90
OptiX RTN 950 Radio Transmission System V100R002C00 Product Description Issue 01 Date 2009-06-30 HUAWEI TECHNOLOGIES CO., LTD.

Rtn950 Pdh,Sdh,Hybrid

  • Upload
    dansun

  • View
    139

  • Download
    7

Embed Size (px)

Citation preview

Page 1: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System V100R002C00 Product Description

Issue 01

Date 2009-06-30

HUAWEI TECHNOLOGIES CO., LTD.

Page 2: Rtn950 Pdh,Sdh,Hybrid
Page 3: Rtn950 Pdh,Sdh,Hybrid

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd. i

Copyright © Huawei Technologies Co., Ltd. 2009. All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Huawei Technologies Co., Ltd. Trademarks and Permissions

and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd. All other trademarks and trade names mentioned in this document are the property of their respective holders. Notice The purchased products, services and features are stipulated by the commercial contract made between Huawei and the customer. All or partial products, services and features described in this document may not be within the purchased scope or the usage scope. Unless otherwise agreed by the contract, all statements, information, and recommendations in this document are provided “AS IS” without warranties, guarantees or representations of any kind, either express or implied. The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute the warranty of any kind, express or implied.

Huawei Technologies Co., Ltd.

Address: Huawei Industrial Base Bantian, Longgang Shenzhen 518129 People's Republic of China

Website: http://www.huawei.com

Email: [email protected]

Page 4: Rtn950 Pdh,Sdh,Hybrid
Page 5: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description About This Document

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

iii

About This Document

Purpose This document describes the network application, functions and features, structure, networking, network management system (NMS), and performance indexes of the OptiX RTN 950 radio transmission system, thus providing comprehensive information of the OptiX RTN 950 product for readers.

Related Versions The following table lists the product versions related to this document.

Product Name Version

OptiX RTN 950 V100R002C00

OptiX iManager U2000 V100R001C00

Intended Audience This document is intended for network planning engineers.

Before you read this document, ensure that you have acquired the basic knowledge of digital microwave communication.

Organization This document is organized as follows.

Chapter Content

1 Introduction Describes the network application and components of the OptiX RTN 950.

2 Functions and Features Describes the functions and features of the OptiX RTN 950.

Page 6: Rtn950 Pdh,Sdh,Hybrid

About This Document OptiX RTN 950 Radio Transmission System

Product Description

iv Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

Chapter Content

3 Product Structure Describes the system architecture, hardware architecture, software architecture, and signal processing flow of the OptiX RTN 950.

4 Networking Describes common networking modes of the OptiX RTN 950.

5 Network Management System

Describes the network management (NM) solution for the OptiX RTN 950, and also the various NM software that contributes to this solution.

6 Performance Describes the performance indexes of the OptiX RTN 950.

A Glossary Lists the terms.

B Acronyms and Abbreviations

Lists the acronyms and abbreviations.

Conventions

Symbol Conventions The symbols that may be found in this document are defined as follows.

Symbol Description

Indicates a hazard with a high level of risk, which if not avoided, will result in death or serious injury.

Indicates a hazard with a medium or low level of risk, which if not avoided, could result in minor or moderate injury.

Indicates a potentially hazardous situation, which if not avoided, could result in equipment damage, data loss, performance degradation, or unexpected results.

Indicates a tip that may help you solve a problem or save time.

Provides additional information to emphasize or supplement important points of the main text.

General Conventions The general conventions that may be found in this document are defined as follows.

Page 7: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description About This Document

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

v

Convention Description

Times New Roman Normal paragraphs are in Times New Roman.

Boldface Names of files, directories, folders, and users are in boldface. For example, log in as user root.

Italic Book titles are in italics.

Courier New Examples of information displayed on the screen are in Courier New.

Update History Updates between document issues are cumulative. Therefore, the latest document issue contains all updates made in previous issues.

Updates in Issue 01 (2009-06-30) Based on Product Version V100R002C00 This document is the first release of the V100R002C00 version.

Page 8: Rtn950 Pdh,Sdh,Hybrid
Page 9: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description Contents

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

vii

Contents

About This Document................................................................................................................... iii

1 Introduction.................................................................................................................................1-1 1.1 Network Application .....................................................................................................................................1-1 1.2 Radio Link Forms .........................................................................................................................................1-3 1.3 Components...................................................................................................................................................1-3

2 Functions and Features .............................................................................................................2-1 2.1 Frequency Band ............................................................................................................................................2-2 2.2 Microwave Types ..........................................................................................................................................2-2

2.2.1 PDH Microwave ..................................................................................................................................2-2 2.2.2 SDH Microwave ..................................................................................................................................2-3 2.2.3 Hybrid Microwave ...............................................................................................................................2-4

2.3 Modulation Strategy......................................................................................................................................2-4 2.3.1 Fixed Modulation.................................................................................................................................2-4 2.3.2 Adaptive Modulation ...........................................................................................................................2-5

2.4 RF Configuration Modes...............................................................................................................................2-6 2.5 Capacity ........................................................................................................................................................2-7

2.5.1 Air Interface Capacity ..........................................................................................................................2-7 2.5.2 Cross-Connect Capacity.......................................................................................................................2-7 2.5.3 Switching Capacity ..............................................................................................................................2-8

2.6 Interfaces.......................................................................................................................................................2-8 2.6.1 Microwave Interface ............................................................................................................................2-8 2.6.2 Service Interfaces.................................................................................................................................2-8 2.6.3 Management and Auxiliary Interfaces .................................................................................................2-9

2.7 Cross-Polarization Interference Cancellation..............................................................................................2-10 2.8 Automatic Transmit Power Control.............................................................................................................2-10 2.9 Ethernet Processing Capability ...................................................................................................................2-11 2.10 QoS............................................................................................................................................................2-12 2.11 Timing .......................................................................................................................................................2-12 2.12 Protection Capability.................................................................................................................................2-13 2.13 Network Management ...............................................................................................................................2-13 2.14 Easy Installation ........................................................................................................................................2-14 2.15 Easy Maintenance .....................................................................................................................................2-15

Page 10: Rtn950 Pdh,Sdh,Hybrid

Contents OptiX RTN 950 Radio Transmission System

Product Description

viii Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

3 Product Structure........................................................................................................................3-1 3.1 System Architecture ......................................................................................................................................3-1

3.1.1 SDH/PDH Microwave .........................................................................................................................3-1 3.1.2 Hybrid Microwave ...............................................................................................................................3-3

3.2 Hardware Structure .......................................................................................................................................3-4 3.2.1 IDU ......................................................................................................................................................3-4 3.2.2 ODU.....................................................................................................................................................3-6

3.3 Software Structure.........................................................................................................................................3-8 3.3.1 NMS Software .....................................................................................................................................3-8 3.3.2 IDU Software.......................................................................................................................................3-8 3.3.3 ODU Software .....................................................................................................................................3-8

3.4 Service Signal Processing Flow ....................................................................................................................3-8 3.4.1 SDH/PDH Microwave .........................................................................................................................3-9 3.4.2 Hybrid Microwave .............................................................................................................................3-10

4 Networking .................................................................................................................................4-1 4.1 SDH/PDH Microwave...................................................................................................................................4-1

4.1.1 Chain Networking................................................................................................................................4-1 4.1.2 Ring Networking..................................................................................................................................4-2

4.2 Hybrid Microwave ........................................................................................................................................4-3 4.2.1 Chain Networking................................................................................................................................4-3 4.2.2 Ring Networking..................................................................................................................................4-4

5 Network Management System ................................................................................................5-1 5.1 Network Management Solution.....................................................................................................................5-1 5.2 LCT ...............................................................................................................................................................5-2 5.3 U2000............................................................................................................................................................5-3

6 Performance ................................................................................................................................6-1 6.1 RF Performance ............................................................................................................................................6-1

6.1.1 Microwave Work Modes......................................................................................................................6-1 6.1.2 Frequency Band ...................................................................................................................................6-3 6.1.3 Receiver Sensitivity .............................................................................................................................6-5 6.1.4 Transceiver Performance......................................................................................................................6-9 6.1.5 IF Performance...................................................................................................................................6-11 6.1.6 Baseband Signal Processing Performance of the Modem..................................................................6-12

6.2 Interface Performance .................................................................................................................................6-12 6.2.1 SDH Optical Interface Performance ..................................................................................................6-12 6.2.2 E1 Interface Performance...................................................................................................................6-13 6.2.3 Ethernet Interface Performance..........................................................................................................6-13 6.2.4 Auxiliary Interface Performance ........................................................................................................6-15

6.3 Clock Timing and Synchronization Performance........................................................................................6-16 6.4 Integrated System Performance...................................................................................................................6-17

Page 11: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description Contents

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

ix

A Glossary .................................................................................................................................... A-1

B Acronyms and Abbreviations ................................................................................................B-1

Page 12: Rtn950 Pdh,Sdh,Hybrid
Page 13: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description Figures

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

xi

Figures

Figure 1-1 TDM microwave transmission solution provided by the OptiX RTN 950 .......................................1-2

Figure 1-2 Hybrid microwave transmission solution provided by the OptiX RTN 950.....................................1-2

Figure 1-3 IDU 950 ............................................................................................................................................1-4

Figure 1-4 Direct mounting................................................................................................................................1-5

Figure 1-5 Separate mounting ............................................................................................................................1-6

Figure 2-1 PDH microwave................................................................................................................................2-3

Figure 2-2 SDH microwave................................................................................................................................2-3

Figure 2-3 Hybrid microwave ............................................................................................................................2-4

Figure 2-4 AM....................................................................................................................................................2-6

Figure 3-1 Block diagram (SDH/PDH microwave) ...........................................................................................3-2

Figure 3-2 Block diagram (hybrid microwave) ..................................................................................................3-3

Figure 3-3 IDU slot layout .................................................................................................................................3-5

Figure 3-4 Block diagram of the ODU...............................................................................................................3-7

Figure 3-5 Software structure.............................................................................................................................3-8

Figure 3-6 Service signal processing flow of the SDH/PDH microwave...........................................................3-9

Figure 3-7 Service signal processing flow of the hybrid microwave ...............................................................3-11

Figure 4-1 TDM microwave transmission solution (chain networking).............................................................4-2

Figure 4-2 TDM microwave transmission solution (ring networking)...............................................................4-2

Figure 4-3 TDM microwave transmission solution (hybrid networking formed with the optical transmission equipment) ..........................................................................................................................................................4-3

Figure 4-4 Hybrid microwave transmission solution (chain networking) ..........................................................4-4

Figure 4-5 Hybrid microwave transmission solution (ring networking) ............................................................4-4

Figure 5-1 Network management solution to the transmission network ............................................................5-2

Page 14: Rtn950 Pdh,Sdh,Hybrid
Page 15: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description Tables

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

xiii

Tables

Table 1-1 Radio link forms of the OptiX RTN 950 ............................................................................................1-3

Table 1-2 Introduction of the IDU 950 ...............................................................................................................1-3

Table 1-3 ODUs supported by the OptiX RTN 950............................................................................................1-4

Table 2-1 RF configuration modes .....................................................................................................................2-6

Table 2-2 Auxiliary services or paths provided by each microwave interface....................................................2-8

Table 2-3 Type and number of the service interfaces supported by adding service interface boards .................2-9

Table 2-4 Type and number of management and auxiliary interfaces ................................................................2-9

Table 2-5 Ethernet service processing capability..............................................................................................2-11

Table 2-6 QoS features .....................................................................................................................................2-12

Table 2-7 Protection schemes ...........................................................................................................................2-13

Table 3-1 Functional unit (SDH/PDH microwave).............................................................................................3-2

Table 3-2 Functional unit (hybrid microwave) ...................................................................................................3-3

Table 3-3 List of IDUs........................................................................................................................................3-5

Table 3-4 Service signal processing flow of the SDH/PDH microwave in the transmit direction......................3-9

Table 3-5 Service signal processing flow of the SDH/PDH microwave in the receive direction .....................3-10

