filters

Copyright   c 2010 Jarmo Virtanen

Elliptic low-pass prototype filter

Page 23: S-55 3120 Lecture Slides 6

8/9/2019 S-55 3120 Lecture Slides 6

http://slidepdf.com/reader/full/s-55-3120-lecture-slides-6 23/26

A!  Aalto University

School of Scienceand Technology

Elliptic low-pass prototype filter

0 1   ω̂s   ω̂

−As

−Ap

0

|S 21|2 dB

|Page 23 / 26   |   S-55.3120 Lecture 6: Elliptic (Cauer) filters

Copyright   c 2010 Jarmo Virtanen

Elliptic band-pass filter

Page 24: S-55 3120 Lecture Slides 6

8/9/2019 S-55 3120 Lecture Slides 6

http://slidepdf.com/reader/full/s-55-3120-lecture-slides-6 24/26

A!  Aalto University

School of Scienceand Technology

Elliptic band pass filter

0   ωs1   ωs2ωp1   ωp2   ω

0

−Ap

−As

|S 21|2 dB

ω0

ω20   = ωs1ωs2  = ωp1ωp2B p  = ωp2 − ωp1B s  = ωs2 − ωs1

ω̂s  =  B s

B p

B p

B s

|Page 24 / 26   |   S-55.3120 Lecture 6: Elliptic (Cauer) filters

Copyright   c 2010 Jarmo Virtanen

Low-pass–band-pass frequency transformation

Page 25: S-55 3120 Lecture Slides 6

8/9/2019 S-55 3120 Lecture Slides 6

http://slidepdf.com/reader/full/s-55-3120-lecture-slides-6 25/26

A!  Aalto University

School of Scienceand Technology

Low pass band pass frequency transformation

L

C ⇒

L1   C 1

C 2

L2

L+

C +

L−

C −

C ±  = C 1

2+ 2C 2 ∓

 C 1C 2 1 +

  C 1

4C 2 L+C −  =  L−C +  = 1/ω2

0

|Page 25 / 26   |   S-55.3120 Lecture 6: Elliptic (Cauer) filters

Copyright   c 2010 Jarmo Virtanen

Page 26: S-55 3120 Lecture Slides 6

8/9/2019 S-55 3120 Lecture Slides 6

http://slidepdf.com/reader/full/s-55-3120-lecture-slides-6 26/26

A!  Aalto University

School of Scienceand Technology

L   C ⇒

L1   C 1L2

C 2

L+   C +

L−   C −L±  =

 L1

2

+ 2L2

∓ L1L2 1 +  L1

4L2 L+C −  =  L−C +  = 1/ω2

0

Transmission zeros at frequencies  ω−

 = 1/ L−C −  and

ω+  = 1/ L+C +

|Page 26 / 26   |   S-55.3120 Lecture 6: Elliptic (Cauer) filters

Copyright   c 2010 Jarmo Virtanen