Table 3-6 Service signal processing flow of the hybrid microwave in the transmit direction ..........................3-11

Table 3-7 Service signal processing flow of the hybrid microwave in the receive direction............................3-12

Table 6-1 SDH/PDH microwave work modes....................................................................................................6-1

Table 6-2 Hybrid microwave work modes..........................................................................................................6-2

Table 6-3 Frequency band (SP ODUs) ...............................................................................................................6-4

Table 6-4 Frequency band (SPA ODUs) .............................................................................................................6-4

Table 6-5 Frequency band (HP ODUs)...............................................................................................................6-5

Table 6-6 Typical receiver sensitivity values (i) of the SDH/PDH microwave ..................................................6-5

Table 6-7 Typical receiver sensitivity values (ii) of the SDH/PDH microwave .................................................6-6

Table 6-8 Typical values of the receiver sensitivity (i) of the Hybrid microwave ..............................................6-7

Table 6-9 Typical values of the receiver sensitivity (ii) of the Hybrid microwave.............................................6-7

Page 16: Rtn950 Pdh,Sdh,Hybrid

Tables OptiX RTN 950 Radio Transmission System

Product Description

xiv Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

Table 6-10 Typical values of the receiver sensitivity (iii) of the Hybrid microwave..........................................6-8

Table 6-11 Typical values of the receiver sensitivity (iv) of the Hybrid microwave ..........................................6-8

Table 6-12 Transceiver performance (SP ODUs) ...............................................................................................6-9

Table 6-13 Transceiver performance (SPA ODUs)...........................................................................................6-10

Table 6-14 Transceiver performance (HP ODUs).............................................................................................6-10

Table 6-15 IF performance ...............................................................................................................................6-11

Table 6-16 Baseband signal processing performance of the modem................................................................6-12

Table 6-17 STM-1 optical interface performance.............................................................................................6-13

Table 6-18 E1 interface performance................................................................................................................6-13

Table 6-19 Performance of the GE optical interface.........................................................................................6-14

Table 6-20 GE electric interface performance ..................................................................................................6-14

Table 6-21 FE electric interface performance...................................................................................................6-15

Table 6-22 Orderwire interface performance....................................................................................................6-15

Table 6-23 Synchronous data interface performance........................................................................................6-16

Table 6-24 Asynchronous data interface performance......................................................................................6-16

Table 6-25 Wayside service interface performance ..........................................................................................6-16

Table 6-26 Clock timing and synchronization performance .............................................................................6-17

Table 6-27 Dimensions.....................................................................................................................................6-17

Table 6-28 Power Supply..................................................................................................................................6-17

Table 6-29 Environment performance ..............................................................................................................6-18

Page 17: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description 1 Introduction

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

1-1

1 Introduction

About This Chapter The OptiX RTN 950 is one of the series products of the OptiX RTN 900 radio transmission system.

1.1 Network Application

The OptiX RTN 900 is a new generation split microwave transmission system developed by Huawei. It can provide a seamless microwave transmission solution for a mobile communication network or private network.

1.2 Radio Link Forms

The OptiX RTN 950 provides the radio links of different forms by flexibly configuring different IF boards and ODUs to meet the requirements of different microwave application scenarios.

1.3 Components

The OptiX RTN 950 adopts a split structure. The system consists of the IDU 950 and the ODU. An ODU is connected to an IDU through an IF cable.

1.1 Network Application The OptiX RTN 900 is a new generation split microwave transmission system developed by Huawei. It can provide a seamless microwave transmission solution for a mobile communication network or private network.

The OptiX RTN 900 products are available in two types: OptiX RTN 910 and OptiX RTN 950. The IDU of the OptiX RTN 910 is 1U high and supports one or two IF boards. The IDU of the OptiX RTN 950 is 2U high and supports one to six IF boards. The users can choose an appropriate type according to the actual requirements.

The OptiX RTN 950 provides several types of service interfaces and facilitates installation and flexible configuration. It can provide a solution that is integrated with the TDM microwave, hybrid microwave, and packet microwave according to the network requirements. It supports the smooth upgrade from the TDM microwave to the hybrid microwave, and from the hybrid microwave to the packet microwave. The solution can evolve based on the service changes that may occur due to radio mobile network evolution. Thus, this solution can meet

Page 18: Rtn950 Pdh,Sdh,Hybrid

1 Introduction OptiX RTN 950 Radio Transmission System

Product Description

1-2 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

the transmission requirements of not only 2G and 3G networks, but also future LTE and 4G networks.

Figure 1-1 and Figure 1-2 show the TDM microwave transmission solution and the hybrid microwave transmission solution respectively that are provided by the OptiX RTN 950 for the mobile communication network.

Figure 1-1 TDM microwave transmission solution provided by the OptiX RTN 950

OptiX RTN 950 BTS BSC

E1

E1

E1

STM-1/E1 E1Regional BackhaulNetwork

E1 E1

E1

E1

E1E1

Figure 1-2 Hybrid microwave transmission solution provided by the OptiX RTN 950

Regional BackhaulNetwork

OptiX RTN 950 BTSNodeB BSCRNC

FEE1

FEE1

E1

E1FE

FE/GE

E1

GE

E1

E1

STM-1/E1

FE

Page 19: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description 1 Introduction

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

1-3

In the solutions, the local backhaul network is optional. The OptiX RTN 950 can be connected to the

RNC or the BSC directly.

1.2 Radio Link Forms The OptiX RTN 950 provides the radio links of different forms by flexibly configuring different IF boards and ODUs to meet the requirements of different microwave application scenarios.

Table 1-1 Radio link forms of the OptiX RTN 950

Radio Link Form Type of the System Control, Cross-Connect, and Timing Board

Type of the IF Board

Type of the ODU

SDH/PDH radio link CST/CSH IF1 Standard power ODU or high power ODU

Hybrid radio link CSH IFU2 Standard power ODU or high power ODU

Hybrid radio link that supports the XPIC

CSH IFX2 Standard power ODU or high power ODU

1.3 Components The OptiX RTN 950 adopts a split structure. The system consists of the IDU 950 and the ODU. An ODU is connected to an IDU through an IF cable.

IDU 950 IDU 950 is the indoor unit of an OptiX RTN 950 system. It accesses services, performs multiplexing/demultiplexing and IF processing of the services, and provides system control and communication function.

Table 1-2 describes the basic features of the IDU 950.

Table 1-2 Introduction of the IDU 950

Item Performance

Chassis height 2U

Pluggable Supported

Page 20: Rtn950 Pdh,Sdh,Hybrid

1 Introduction OptiX RTN 950 Radio Transmission System

Product Description

1-4 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

Item Performance

Number of microwave directions

1–6

RF configuration mode 1+0 non-protection configuration N+0 non-protection configuration (N ≤ 5) 1+1 protection configuration N+1 protection configuration (N ≤ 4) XPIC configuration

Figure 1-3 IDU 950

ODU The ODU is the outdoor unit of the OptiX RTN 900. It performs frequency conversion and amplification of signals.

The OptiX RTN 900 series products share one set of ODUs.The OptiX RTN 950 support standard power ODU and high power ODU.

Table 1-3 ODUs supported by the OptiX RTN 950

Description Item

Standard Power ODU High Power ODU

ODU type SP and SPA HP

Frequency band 7/8/11/13/15/18/23/26/38 GHz (SP ODU) 6/7/8/11/13/15/18/23 GHz (SPA ODU)

7/8/11/13/15/18/23/26/32/38 GHz

Page 21: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description 1 Introduction

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

1-5

Description Item

Standard Power ODU High Power ODU

Microwave modulation mode

QPSK/16QAM/32QAM/64QAM/128QAM/256QAM (SP ODU) QPSK/16QAM/32QAM/64QAM/128QAM (SPA ODU)

QPSK/16QAM/32QAM/64QAM/128QAM/256QAM

Channel Spacing 3.5/7/14/28 MHz 7/14/28/40/56 MHz

There are two methods of mounting the ODU and the antenna: direct mounting and separate mounting.

The direct mounting method is normally adopted when a small-diameter and single-polarized antenna is used. In this situation, if one ODU is configured for one antenna, the ODU is directly mounted at the back of the antenna. If two ODUs are configured for one antenna, an RF signal combiner/splitter (hereinafter referred to as a hybrid coupler) must be mounted to connect the ODUs to the antenna. Figure 1-4 shows the direct mounting method.

Figure 1-4 Direct mounting

The separate mounting method is adopted when a double-polarized antenna or big-diameter and single-polarized antenna is used. Figure 1-5 shows the separate method. In this situation, a hybrid coupler can be mounted. That is, two ODUs share one feed boom.

Page 22: Rtn950 Pdh,Sdh,Hybrid

1 Introduction OptiX RTN 950 Radio Transmission System

Product Description

1-6 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

Figure 1-5 Separate mounting

Page 23: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description 2 Functions and Features

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

2-1

2 Functions and Features

About This Chapter The OptiX RTN 950 provides plentiful functions and features to ensure the quality and efficiency of service transmission.

2.1 Frequency Band

The OptiX RTN 950 provides the products of full frequency bands.

2.2 Microwave Types

The different radio link form of OptiX RTN 950 supports different types of microwaves. The radio link form of the SDH/PDH microwave supports the PDH microwave and the SDH microwave.

2.3 Modulation Strategy

The SDH/PDH microwave supports fixed modulation. The hybrid microwave supports fixed modulation and adaptive modulation.

2.4 RF Configuration Modes

The OptiX RTN 950 supports the 1+0 non-protection configuration, the N+0 non-protection configuration, 1+1 protection configuration, N+1 protection configuration, and XPIC configuration.

2.5 Capacity

The OptiX RTN 950 has a large capacity.

2.6 Interfaces

The OptiX RTN 950 has several interface types.

2.7 Cross-Polarization Interference Cancellation

Cross-polarization interference cancellation (XPIC) is a technology used together with co-channel dual-polarization (CCDP). The application of the two technologies doubles the wireless link capacity over the same channel.

2.8 Automatic Transmit Power Control

The automatic transmit power control (ATPC) function enables the output power of the transmitter to automatically trace the level fluctuation at the receive end within the ATPC control range. This reduces the interference with neighboring systems and residual BER.

Page 24: Rtn950 Pdh,Sdh,Hybrid

2 Functions and Features OptiX RTN 950 Radio Transmission System

Product Description

2-2 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

2.9 Ethernet Processing Capability

The OptiX RTN 950 provides the powerful Ethernet service processing capability.

2.10 QoS

OptiX RTN 950 provide improved quality of service (QoS) capabilities Thus, the OptiX RTN 950 can offer various QoS levels of service guarantees and build an integrated network to carry data, voice, and video services.

2.11 Timing

The characteristics of the OptiX RTN 950 clock meet the requirements for transporting the clock of the mobile communication network and provide the complete clock protection mechanism.

2.12 Protection Capability

The OptiX RTN 950 provides complete protection schemes.

2.13 Network Management

The OptiX RTN 950 supports multiple network management (NM) modes, and provides complete NM information exchange schemes.

2.14 Easy Installation

The OptiX RTN 950 supports several installation modes. Therefore, the installation is flexible and convenient.

2.15 Easy Maintenance

The OptiX RTN 950 provides several maintenance features. Therefore, it can effectively reduce the cost of equipment maintenance.

2.1 Frequency Band The OptiX RTN 950 provides the products of full frequency bands.

When the OptiX RTN 950 uses the standard power ODU, the 6, 7, 8, 11, 13, 15, 18, 23, 26, and 38 GHz frequency bands are supported.

When the OptiX RTN 950 uses the high power ODU, the 7, 8, 11, 13, 15, 18, 23, 26, 32, and 38 GHz frequency bands are supported.

2.2 Microwave Types The different radio link form of OptiX RTN 950 supports different types of microwaves. The radio link form of the SDH/PDH microwave supports the PDH microwave and the SDH microwave.

2.2.1 PDH Microwave The PDH microwave refers to the microwave that transmits only the PDH services (mainly, the E1 services). During the transmission, the PDH microwave does not change the features of the PDH services.

Page 25: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description 2 Functions and Features

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

2-3

Unlike the traditional PDH microwave equipment, the OptiX RTN 950 has a built-in MADM, which grooms the E1 services to the microwave port for further transmission. Therefore, the services can be groomed flexibly and seamless convergence between the optical network and the microwave network is achieved.

Figure 2-1 PDH microwave

ODU

E1

IDU

OH MADM

PDH radioSDH

……

2.2.2 SDH Microwave SDH microwave refers to the microwave that transmits SDH services. During the transmission, the SDH microwave does not change the features of the SDH services.

Unlike the traditional SDH microwave equipment, the OptiX RTN 950 is embed with the MADM. The OptiX RTN 950 grooms services to the microwave port through cross-connections, maps the services into the STM-1-based microwave frames, and then transmits the STM-1-based microwave frames. Thus, the free grooming of the services and the seamless convergence with the optical transmission network are implemented.

Figure 2-2 SDH microwave

ODU

E1

IDU

MADM

SDH radioSDH

OH

……

OH

……

Page 26: Rtn950 Pdh,Sdh,Hybrid

2 Functions and Features OptiX RTN 950 Radio Transmission System

Product Description

2-4 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

2.2.3 Hybrid Microwave The Hybrid microwave refers to the microwave that transmits native E1 services and native Ethernet services in hybrid mode. The hybrid microwave can support AM function. During the transmission, the Hybrid microwave does not change the features of the E1 services and Ethernet services.

The OptiX RTN 950 is embed with the MADM and the packet processing platform. The MADM transmits E1 services that are accessed locally or extracted from the SDH to the microwave port. After processing the accessed Ethernet services in the unified manner, the packet processing platform transmits the Ethernet services to the microwave port. The microwave port maps the E1 services and the Ethernet services into hybrid microwave frames and then transmits the hybrid microwave frames.

Figure 2-3 Hybrid microwave

ODU

Ethernet

E1IDU

TDMcross-connect

matrix

Packetswitching

Hybrid radio

Native E1 and native Ethernet

The characteristics of hybrid microwave frames are as follows:

The frames with a fixed period are used for transmission. In the specific modulation mode or channel spacing , the length of hybrid microwave

frames remains unchanged. The E1 services in hybrid microwave frames occupy a fixed bandwidth (when N E1

services are transmitted, the bandwidth of N E1 services is occupied). Thus, the hybrid microwave does not change the features of the E1 services during transmission.

In hybrid microwave frames, the Ethernet services occupy the remaining bandwidth of the E1 services. The encapsulation adaptation processing of the Ethernet frames is performed. Therefore, the hybrid microwave does not change the features of the Ethernet services during transmission.

2.3 Modulation Strategy The SDH/PDH microwave supports fixed modulation. The hybrid microwave supports fixed modulation and adaptive modulation.

2.3.1 Fixed Modulation Fixed modulation refers to a modulation strategy wherein a modulation mode is adopted invariably when the radio link is running.

Page 27: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description 2 Functions and Features

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

2-5

When the OptiX RTN 950 uses the fixed modulation strategy, you can set the adopted modulation mode by using the software.

2.3.2 Adaptive Modulation Adaptive modulation (AM) is a technology wherein the modulation mode can be adjusted automatically according to the channel quality.

In the case of the same channel spacing, the microwave service bandwidth varies according to the modulation mode. The higher the modulation efficiency, the higher the bandwidth of the transmitted services. When the channel quality is favorable (such as on days when the weather is favorable), the equipment adopts a higher modulation mode to try to transmit more user services. In this manner, the transmission efficiency and the spectrum utilization of the system are improved. When the channel quality is degraded (such as on days when the weather is stormy and foggy), the equipment adopts a lower modulation mode to transmit only the services with a higher priority within the available bandwidth and to discard the services with a lower priority. In this manner, the anti-interference capability of a link is improved and the link availability of the services with a higher priority is ensured.

When the hybrid microwave equipment adopts the AM technology, it controls service transmission based on the service bandwidth and QoS policy corresponding to the current modulation mode. The E1 services have the highest priority. By adopting the CoS technology, the equipment schedules Ethernet services of different types to the queues with different priorities. The services in the queues of different priorities are transmitted to the microwave port through the SP or WRR algorithm. When the queues of certain priorities are congested because of insufficient microwave bandwidth, the queues of these priorities discard certain or all services. When the hybrid microwave works in the lowest modulation mode, the equipment transmits only the E1 services and the Ethernet services of the high priority on the available bandwidth. When the Hybrid microwave works in any other modulation mode, all the additional bandwidth is used to transmit the Ethernet services. In this manner, the availability of the links that carry the E1 services and the Ethernet services of the high priority is ensured and the Ethernet service capacity is increased, thus providing the dynamic bandwidth.

Figure 2-4 shows the service change caused by the AM. The orange part indicates the E1 services. The blue part indicates the Ethernet services. The closer to the edge of the blue part, the lower the priority of the Ethernet service. Under all channel conditions, the E1 services occupy the specific bandwidth that is permanently available. Thus, the availability of the E1 services is ensured. The bandwidth for the Ethernet services varies according to the channel conditions. When the channel is in bad conditions, the Ethernet services of the low priority are discarded.

Page 28: Rtn950 Pdh,Sdh,Hybrid

2 Functions and Features OptiX RTN 950 Radio Transmission System

Product Description

2-6 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

Figure 2-4 AM

ChannelCapability

E1 Services

256QAM32QAM

QPSK

256QAM

128QAM

32QAM

128QAM

64QAM

64QAM

16QAM16QAM

EthernetServices

The AM technology adopted by the OptiX RTN 950 has the following features:

The AM technology can use the QPSK, 16QAM, 32QAM, 64QAM, 128QAM, and 256QAM modulation mode.

The lowest modulation mode (also called "reference mode") and the highest modulation mode (also called "nominal mode") actually used by the AM can be configured.

When the modulation modes of AM are switched, the transmit frequency, receive frequency, and channel spacing do not change.

When the modulation modes of AM are switched, the step by step switching mode must be adopted.

When the AM switches the modulation modes to a lower one, the services of the low priority are discarded but no bit errors or slips occur in the services of the high priority. The speed of switching the modulation modes meets the requirement for no bit error in the case of 100 dB/s fast fading.

2.4 RF Configuration Modes The OptiX RTN 950 supports the 1+0 non-protection configuration, the N+0 non-protection configuration, 1+1 protection configuration, N+1 protection configuration, and XPIC configuration.

Table 2-1shows the RF configuration modes that are supported.

Table 2-1 RF configuration modes

Configuration Mode Maximum Number of Configuration

1+0 non-protection configuration 6

Page 29: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description 2 Functions and Features

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

2-7

Configuration Mode Maximum Number of Configuration

1+1 protection configuration (1+1 HSB/FD/SD)

3

N+0 non-protection configuration (N ≤ 5) 3 (N = 2) 2 (N = 3) 1 (N ≥ 4)

N+1 protection configuration (N ≤ 4) 3 (N = 1) 2 (N = 2) 1 (N ≥ 3)

XPIC configuration 3

When two 1+0 non-protection configurations form a microwave ring network, the special RF

configuration (namely, east and west configuration) is formed. In the case of the east and west configuration, the SNCP and the ERPS can be configured to protect the ring network of SDH/PDH services and Ethernet services.

When the OptiX RTN 950 adds or drops services locally, it supports five 1+0 non-protection configurations in the case of the TDM microwave, four 1+0 non-protection configurations in the case of the hybrid microwave, two 1+1 protection configurations, one 2+1 protection configuration, or two XPIC configurations.

Only the STM-1 microwave and the hybrid microwave supports the N+1 protection. Only the hybrid microwave support the XPIC configuration. Two XPIC configurations can form one 1+1 protection configuration of the XPIC.

2.5 Capacity The OptiX RTN 950 has a large capacity.

2.5.1 Air Interface Capacity The microwave air interface capacity depends on the specific microwave work mode.

If the radio link form is the SDH/PDH microwave, the maximum capacity of each channel of microwave is STM-1.

If the radio link form is the hybrid microwave, the maximum capacity of each channel of microwave is 363 Mbit/s when the high power ODU is used or 183 Mbit/s when the standard power ODU is used. If the XPIC technology is used, the service capacity of the microwave channel can be doubled with same the spectrum bandwidth.

2.5.2 Cross-Connect Capacity The OptiX RTN 950 is embedded with the MADM and provides full timeslot cross-connections for VC-12/VC-3/VC-4 services equivalent to 32x32 VC-4s.

Page 30: Rtn950 Pdh,Sdh,Hybrid

2 Functions and Features OptiX RTN 950 Radio Transmission System

Product Description

2-8 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

2.5.3 Switching Capacity The OptiX RTN 950 has a built-in packet processing platform with the switching capacity of 10 Gbit/s.

2.6 Interfaces The OptiX RTN 950 has several interface types.

2.6.1 Microwave Interface The OptiX RTN 950 provides a microwave interface through the IF board and the ODU that is connected to the IF board. Each microwave interface transmits one channel of microwave service. In addition, it transmits various auxiliary services or paths through the microwave overhead.

Table 2-2 lists the auxiliary services or paths provided by each microwave interface.

Table 2-2 Auxiliary services or paths provided by each microwave interface

Service/Path Type Quantity Rate

Synchronous data service 1 64 kbit/s

Asynchronous data service 1 19.2 kbit/s

Orderwire phone service 1 64 kbit/s

Wayside E1 servicea 1 2048 kbit/s

DCC path 1 64 kbit/s (The capacity is smaller than 16xE1 PDH microwaves.) 192 kbit/s (The capacity is not smaller than 16xE1 SDH/PDH microwaves.) 192 kbit/s (hybrid microwave)

The wayside E1 service is supported only when the radio link works in STM-1 mode.

2.6.2 Service Interfaces The service interfaces of different types can be provided by configuring different service interface boards.

Table 2-3 lists the type and number of the service interfaces supported by adding service interface boards to the OptiX RTN 950.

Page 31: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description 2 Functions and Features

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

2-9

Table 2-3 Type and number of the service interfaces supported by adding service interface boards

Type of Service Interface Board

Maximum Number of Boards

Provided Service Interface

Number of Interfaces Provided by One Board

SP3S 5 75/120-ohm E1 interface

16

SP3D 5 75/120-ohm E1 interface

32

SL1D 5 STM-1 optical interface: Ie-1, S-1.1, L-1.1, and L-1.2

2

FE electrical interface: 10/100BASE-T(X)

4 EM6T 5

GE electrical interface: 10/100/1000BASE-T(X)

2

FE electrical interface: 10/100BASE-T(X)

4 EM6F 5

GE optical interface: 1000Base-SX and 1000Base-LX

2

"Maximum Number of Boards" in the Table 2-3 is the maximum number calculated when at least one IF board is configured.

2.6.3 Management and Auxiliary Interfaces The OptiX RTN 950 provides the management and auxiliary interfaces through the system control, switching, and timing board and the auxiliary board.

Table 2-4 Type and number of management and auxiliary interfaces

Interface Specifications Quantity

External clock interface

Combined 120-ohm 2,048 kbit/s or 2,048 kHz clock input/output interface

1

10/100BASE-T(X) NM interface 1

NM serial interface 1

Management interface

10/100BASE-T(X) NE cascade interface 1

Page 32: Rtn950 Pdh,Sdh,Hybrid

2 Functions and Features OptiX RTN 950 Radio Transmission System

Product Description

2-10 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

Interface Specifications Quantity

Orderwire phone interface 1

RS-232 asynchronous data interface 1

64 kbit/s synchronous data interface 1

Auxiliary interface

Wayside E1 interface 1

Alarm interface Alarm input/output interface Four input and two output

The external clock interface and wayside E1 interface are combined into one interface. This interface

can transparently transmit the DCC byte, orderwire overhead byte, and synchronous/asynchronous data service overhead byte. One interface can, however, implement only one of the three functions: external clock interface, wayside E1 service, and transparent transmission of the overhead byte.

The 64 kbit/s synchronous data interface can transparently transmit the orderwire byte. One interface can, however, implement only one of the two functions: 64 kbit/s synchronous data interface and transparent transmission of the orderwire byte.

The external clock interface and the management interface are provided by the system control, switching, and timing board (CST/CSH). The auxiliary interface and the alarm interface are provided by the AUX board.

The number of external clock interfaces or the number of management interfaces listed in the table is the number of interfaces provided by one system control, switching, and timing board.

2.7 Cross-Polarization Interference Cancellation Cross-polarization interference cancellation (XPIC) is a technology used together with co-channel dual-polarization (CCDP). The application of the two technologies doubles the wireless link capacity over the same channel.

CCDP transmission adopts both the horizontally polarized wave and the vertically polarized wave on one channel to transmit two channels of signals. The ideal situation of CCDP transmission is that no interference exists between the two orthogonal signals though they are with the same frequency, and thus the receiver can easily recover the two signals. In actual engineering conditions, however, despite the orthogonality of the two signals, certain interference between the signals inevitably occurs, due to cross-polarization discrimination (XPD) of the antenna and channel degradation. To cancel the interference, the XPIC technology is adopted. In XPIC technology, the signals are received in the horizontal and vertical directions. The signals in the two directions are then processed and the original signals are recovered from interfered signals.

2.8 Automatic Transmit Power Control The automatic transmit power control (ATPC) function enables the output power of the transmitter to automatically trace the level fluctuation at the receive end within the ATPC control range. This reduces the interference with neighboring systems and residual BER.

Page 33: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description 2 Functions and Features

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

2-11

2.9 Ethernet Processing Capability The OptiX RTN 950 provides the powerful Ethernet service processing capability.

Table 2-5 Ethernet service processing capability

Item Performance

Ethernet service type

E-LINE and E-LAN

Maximum frame length

1518 bytes to 9600 bytes

VLAN Adds, deletes, and switches VALN tags according to IEEE 802.1q/p, and forwards packets based on VLAN tags.

Processes packets based on the port tag attribute (Tag/Hybrid/Access).

MAC address learning capability

The E-LAN service supports the MAC address learning capability in two learning modes: SVL and IVL.

The capacity of the MAC address table is 16k (including static entities).

The MAC address aging time can be configured. The value ranges from 1 to 65535 minutes.

MSTP Supports the MSTP protocol, and generates only the Common and Internal Spanning Tree (CIST).

IGMP Snooping Supported.

Link aggregation Supports manual aggregation and static aggregation, and load sharing and non-load sharing. The load sharing algorithm is implemented based on the hash of the MAC address or IP address.

ERPS Supports the G.8032 compliant ring network protection of Ethernet services.

LPT Disables the Ethernet port that is connected to the user equipment when the transmission network fails.

QoS Supported. For details, see 2.10 QoS.

Traffic control function

Supports the IEEE 802.3x complaint traffic control function.

ETH-OAM Supports IEEE 802.1ag and IEEE 802.3ah compliant ETH-OAM function.

Ethernet performance monitoring

Supports IETF RFC2819 compliant RMON performance monitoring.

Port mirror Supported.

Synchronization Ethernet

Supports G.8261 and G.8262 compliant RMON performance monitoring.

Page 34: Rtn950 Pdh,Sdh,Hybrid

2 Functions and Features OptiX RTN 950 Radio Transmission System

Product Description

2-12 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

The E-LINE service is an Ethernet private line service. The OptiX RTN 950 supports the private line

service based on the PORT, PORT+VLAN, and PORT+QinQ. A maximum of 1024 E-LINE services are supported.

The E-LAN service is an Ethernet private line service. The OptiX RTN 950 supports the private line service based on the 802.1d bridge, 802.1q bridge, and 802.1ad bridge. The bridge supports a maximum of 1024 logical ports.

2.10 QoS OptiX RTN 950 provide improved quality of service (QoS) capabilities Thus, the OptiX RTN 950 can offer various QoS levels of service guarantees and build an integrated network to carry data, voice, and video services.

Table 2-6 QoS features

Feature Performance

Flow classification

Supports the flow classification based on the PORT, CVLAN ID, SVLAN ID, 802.1p priority of the CVLAN/SVLAN packet, and DSCP.

Traffic policing Supports the 64 kbit/s step of the CAR, PIR, and CIR.

Queue scheduling Each Ethernet port supports the queue scheduling of eight priorities. Flexibly sets the queue scheduling scheme for each Ethernet port. The queue scheduling modes includes SP, SP+WRR, and WRR.

Traffic shaping Supports the shaping for the specified PORT, priority queue, or service flow.

Supports the 64 kbit/s step of the PIR and CIR.

Buffer capacity 12 Mbit

2.11 Timing The characteristics of the OptiX RTN 950 clock meet the requirements for transporting the clock of the mobile communication network and provide the complete clock protection mechanism.

Supporting the extraction of the clock source from line, tributary, microwave, synchronous Ethernet, and external clock signals

Supporting the SSM protocol and the extended SSM protocol, and supporting the transmission of the SSM information through SDH line, SDH microwave, synchronous Ethernet, and external clock signals

Supporting the re-timing function over the entire tributary

Page 35: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description 2 Functions and Features

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

2-13

2.12 Protection Capability The OptiX RTN 950 provides complete protection schemes.

Table 2-7 Protection schemes

Item Protection Capability

1+1 hot backup for the power input unit Power supply

1+1 hot backup of the internal power module

Control, switching, and timing board

1+1 hot backup

1+1 HSB/SD/FD

N+1 protection (N ≤ 4)

SNCP for TDM servicea, b

Radio Link

ERPS for Ethernet servicb

LAG

MSTP

Ethernet

ERPS

1+1 linear MSP

N:1 linear MSP (N ≤ 4)

STM-1

SNCP for servicec

a: When the SDH/PDH radio link forms the ring network protection, the SNCP is used to protect

SDH/PDH services. b: When the hybrid radio link forms the ring network protection, the SNCP is used to protect E1

services and the ERPS is used to protect Ethernet services. c: When the SDH radio link and the optical STM-1 path form a hybrid ring network, the SNCP is

used to protect STM-1 services on the ring network.

2.13 Network Management The OptiX RTN 950 supports multiple network management (NM) modes, and provides complete NM information exchange schemes.

NM Mode The OptiX RTN 950 supports the following functions:

Accessing the iManager LCT directly at the near end of the NE to perform the single-point management for the NE

Page 36: Rtn950 Pdh,Sdh,Hybrid

2 Functions and Features OptiX RTN 950 Radio Transmission System

Product Description

2-14 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

Using the OptiX iManager U2000 to manage all OptiX RTN NEs on the transmission network and the NEs of Huawei optical transmission products in the centralized manner and manage the transmission networks in the unified manner

Using the SNMP agent to query alarms and performance events

NM Information Exchange Schemes At the physical layer, the OptiX RTN 950 supports the following NM information exchange schemes:

Using one or three Huawei-defined DCC bytes in the PDH microwave frame to transmit NM information

Using the D1–D3 and D4–D12 bytes or D1–D12 bytes in the SDH microwave frame and the SDH frame to transmit NM information

Using three Huawei-defined bytes in the hybrid microwave frame to transmit NM information

Using the Ethernet NM interface to transmit NM information Using the DCC bytes that are transmitted by the external clock interface to transmit NM

information on an SDH/PDH network Supporting the inband DCN function, and using the Ethernet service bandwidth to

transmit NM information on the hybrid microwave port or FE/GE port

At the network layer, the OptiX RTN 950 supports the following NM information exchange schemes:

Using HWECC to transmit NM information Using IP over DCC to transmit NM information Using OSI over DCC to transmit NM information

2.14 Easy Installation The OptiX RTN 950 supports several installation modes. Therefore, the installation is flexible and convenient.

The IDU can be installed in the following modes:

In a 300 mm ETSI cabinet In a 600 mm ETSI cabinet In a 450 mm 19-inch cabinet In a 600 mm 19-inch cabinet In an open cabinet On the wall On a table

The ODU supports two installation modes: direct mounting and separate mounting.

Page 37: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description 2 Functions and Features

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

2-15

2.15 Easy Maintenance The OptiX RTN 950 provides several maintenance features. Therefore, it can effectively reduce the cost of equipment maintenance.

The OptiX RTN 950 supports the unified management of the microwave transmission network and the optical transmission network at the network layer by using the OptiX iManger U2000.

All the indicators and cable interfaces of the IDU are available on the front panel. Each board of the IDU has the running and alarm status indicators. The OptiX RTN 950 provides plentiful alarms and performance events. The OptiX RTN 950 supports RMON performance events. The OptiX RTN 950 supports the ETH OAM function. The OptiX RTN 950 supports the monitoring and the graphic display of key radio

transmission performance specifications such as the microwave transmit power and the RSSI.

The OptiX RTN 950 supports various loopback functions of service ports and IF ports. The OptiX RTN 950 is embedded with a test system. You can perform the PRBS test of

an IF port when no special test tools are available. The OptiX RTN 950 supports the port mirror function so that it can test and diagnose

services without affecting Ethernet services. The CF card that stores the data configuration file and the software can be replaced on

site. Therefore, you can load the data or upgrade the software by replacing the CF card. Two sets of software and data are stored in the flash memory of the control, switching,

and timing board to facilitate the smooth upgrade. The OptiX RTN 950 supports the regular backup and restoration of the NE database

remotely by using the U2000. The OptiX RTN 950 supports the remote loading of the NE software and data by using

the U2000 to provide a complete NE upgrade solution. Thus, the entire network can be upgraded rapidly.

The OptiX RTN 950 supports the NSF function. When the soft reset is performed for the NE software, SDH/PDH services and E-LINE services are not interrupted, thus implementing the smooth software upgrade.

The OptiX RTN 950 supports the hot fix function. You can upgrade the software that is running without interrupting services.

The OptiX RTN 950 supports the software version rollback function. When a software upgrade fails, the original software can be recovered, thus the original services of the system can be restored.

Page 38: Rtn950 Pdh,Sdh,Hybrid
Page 39: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description 3 Product Structure

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

3-1

3 Product Structure

About This Chapter This topic describes the system structure, hardware structure, and software structure of the product, and the process of processing service signals.

3.1 System Architecture

The SDH/PDH microwave system architecture is different from the Hybrid microwave architecture.

3.2 Hardware Structure

The OptiX RTN 950 adopts a split structure. The system consists of the IDU and the ODU. An ODU is connected to an IDU through a IF cable. The IF cable transmits IF service signals and the O&M signals of the ODU. In addition, the coaxial cable supplies –48 V DC power supply to the ODU.

3.3 Software Structure

The OptiX RTN 950 software consists of the NMS software, IDU software, and ODU software.

3.4 Service Signal Processing Flow

The flow for transmitting the PDH microwave signals is different from the flow for transmitting the Hybrid microwave signals.

3.1 System Architecture The SDH/PDH microwave system architecture is different from the Hybrid microwave architecture.

3.1.1 SDH/PDH Microwave The SDH/PDH microwave equipment consists of a series of functional units, including the service interface unit, timeslot cross-connect unit, IF unit, control unit, clock unit, auxiliary interface unit, fan unit, power unit, and ODU.

Page 40: Rtn950 Pdh,Sdh,Hybrid

3 Product Structure OptiX RTN 950 Radio Transmission System

Product Description

3-2 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

Figure 3-1 Block diagram (SDH/PDH microwave)

Sync/Async dataExternal alarm data

IF unit

ODU

E1/STM-1

-48V/-60V DC

IDU

Timeslotcross-

connectunit

VC-4signal

Orderwire data

Serviceinterface

unitControl and

overhead bus

Fanunit

Clockunit

Controlunit

Auxiliaryinterface

unit

Powerunit

Clock interface NM data

VC-4signal

IF signal

RFsignal

Antenna

Table 3-1 Functional unit (SDH/PDH microwave)

Functional Unit Function

Service interface unit

Accesses E1 signals. Accesses STM-1 signals.

Timeslot cross-connect unit

Provides the cross-connect function and grooms TDM services.

IF unit Maps and demaps service signals to microwave frame signals and microwave frame signals to service signals.

Converts between microwave frame signals and IF analog signals. Provides the O&M channel between the IF unit and the ODU. Supports FEC.

Control unit Performs system communication and control. Configures and manages the system. Collects alarms and monitors the performance. Processes overheads.

Clock unit Traces the clock source signals and provides various clock signals for the system.

Provides the input/output interface for external clock signals.

Auxiliary interface unit

Provides the orderwire phone interface. Provides the synchronous/asynchronous data interface. Provides the external alarm input/output interface.

Page 41: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description 3 Product Structure

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

3-3

Functional Unit Function

Power unit Accesses –48 V/–60 V DC power. Provides DC power for the IDU. Provides –48 V DC power for the ODU.

Fan unit Provides wind cooling for the IDU.

3.1.2 Hybrid Microwave The hybrid microwave equipment consists of a series of functional units, including the service interface unit, timeslot cross-connect unit, packet switching unit, IF unit, control unit, clock unit, auxiliary interface unit, fan unit, power unit, and ODU.

Figure 3-2 Block diagram (hybrid microwave)

Sync/Async dataExternal alarm data

Packetswitching

unit

IF unit

ODU

E1/STM-1

-48V/-60V DC

IDU

Ethernet

Ethernetsignal

Timeslotcross-

connectunit

VC-4signal

Orderwire data

Serviceinterface

unit

Control andoverhead bus

Fanunit

Clockunit

Controlunit

Auxiliaryinterface

unit

Powerunit

Clock interface NM data

Ethernetsignal

VC-4signal

IF signal

RFsignal

Antenna

Table 3-2 Functional unit (hybrid microwave)

Functional Unit Function

Service interface unit

Accesses E1 signals. Accesses STM-1 signals. Accesses Ethernet signals.

Timeslot cross-connect unit

Provides the cross-connect function and grooms TDM services.

Page 42: Rtn950 Pdh,Sdh,Hybrid

3 Product Structure OptiX RTN 950 Radio Transmission System

Product Description

3-4 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

Functional Unit Function

Packet switching unit

Processes Ethernet services and forwards packets.

IF unit Maps service signals to microwave frame signals and demaps microwave frame signals to service signals.

Performs conversion between microwave frame signals and IF analog signals.

Provides the O&M channel between the IDU and the ODU. Supports FEC.

Control unit System communications and control. System configuration and management. Collects alarms and monitors performance. Cross-connects overheads.

Clock unit Traces the clock source signal and provides various clock signals for the system.

Supports input and output of one external clock signal.

Auxiliary interface unit

Provides the orderwire interface. Provides the synchronous/asynchronous data interface. Provides the external alarm input/output interface.

Power unit Accesses –48 V/–60 V DC power. Provides DC power for the IDU. Provides –48 V DC power for the ODU.

Fan unit Provides wind cooling for the IDU

3.2 Hardware Structure The OptiX RTN 950 adopts a split structure. The system consists of the IDU and the ODU. An ODU is connected to an IDU through a IF cable. The IF cable transmits IF service signals and the O&M signals of the ODU. In addition, the coaxial cable supplies –48 V DC power supply to the ODU.

3.2.1 IDU The IDU 950 is the indoor unit of the OptiX RTN 950.

The IDU 950 adopts the card plug-in design. It can implement different functions by configuring different types of boards. All the service boards support hot-swapping.

Page 43: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description 3 Product Structure

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

3-5

Figure 3-3 IDU slot layout

Slot9

(PIU)

Slot 7 (CST/CSH)

Slot 1 (EXT)

Slot 5 (EXT)

Slot 3 (EXT)

Slot 2 (EXT)

Slot 4 (EXT)

Slot 6 (EXT)

Slot 8 (CST/CSH)Slot10

(PIU) Slot11

(FAN)

The EXT represents an extended slot, which can be inserted with various IF boards and interface boards.

Table 3-3 List of IDUs

Board Name

Full Spelling Valid Slot Description

CST TDM control, switching, and timing board

Slot 7 or slot 8

Provides full timeslot cross-connections for VC-12/VC-3/VC-4 services equivalent to 32x32 VC-4s.

Performs system communication and control.

Provides the clock processing function and supports one external clock input/output function.

Provides one Ethernet NM interface, one NM serial interface, and one NE cascading interface.

CSH Hybrid control, switching, and timing board

Slot 7 or slot 8

Provides full timeslot cross-connections for VC-12/VC-3/VC-4 services equivalent to 32x32 VC-4s.

Provides the 10 Gbit/s packet switching capability.

Performs system communication and control.

Provides the clock processing function and supports one external clock input/output function.

Provides one Ethernet NM interface, one NM serial interface, and one NE cascading interface.

IF1 SDH IF board

Slot 1 to slot 6

Provides one IF interface. Supports the TU-based PDH microwave solution and the STM-1-based SDH microwave solution.

IFU2 Universal IF board

Slot 1 to slot 6

Provides one IF interface. Supports the hybrid microwave solution. Supports AM.

Page 44: Rtn950 Pdh,Sdh,Hybrid

3 Product Structure OptiX RTN 950 Radio Transmission System

Product Description

3-6 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

Board Name

Full Spelling Valid Slot Description

IFX2 Universal XPIC IF board

Slot 1 to slot 6

Provides one IF interface. Supports the XPIC function of the Hybrid microwave.

Supports the AM of the hybrid microwave.

SL1D 2xSTM-1 interface board

Slot 1 to slot 6

Uses the SFP module to provide two STM-1 optical interfaces.

EM6T 6 Port RJ45 Ethernet/Gigabit Ethernet Interface Board

Provides four FE electrical interfaces. Provides two GE electrical interfaces that are compatible with the FE electrical interface .

EM6F 4 Port RJ45 + 2 Port SFP Fast Ethernet/Gigabit Ethernet Interface Board

Slot 1 to slot 6

Provides four FE electrical interfaces. Uses the SFP module to provide two GE optical/electrical interfaces.

SP3S 16xE1 tributary board

Slot 1 to slot 6

Provides 16 75-ohm or 120-ohm E1 interfaces.

SP3D 32xE1 tributary board

Slot 1 to slot 6

Provides 32 75-ohm or 120-ohm E1 interfaces.

AUX Auxiliary interface board

Slot 1 to slot 6

Provides one orderwire phone interface, one asynchronous data interface, and four-input and two-output external alarm interfaces.

TND1PIU Power board Slot 9 or slot 10

Provides one –48 V/–60 V DC power input.

TND1FAN Fan board Slot 11 Cools and ventilates the IDU.

3.2.2 ODU The ODU is an integrated system and has various types. The structures and working principles of various types of ODUs are the same.

Page 45: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description 3 Product Structure

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

3-7

Block Diagram

Figure 3-4 Block diagram of the ODU

Antenna port

CTRL

Tx IF

Rx IF

Cable port

PWR

Up-conversionMultiplexer

O&Muplink

O&Mdownlink

DC

Down-conversion

AMP

LNA

Synthesizers

Duplexer

Rx RF

Tx RF

Signal Processing in the Transmit Direction The multiplexer splits the signal coming from the IF cable into a 350 MHz IF signal, an O&M uplink signal, and a –48 V DC power signal.

In the transmit direction, the IF signal is processed as follows:

1. Through the up-conversion, filtering, and amplification, the IF signal is converted into the RF signal and then sent to the AMP amplifier unit.

2. The AMP amplifies the RF signal (the output power of the signal can be controlled by the IDU software).

3. After the amplification, the RF signal is sent to the antenna through the diplexer.

The O&M uplink signal is a 5.5 MHz ASK-modulated signal and is demodulated in the CTRL control unit.

The –48 V DC power signal is sent to the PWR power unit where the secondary power supply of a different voltage is generated and provided to the modules of the ODU.

Signal Processing in the Receive Direction In the diplexer, the receive RF signal is separated from the antenna signal. The RF signal is amplified in the low noise amplifier (LNA). Through the down-conversion, filtering, and amplification, the RF signal is converted into the 140 MHz IF signal and then sent to the multiplexer.

The O&M downlink signal is modulated under the ASK scheme in the CTRL unit. The 10 MHz signal is generated through the modulation and sent to the multiplexer. The CTRL unit also detects the receive signal power through the RSSI detection circuit and provides the RSSI interface.

The IF signal and the O&M downlink signal are combined in the multiplexer and then sent to the IDU through the IF cable.

Page 46: Rtn950 Pdh,Sdh,Hybrid

3 Product Structure OptiX RTN 950 Radio Transmission System

Product Description

3-8 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

3.3 Software Structure The OptiX RTN 950 software consists of the NMS software, IDU software, and ODU software.

Figure 3-5 shows the software structure. The NMS software communicates with the NE software through the Qx interface. The Qx interface uses the OptiX private management protocol.

Figure 3-5 Software structure

NMS software

Qx interface

IDU software ODU software

3.3.1 NMS Software Huawei provides a transmission network management solution that meets the requirements of the telecommunication management network (TMN) for managing all the OptiX RTN products and other OptiX series transmission products on the network.

3.3.2 IDU Software The IDU software consists of the NE software and the board software.

The NE software manages, monitors, and controls the running status of the IDU. Through the NE software, the NMS communicates with the boards, and controls and manages the NE. The NE software communicates with the ODU software to manage and control the ODU running.

The board software manages and controls the running status of other boards of the IDU except the system control board. Currently, the IDU does not have the independent board software. The board software of the IDU, in the form of modules, is integrated into the NE software and runs in the CPU of the system control board.

3.3.3 ODU Software The ODU Software manages and controls the ODU running status. The ODU software controls the ODU running according to the parameter transmitted by the IDU software. The ODU running status is reported to the IDU software.

3.4 Service Signal Processing Flow The flow for transmitting the PDH microwave signals is different from the flow for transmitting the Hybrid microwave signals.

Page 47: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description 3 Product Structure

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

3-9

3.4.1 SDH/PDH Microwave This topic considers the transmission of the E1 services by the IF1 board as an example to describe the service signal processing flow of the SDH/PDH microwave.

Figure 3-6 Service signal processing flow of the SDH/PDH microwave

ODU

RFsignal

IFsignal

Antenna

SP3S/SP3D IF1

IDU

E1 CST/CSH

VC-4signal

VC-4signal

Table 3-4 Service signal processing flow of the SDH/PDH microwave in the transmit direction

NO. Component Signal Processing Description

1 SP3S/SP3D Accesses E1 signals. Performs HDB3 decoding. Maps E1 service signals into VC-12 signals. Multiplexes the VC-12 signals into VC-4 signals. Transmits the VC-4 signals to the timeslot cross-connect unit of the CSH.

2 CST/CSH The timeslot cross-connect unit grooms VC-12 signals to the VC-4 signals of the IF1 board.

3 IF1 Demultiplexes the VC-12 signals to be transmitted from VC-4 signals.

Maps the VC-12 signals into the TU-12-based or STM-1-based microwave frame payload area to add microwave frame overheads and pointers, and form complete microwave frames.

FEC coding. Digital modulation. D/A conversion. Analog modulation. Combines the analog IF signals and ODU O&M signals. Transmits the combined signals and –48 V power to the ODU through the IF cable.

4 ODU Splits the analog IF signals, ODU O&M signals, and –48 V power.

Converts the analog IF signals into RF signals through up conversions and amplifications.

Transmits the RF signals to the antenna through the waveguide.

Page 48: Rtn950 Pdh,Sdh,Hybrid

3 Product Structure OptiX RTN 950 Radio Transmission System

Product Description

3-10 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

Table 3-5 Service signal processing flow of the SDH/PDH microwave in the receive direction

NO. Component Signal Processing Description

1 ODU Isolates and filters RF signals. Converts the RF signals into analog IF signals through down conversions and amplifications.

Combines the IF signals and the ODU O&M signals. Transmits the combined signals to the IF board through the IF cable.

2 IF1 Splits the received analog IF signals and ODU O&M signals.

Performs A/D conversion for the IF signals. Digital demodulation. Time domain adaptive equalization. FEC decoding. Synchronizes and descrambles the frames. Extracts overheads from microwave frames. Extracts VC-12 signals from the microwave frames and multiplexes the VC-12 signals into VC-4 signals.

Transmits the VC-4 signals to the timeslot cross-connect unit of the CST/CSH.

3 CST/CSH The timeslot cross-connect unit grooms VC-12 signals to the VC-4 signals of the SP3S/SP3D.

4 SP3S/SP3D Demultiplexes VC-12 signals from VC-4 signals. Demaps E1 service signals from the VC-12 signals. Performs HDB3 coding. Outputs E1 signals.

3.4.2 Hybrid Microwave This topic considers the transmission of the E1 services and the FE services by the IFU2 as an example to describe the service signal processing flow of the hybrid microwave.

Page 49: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description 3 Product Structure

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

3-11

Figure 3-7 Service signal processing flow of the hybrid microwave

SP3S/SP3D

IFU2

IDU

E1

CSH

VC-4signal

VC-4signal

EM6T/EM6F

FE Ethernetsignal

ODU

RFsignal

IFsignal

AntennaEthernetsignal

Table 3-6 Service signal processing flow of the hybrid microwave in the transmit direction

NO. Component Signal Processing Description

SP3S/SP3D Accesses E1 signals. Performs HDB3 decoding. Maps E1 service signals into VC-12 signals. Multiplexes the VC-12 signals into VC-4 signals. Transmits the VC-4 signals to the timeslot cross-connect unit of the CSH.

1

EM6T/EM6F Accesses FE signals. Performs decoding. Aligns frames, strips the preamble code, and processes the CRC check code.

Forwards Ethernet frames to the packet switching unit of the CSH.

2 CSH Based on the service configuration, the timeslot cross-connect unit grooms VC-12 signals to the VC-4 signals of the IFU2 board.

The packet switching unit processes Ethernet frames based on the configuration and the Layer 2 protocol, and then forwards the processed Ethernet frames to the IFU2 through the microwave port.

Page 50: Rtn950 Pdh,Sdh,Hybrid

3 Product Structure OptiX RTN 950 Radio Transmission System

Product Description

3-12 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

NO. Component Signal Processing Description

3 IFU2 Selects the proper modulation mode based on the current channel quality.

Demultiplexes the VC-12 signals to be transmitted from VC-4 signals.

Demaps E1 service signals from the VC-12 signals. Maps the E1 service signals and the Ethernet frames into the microwave frame payload area to add microwave frame overheads and form complete microwave frames.

FEC coding. Digital modulation. D/A conversion. Analog modulation Combines the analog IF signals and ODU O&M signals. Transmits the combined signals and –48 V power to the ODU through the IF cable.

4 ODU Splits the analog IF signals, ODU O&M signals, and –48 V power.

Converts the analog IF signals into RF signals through up conversions and amplifications.

Transmits the RF signals to the antenna through the waveguide.

Table 3-7 Service signal processing flow of the hybrid microwave in the receive direction

NO. Component Signal Processing Description

1 ODU Isolates and filters RF signals. Converts the RF signals into analog IF signals through down conversions and amplifications.

Combines the IF signals and the ODU O&M signals. Transmits the combined signals to the IF boards through the IF cable.

Page 51: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description 3 Product Structure

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

3-13

NO. Component Signal Processing Description

2 IFU2 Splits the received analog IF signals and ODU O&M signals.

A/D conversion. Digital demodulation. Time domain adaptive equalization. FEC decoding. Synchronizes and descrambles the frames. Extracts overheads from microwave frames. Extracts E1 service signals from microwave frames and maps the E1 service signals into VC-12 signals.

Multiplexes the VC-12 signals into VC-4 signals and transmits the VC-4 signals to the timeslot cross-connect unit of the CSH board.

Extracts Ethernet frames from the microwave frames, and then transmits the Ethernet frames to the packet switching unit of the CSH board.

3 CSH Based on the data configuration, the timeslot cross-connect unit grooms VC-12 signals to the VC-4 signals of the SP3S or SP3D.

The packet switching unit processes Ethernet frames based on the configuration and the Layer 2 protocol, and then forwards the processed Ethernet frames to the related EM6T/EM6F board.

SP3S/SP3D Demultiplexes VC-12 signals from VC-4 signals. Demaps E1 service signals from the VC-12 signals. Performs HDB3 coding. Outputs E1 signals.

4

EM6T/EM6F Aligns frames, adds the preamble code, and processes the CRC check code.

Performs coding. Outputs FE signals.

Page 52: Rtn950 Pdh,Sdh,Hybrid
Page 53: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description 4 Networking

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

4-1

4 Networking

About This Chapter The OptiX RTN 950 provides complete microwave transmission solutions and supports several types of networking solutions to meet different customer requirements.

4.1 SDH/PDH Microwave

The SDH/PDH microwave has two networking modes, namely, chain networking and ring networking.

4.2 Hybrid Microwave

The hybrid microwave has two networking modes, namely, chain networking and ring networking.

4.1 SDH/PDH Microwave The SDH/PDH microwave has two networking modes, namely, chain networking and ring networking.

4.1.1 Chain Networking In the TDM microwave transmission solution wherein the chain networking is the basic networking form, a hop of radio link is the basic networking unit.

Figure 4-1 shows the TDM microwave transmission solution wherein the chain networking is the basic form of networking. In this solution,

The PDH radio link of the corresponding air-interface capacity can be established according to the capacity of an access link. An ordinary link adopts the 1+0 non-protection configuration. An important link adopts the 1+1 protection configuration.

In the case of aggregation links, the SDH/PDH radio link with the appropriate air-interface capacity can be established according to the capacity of the aggregation links, and the SDH/PDH radio links are configured in 1+1 protection mode. In addition, by configuring the N+1 protection of the SDH links, the service capacity between two stations can be improved to NxSTM-1s .

By using the multidirectional microwave convergence capacity of OptiX RTN 950, the multi-hop microwave convergence transmission of the nodal station can be realized.

Page 54: Rtn950 Pdh,Sdh,Hybrid

4 Networking OptiX RTN 950 Radio Transmission System

Product Description

4-2 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

Figure 4-1 TDM microwave transmission solution (chain networking)

Tail link Feeder link

Regional BackhaulNetwork

STM-1

BSC

BTS

BTS

BTS

1+1

1+0

1+1E1

E1

E1

4.1.2 Ring Networking In the TDM microwave transmission solution wherein the ring networking is the basic networking form, the SNCP is used to protect SDH/PDH services on the microwave ring.

Figure 4-2 shows the TDM microwave transmission solution wherein the ring networking is the basic networking form. In this solution, the SNCP is used to protect SDH/PDH microwave transmission services.

Figure 4-2 TDM microwave transmission solution (ring networking)

SDH/PDH radio ringBTS

BTS

BTS

BTS

Regional BackhaulNetwork

STM-1

BSC

E1

E1

E1

E1

The ring networking has a special form. That is, when the OptiX RTN 950 is used to establish an STM-1 radio link, the OptiX RTN 950 and the optical transmission equipment form the hybrid ring network of optical fibers and microwaves. The ring network also uses the SNCP to protect the services on the ring, as shown in Figure 4-3.

Page 55: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description 4 Networking

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

4-3

Figure 4-3 TDM microwave transmission solution (hybrid networking formed with the optical transmission equipment)

STM-1 ringBTS

BTS

BTS

BTS

Regional BackhaulNetwork

STM-1

BSCOptical

transmissioneuipment

E1

E1

E1

E1

4.2 Hybrid Microwave The hybrid microwave has two networking modes, namely, chain networking and ring networking.

4.2.1 Chain Networking In the hybrid microwave transmission solution wherein the chain networking is the basic networking form, a hop of radio link is the basic networking unit.

Figure 4-4 shows the hybrid microwave transmission solution wherein the chain networking is the basic networking form. In this solution,

The hybrid radio link of the corresponding air-interface capacity can be established according to the capacity of an access link. An ordinary link adopts the 1+0 non-protection configuration. An important link adopts the 1+1 protection configuration.

The hybrid radio link of the corresponding air-interface capacity can be established according to the capacity of an aggregation link. The hybrid radio link adopts the 1+1 protection configuration. By configuring the 1+1 protection for the XPIC Hybrid link, the service capacity of the same microwave channel can be doubled. In addition, by configuring the N+1 protection of the Hybrid link, the service capacity between two stations can be improved by N times.

By using the multidirectional microwave convergence capacity of OptiX RTN 950, the multi-hop microwave convergence transmission of the nodal station can be realized.

Page 56: Rtn950 Pdh,Sdh,Hybrid

4 Networking OptiX RTN 950 Radio Transmission System

Product Description

4-4 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

Figure 4-4 Hybrid microwave transmission solution (chain networking)

Tail link Feeder link

1+1

1+0

1+1

BTS

BTS

E1

FE

FE

E1

NodeB

NodeB

Regional BackhaulNetwork

STM-1+GE

BSC

RNC

4.2.2 Ring Networking In the Hybrid microwave transmission solution wherein the ring networking is the basic networking form, the SNCP is used to protect the E1 services on the microwave ring, and the ERPS is used to protect Ethernet services on the microwave ring.

Figure 4-5 Hybrid microwave transmission solution (ring networking)

BTS

E1

FE

NodeB

Hybrid radio ring

BTS

E1

FE

BTS

E1

FE

NodeB

Regional BackhaulNetwork

STM-1+GE

BSCNodeB

RNC

Page 57: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description 5 Network Management System

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

5-1

5 Network Management System

About This Chapter This topic describes the network management solution and various NMS software that contribute to this solution.

5.1 Network Management Solution

Huawei provides a complete transport network management solution compliant with TMN for different function domains and customers in telecommunication networks.

5.2 LCT

The LCT is a local maintenance terminal. The LCT provides the following management functions at the NE layer: NE management, alarm management, performance management, configuration management, communication management, and security management.

5.3 U2000

A user can access the U2000 server through a U2000 client to manage Huawei transport subnets in the unified manner. The U2000 can provide not only the NE-level management function, but also the management function at the network layer.

5.1 Network Management Solution Huawei provides a complete transport network management solution compliant with TMN for different function domains and customers in telecommunication networks.

The NM solutions include the following:

OptiX iManager LCT local maintenance terminal OptiX iManager U2000 transmission network management system

Page 58: Rtn950 Pdh,Sdh,Hybrid

5 Network Management System OptiX RTN 950 Radio Transmission System

Product Description

5-2 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

Figure 5-1 Network management solution to the transmission network

Network-Level NM

Local Craft Terminal

iManagerU2000

iManager LCT

5.2 LCT The LCT is a local maintenance terminal. The LCT provides the following management functions at the NE layer: NE management, alarm management, performance management, configuration management, communication management, and security management.

NE Management Searching for NEs Adding/Deleting NEs Logging in to or out of NEs NE time management

Alarm Management Setting alarm monitoring strategies Viewing alarms Deleting alarms

Performance Management Setting performance monitoring strategies Viewing performance events Resetting performance registers

Configuration Management Basic NE information configuration Radio link configuration Protection configuration Interface configuration Service configuration Clock configuration

Page 59: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description 5 Network Management System

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

5-3

Communication Management Communication parameter management DCC management HWECC protocol management IP protocol management OSI protocol management

Security Management NE user management NE user group management LCT access control Online user management NE security parameters NE security log NMS user management NMS log management

5.3 U2000 A user can access the U2000 server through a U2000 client to manage Huawei transport subnets in the unified manner. The U2000 can provide not only the NE-level management function, but also the management function at the network layer.

NE Level Management NE object management NE level alarm management NE level performance management NE level configuration management NE level communication management NE level security management

Network Level Management Topology management Network level alarm management Network level performance management Network level configuration management Network level communication management Network level security management Network-wide clock management

Others Report function

Page 60: Rtn950 Pdh,Sdh,Hybrid

5 Network Management System OptiX RTN 950 Radio Transmission System

Product Description

5-4 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

Northbound SNMP interface

Page 61: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description 6 Performance

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

6-1

6 Performance

About This Chapter This topic describes the technical specifications of the OptiX RTN 950.

6.1 RF Performance

This topic describes the radio frequency (RF) performance and various technical specifications related to microwaves.

6.2 Interface Performance

This section describes the technical specifications of various services and auxiliary interfaces.

6.3 Clock Timing and Synchronization Performance

The clock timing performance and synchronization performance of the product meet relevant ITU-T recommendations

6.4 Integrated System Performance

Integrated system performance includes the dimensions, power supply, EMC, lightning protection, safety, and environment.

6.1 RF Performance This topic describes the radio frequency (RF) performance and various technical specifications related to microwaves.

6.1.1 Microwave Work Modes This topic lists the microwave work modes that are supported by the OptiX RTN 950.

SDH/PDH Microwave Work Modes

Table 6-1 SDH/PDH microwave work modes

Service Capacity Modulation Mode Channel Spacing (MHz)

4xE1 QPSK 7

Page 62: Rtn950 Pdh,Sdh,Hybrid

6 Performance OptiX RTN 950 Radio Transmission System

Product Description

6-2 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

Service Capacity Modulation Mode Channel Spacing (MHz)

4xE1 16QAM 3.5

8xE1 QPSK 14 (13.75)

8xE1 16QAM 7

16xE1 QPSK 28 (27.5)

16xE1 16QAM 14 (13.75)

22xE1 32QAM 14 (13.75)

26xE1 64QAM 14 (13.75)

35xE1 16QAM 28 (27.5)

44xE1 32QAM 28 (27.5)

53xE1 64QAM 28 (27.5)

STM-1 128QAM 28 (27.5)

The channel spacings 13.75 MHz and 27.5 MHz are applied to the 18 GHz frequency band. The channel spacings listed in the table are the minimum channel spacings supported by the product.

The channel spacings larger than the values are also supported. The SDH/PDH radio link of the OptiX RTN 950 supports all microwave modulation mode. If the

SDH/PDH radio link supports the 4E1/16QAM microwave modulation mode, it cannot use the high power ODU.

Hybrid Microwave Work Modes

Table 6-2 Hybrid microwave work modes

Channel Spacing (MHz) Modulation Mode

Service Capacity (Mbit/s)

Maximum Number of E1s in Services

7 QPSK 10 5

7 16QAM 20 10

7 32QAM 25 12

7 64QAM 32 15

7 128QAM 38 18

7 256QAM 44 21

14 (13.75) QPSK 20 10

14 (13.75) 16QAM 42 20

14 (13.75) 32QAM 51 24

Page 63: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description 6 Performance

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

6-3

Channel Spacing (MHz) Modulation Mode

Service Capacity (Mbit/s)

Maximum Number of E1s in Services

14 (13.75) 64QAM 66 31

14 (13.75) 128QAM 78 37

14 (13.75) 256QAM 90 43

28 (27.5) QPSK 42 20

28 (27.5) 16QAM 84 40

28 (27.5) 32QAM 105 50

28 (27.5) 64QAM 133 64

28 (27.5) 128QAM 158 75

28 (27.5) 256QAM 183 75

56 (55) QPSK 84 40

56 (55) 16QAM 168 75

56 (55) 32QAM 208 75

56 (55) 64QAM 265 75

56 (55) 128QAM 313 75

56 (55) 256QAM 363 75

The channel spacings 13.75 MHz, 27.5 MHz, and 55 MHz are applied to the 18 GHz frequency

band. The channel spacings listed in the table are the minimum channel spacings supported by the product.

The channel spacings larger than the values are also supported. E1 services need to occupy the corresponding bandwidth of the service capacity. The bandwidth

remaining after the E1 service capacity is subtracted from the service capacity can be provided for Ethernet services.

The hybrid radio link of the OptiX RTN 950 supports all microwave modulation mode. If the hybrid radio link supports the 56 MHz microwave modulation mode, it must use the high power ODU.

6.1.2 Frequency Band The ODUs of the different series and different types support different operating frequency bands.

Page 64: Rtn950 Pdh,Sdh,Hybrid

6 Performance OptiX RTN 950 Radio Transmission System

Product Description

6-4 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

Frequency Bands (Standard Power ODU)

Table 6-3 Frequency band (SP ODUs)

Frequency Band

Frequency Range (GHz) T/R Spacing (MHz)

7 GHz 7.093–7.897 154, 161, 168, 196, 245

8 GHz 7.731– 8.496 119, 126, 266, 311.32

11 GHz 10.675–11.745 490, 500, 530

13 GHz 12.751–13.248 266

15 GHz 14.403–15.348 315, 322, 420, 490, 728

18 GHz 17.685–19.710 1008, 1010, 1560

23 GHz 21.200–23.618 1008, 1200, 1232

26 GHz 24.549–26.453 1008

38 GHz 37.044–39.452 1260

Table 6-4 Frequency band (SPA ODUs)

Frequency Band

Frequency Range (GHz) T/R Spacing (MHz)

6 GHz 5.915–6.425 (L6) 6.425–7.125 (U6)

252.04 (L6) 340 (U6)

7 GHz 7.093–7.897 154, 161, 168, 196, 245

8 GHz 7.731–8.496 119, 126, 266, 311.32

11 GHz 10.675–11.745 490, 500, 530

13 GHz 12.751–13.248 266

15 GHz 14.403–15.348 420, 490

18 GHz 17.685–19.710 1008, 1010

23 GHz 21.200–23.618 1008, 1232

Page 65: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description 6 Performance

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

6-5

Frequency Bands (High Power ODU)

Table 6-5 Frequency band (HP ODUs)

Frequency Band

Frequency Range (GHz) T/R Spacing (MHz)

7 GHz 7.093–7.897 154, 161, 168, 196, 245

8 GHz 7.731–8.497 119, 126, 151.614, 208, 266, 311.32

11 GHz 10.675–11.745 490, 500, 530

13 GHz 12.751–13.248 266

15 GHz 14.400–15.353 315, 322, 420, 490, 644, 728

18 GHz 17.685–19.710 1008, 1010, 1560

23 GHz 21.200–23.618 1008, 1200, 1232

26 GHz 24.549–26.453 1008

32 GHz 31.815–33.383 812

38 GHz 37.044–40.105 700, 1260

6.1.3 Receiver Sensitivity The receiver sensitivity reflects the anti-fading capability of the microwave equipment.

For a guaranteed value, remove 3 dB from the typical value.

SDH/PDH Microwave

Table 6-6 Typical receiver sensitivity values (i) of the SDH/PDH microwave

Performance

4xE1 8xE1 16xE1

Item

QPSK 16QAM QPSK 16QAM QPSK 16QAM

RSL@ BER = 10–6 (unit: dBm)

@6GHz –91.5 –87.5 –88.5 –84.5 –85.5 –81.5

@7GHz –91.5 –87.5 –88.5 –84.5 –85.5 –81.5

@8GHz –91.5 –87.5 –88.5 –84.5 –85.5 –81.5

@11GHz –91.0 –87.0 –88.0 –84.0 –85.0 –81.0

@13GHz –91.0 –87.0 –88.0 –84.0 –85.0 –81.0

@15GHz –91.0 –87.0 –88.0 –84.0 –85.0 –81.0

Page 66: Rtn950 Pdh,Sdh,Hybrid

6 Performance OptiX RTN 950 Radio Transmission System

Product Description

6-6 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

Performance

4xE1 8xE1 16xE1

Item

QPSK 16QAM QPSK 16QAM QPSK 16QAM

@18GHz –91.0 –87.0 –88.0 –84.0 –85.0 –81.0

@23GHz –90.5 –86.5 –87.5 –83.5 –84.5 –80.5

@26GHz –90.0 –86.0 –87.0 –83.0 –84.0 –80.0

@32GHz –89.0 –85.0 –86.0 –82.0 –83.0 –79.0

@38GHz –88.5 –84.5 –85.5 –81.5 –82.5 –78.5

Table 6-7 Typical receiver sensitivity values (ii) of the SDH/PDH microwave

Performance

22xE1 26xE1 35xE1 44xE1 53xE1 STM-1

Item

32QAM 64QAM 16QAM 32QAM 64QAM 128QAM

RSL@ BER = 10–6 (unit: dBm)

@6GHz –80.5 –76.5 –79.0 –77.5 –73.5 –70.5

@7GHz –80.5 –76.5 –79.0 –77.5 –73.5 –70.5

@8GHz –80.5 –76.5 –79.0 –77.5 –73.5 –70.5

@11GHz –80.0 –76.0 –78.5 –77.0 –73.0 –70.0

@13GHz –80.0 –76.0 –78.5 –77.0 –73.0 –70.0

@15GHz –80.0 –76.0 –78.5 –77.0 –73.0 –70.0

@18GHz –80.0 –76.0 –78.5 –77.0 –73.0 –70.0

@23GHz –79.5 –75.5 –78.0 –76.5 –72.5 –69.5

@26GHz –79.0 –75.0 –77.5 –76.0 –72.0 –69.0

@32GHz –78.0 –74.0 –76.5 –75.0 –71.0 –68.0

@38GHz –77.5 –73.5 –76.0 –74.5 –70.5 –67.5

Hybrid Microwave

The 6 GHz ODU does not support the modulation mode of 256QAM and the channel spacing of 56 MHz. The receiver sensitivity is not available (NA).

Page 67: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description 6 Performance

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

6-7

Table 6-8 Typical values of the receiver sensitivity (i) of the Hybrid microwave

Performance (Channel Spacing: 7 MHz)

Item QPSK 16QAM 32QAM 64QAM 128QAM 256QAM

RSL@ BER=10–66 (dBm)

@6 GHz –92.5 –86.5 –82.5 -79.5 –76.5 NA

@7 GHz –92.5 –86.5 –82.5 -79.5 –76.5 –73.5

@8 GHz –92.5 –86.5 –82.5 -79.5 –76.5 –73.5

@11 GHz –92 –86 –82 -79 –76 –73

@13 GHz –92 –86 –82 -79 –76 –73

@15 GHz –92 –86 –82 -79 –76 –73

@18 GHz –92 –86 –82 -79 –76 –73

@23 GHz –91.5 –85.5 –81.5 -78.5 –75.5 –72.5

@26 GHz –91 –85 –81 -78 –75 –72

@32 GHz –90 –84 –80 -77 –74 –71

@38 GHz –89.5 –83.5 –79.5 -76.5 –73.5 –70.5

Table 6-9 Typical values of the receiver sensitivity (ii) of the Hybrid microwave

Performance (Channel Spacing: 14 MHz)

Item QPSK 16QAM 32QAM 64QAM 128QAM 256QAM

RSL@ BER=10–6 (dBm)

@6 GHz –90.5 –83.5 –79.5 -76.5 –73.5 NA

@7 GHz –90.5 –83.5 –79.5 -76.5 –73.5 –70.5

@8 GHz –90.5 –83.5 –79.5 -76.5 –73.5 –70.5

@11 GHz –90 –83 –79 -76 –73 –70

@13 GHz –90 –83 –79 -76 –73 –70

@15 GHz –90 –83 –79 -76 –73 –70

@18 GHz –90 –83 –79 -76 –73 –70

@23 GHz –89.5 –82.5 –78.5 -75.5 –72.5 –69.5

@26 GHz –89 –82 –78 -75 –72 –69

@32 GHz –88 –81 –77 -74 –71 –68

@38 GHz –87.5 –80.5 –76.5 -73.5 –70.5 –67.5

Page 68: Rtn950 Pdh,Sdh,Hybrid

6 Performance OptiX RTN 950 Radio Transmission System

Product Description

6-8 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

Table 6-10 Typical values of the receiver sensitivity (iii) of the Hybrid microwave

Performance (Channel Spacing: 28 MHz)

Item QPSK 16QAM 32QAM 64QAM 128QAM 256QAM

RSL@ BER=10–6 (dBm)

@6 GHz –87.5 –80.5 –76.5 -73.5 –70.5 NA

@7 GHz –87.5 –80.5 –76.5 -73.5 –70.5 –67.5

@8 GHz –87.5 –80.5 –76.5 -73.5 –70.5 –67.5

@11 GHz –87 –80 –76 -73 –70 –67

@13 GHz –87 –80 –76 -73 –70 –67

@15 GHz –87 –80 –76 -73 –70 –67

@18 GHz –87 –80 –76 -73 –70 –67

@23 GHz –86.5 –79.5 –75.5 -72.5 –69.5 –66.5

@26 GHz –86 –79 –75 -72 –69 –66

@32 GHz –85 –78 –74 -71 –68 –65

@38 GHz –84.5 –77.5 –73.5 -70.5 –67.5 –64.5

Table 6-11 Typical values of the receiver sensitivity (iv) of the Hybrid microwave

Performance (Channel Spacing: 56 MHz)

Item QPSK 16QAM 32QAM 64QAM 128QAM 256QAM

RSL@ BER=10–6 (dBm)

@6 GHz NA NA NA NA NA NA

@7 GHz –84.5 –77.5 –73.5 -70.5 –67.5 –64.5

@8 GHz –84.5 –77.5 –73.5 -70.5 –67.5 –64.5

@11 GHz –84 –77 –73 -70 –67 –64

@13 GHz –84 –77 –73 -70 –67 –64

@15 GHz –84 –77 –73 -70 –67 –64

@18 GHz –84 –77 –73 -70 –67 –64

@23 GHz –83.5 –76.5 –72.5 -69.5 –66.5 –63.5

@26 GHz –83 –76 –72 -69 –66 –63

@32 GHz –82 –75 –71 -68 –65 –62

Page 69: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description 6 Performance

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

6-9

Performance (Channel Spacing: 56 MHz)

Item QPSK 16QAM 32QAM 64QAM 128QAM 256QAM

@38 GHz –81.5 –74.5 –70.5 -67.5 –64.5 –61.5

6.1.4 Transceiver Performance The performance of the transceiver includes the nominal maximum/minimum transmit power, nominal maximum receive power, and frequency stability.

Transceiver Performance (Standard Power ODU)

Table 6-12 Transceiver performance (SP ODUs)

Performance Item

QPSK 16QAM/32QAM

64QAM/128QAM

256QAM

Nominal maximum transmit power (dBm)

@7 GHz 27 22.5 18.5 16.5

@8 GHz 27 22.5 18.5 16.5

@11 GHz 26 21.5 17.5 15.5

@13 GHz 26 21.5 17.5 15.5

@15 GHz 26 21.5 17.5 15.5

@18 GHz 25.5 21.5 17.5 15.5

@23 GHz 24 20.5 16.5 14.5

@26 GHz 23.5 19.5 15.5 13.5

@38 GHz 22 17.5 13.5 11.5

Nominal minimum transmit power (dBm)

–6

Nominal maximum receive power (dBm)

–20 –25

Frequency stability (ppm)

±5

Page 70: Rtn950 Pdh,Sdh,Hybrid

6 Performance OptiX RTN 950 Radio Transmission System

Product Description

6-10 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

Table 6-13 Transceiver performance (SPA ODUs)

Performance Item

QPSK 16QAM/32QAM 64QAM/128QAM

Nominal maximum transmit power (dBm)

@6 GHz 26.5 24.0 23.0

@7 GHz 25.5 21.5 20.0

@8 GHz 25.5 21.5 20.0

@11 GHz 24.5 20.5 18

@13 GHz 24.5 20 18

@15 GHz 24.5 20 18

@18 GHz 22.5 19 17

@23 GHz 22.5 19 16

Nominal minimum transmit power (dBm)

0

Nominal maximum receive power (dBm)

–20

Frequency stability (ppm)

±5

Transceiver Performance (High Power ODU)

Table 6-14 Transceiver performance (HP ODUs)

Performance Item

QPSK 16QAM/32QAM

64QAM/128QAM

256QAM

Nominal maximum transmit power (dBm)

@7 GHz 30 28 25 23

@8 GHz 30 28 25 23

@11 GHz 28 26 22 20

@13 GHz 26 24 20 18

@15 GHz 26 24 20 18

@18 GHz 25.5 23 19 17

Page 71: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description 6 Performance

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

6-11

Performance Item

QPSK 16QAM/32QAM

64QAM/128QAM

256QAM

@23 GHz 25 23 19 17

@26 GHz 25 22 19 17

@32 GHz 23 21 17 15

@38 GHz 23 20 17 15

Nominal minimum transmit power (dBm)

@7 GHz 9

@8 GHz 9

@11 GHz 6

@13 GHz 3

@15 GHz 3

@18 GHz 2

@23 GHz 2

@26 GHz 2

@32 GHz 1

@38 GHz 1

Nominal maximum receive power (dBm)

–20 –25

Frequency stability (ppm)

±5

6.1.5 IF Performance The IF performance includes the performance of the IF signal and the performance of the ODU O&M signal.

Table 6-15 IF performance

Item Performance

IF signal

Transmit frequency of the IF board (MHz)

350

Page 72: Rtn950 Pdh,Sdh,Hybrid

6 Performance OptiX RTN 950 Radio Transmission System

Product Description

6-12 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

Item Performance

Receive frequency of the IF board (MHz)

140

Impedance (ohm) 50

ODU O&M signal

Modulation mode ASK

Transmit frequency of the IF board (MHz)

5.5

Receive frequency of the IF board (MHz)

10

6.1.6 Baseband Signal Processing Performance of the Modem The baseband signal processing performance of the modem indicates the FEC coding scheme and the performance of the baseband time domain adaptive equalizer.

Table 6-16 Baseband signal processing performance of the modem

Item Performance

Encoding mode Reed-Solomon (RS) encoding for PDH signals Trellis-coded modulation (TCM) and RS two-level encoding for SDH signals

Low-density parity check code (LDPC) encoding for Hybrid microwave.

Adaptive time-domain equalizer for baseband signals

Supported.

6.2 Interface Performance This section describes the technical specifications of various services and auxiliary interfaces.

6.2.1 SDH Optical Interface Performance The performance of the SDH optical interface is compliant with ITU-T G.957.

STM-1 Optical Interface Performance The performance of the STM-1 optical interface is compliant with ITU-T G.703. The following table provides the primary performance.

Page 73: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description 6 Performance

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

6-13

Table 6-17 STM-1 optical interface performance

Item Performance

Nominal bit rate (kbit/s) 155520

Classification code Ie-1 S-1.1 L-1.1 L-1.2

Fiber type Multi-mode fiber

Single-mode fiber

Single-mode fiber

Single-mode fiber

Transmission distance (km)

2 15 40 80

Operating wavelength (nm)

1270 to 1380 1261 to 1360 1280 to 1335 1480 to 1580

Mean launched power (dBm)

–19 to –14 –15 to –8 –5 to 0 –5 to 0

Receiver minimum sensitivity (dBm)

–30 –28 –34 –34

Minimum overload (dBm) –14 –8 –10 –10

Minimum extinction ratio (dB)

10 8.2 10 10

OptiX RTN 950 use SFP modules for providing optical interfaces. You can use different types of SFP modules to provide optical interfaces with different classification codes and transmission distances.

6.2.2 E1 Interface Performance The performance of the E1 interface is compliant with ITU-T G.703.

E1 Interface Performance

Table 6-18 E1 interface performance

Item Performance

Nominal bit rate (kbit/s) 2048

Code pattern HDB3

Wire pair in each transmission direction

One coaxial wire pair One symmetrical wire pair

Impedance (ohm) 75 120

6.2.3 Ethernet Interface Performance The performance of the Ethernet interface is compliant with IEEE 802.3.

Page 74: Rtn950 Pdh,Sdh,Hybrid

6 Performance OptiX RTN 950 Radio Transmission System

Product Description

6-14 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

GE Optical Interface Performance The performance of the GE optical interface is compliant with IEEE 802.3. The following table provides the primary performance.

Table 6-19 Performance of the GE optical interface

Item Performance

Nominal bit rate (kbit/s) 1000

Classification code 1000Base-SX 1000Base-LX

Fiber type Multiple-mode optical fiber

Single-mode optical fiber

Transmission distance (km) 0.55 10

Operating wavelength (nm) 770 to 860 1270 to 1355

Mean launched power (dBm) –9.5 to 0 –9 to –3

Receiver minimum sensitivity (dBm) –17 –19

Minimum overload (dBm) 0 –3

Minimum extinction ratio (dB) 9 9

The OptiX RTN 950 uses SFP modules for providing GE optical interfaces. You can use different types of SFP modules to provide GE optical interfaces with different classification codes and transmission distances.

GE electric Interface Performance The GE electric interface is compliant with IEEE 802.3. The following table provides the primary performance.

Table 6-20 GE electric interface performance

Item Performance

Nominal bit rate (Mbit/s) 10 (10BASE-T) 100 (100BASE-TX) 1000 (1000BASE-T)

Code pattern Manchester encoding signal (10BASE-T) MLT-3 encoding signal (100BASE-TX) 4D-PAM5 encoding signal (1000BASE-T)

Interface type RJ-45

Page 75: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description 6 Performance

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

6-15

FE electric Interface Performance The 10/100BASE-T(X) interface is compliant with IEEE 802.3. The following table provides the primary performance.

Table 6-21 FE electric interface performance

Item Performance

Nominal bit rate (Mbit/s) 10 (10BASE-T) 100 (100BASE-TX)

Code pattern Manchester encoding signal (10BASE-T) MLT-3 encoding signal (100BASE-TX)

Interface type RJ-45

6.2.4 Auxiliary Interface Performance The auxiliary interface performance includes the performance of the orderwire interface, synchronous data interface, and asynchronous data interface.

Orderwire Interface Performance

Table 6-22 Orderwire interface performance

Item Performance

Transmission path Uses the E1 and E2 bytes in the SDH overhead or the Huawei-defined byte in the overhead of the microwave frame.

Orderwire type Addressing call

Wire pair in each transmission direction

One symmetrical wire pair

Impedance (ohm) 600

The OptiX RTN equipment also supports the orderwire group call function. For example, when an OptiX RTN equipment calls the number of 888, the orderwire group call number, all the OptiX RTN equipment orderwire phones in the orderwire subnet ring until a phone is answered. Then, a point-to-point orderwire phone call is established.

Page 76: Rtn950 Pdh,Sdh,Hybrid

6 Performance OptiX RTN 950 Radio Transmission System

Product Description

6-16 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

Synchronous Data Interface Performance

Table 6-23 Synchronous data interface performance

Item Performance

Transmission path Uses the F1 byte in the SDH overhead or the Huawei-defined byte in the overhead of the microwave frame.

Nominal bit rate (kbit/s) 64

Interface type Codirectional

Interface characteristics Meets the ITU-T G.703 standard.

Asynchronous Data Interface

Table 6-24 Asynchronous data interface performance

Item Performance

Transmission path Uses the user-defined byte of the SDH overhead or the Huawei-defined byte in the overhead of the microwave frame.

Nominal bit rate (kbit/s) ≤ 19.2

Interface characteristics Meets the RS-232 standard.

Wayside Service Interface Performance

Table 6-25 Wayside service interface performance

Item Performance

Transmission path Uses the Huawei-defined bytes in the overhead of the microwave frame.

Nominal bit rate (kbit/s) 2048

Impedance (ohm) 120

6.3 Clock Timing and Synchronization Performance The clock timing performance and synchronization performance of the product meet relevant ITU-T recommendations

Page 77: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description 6 Performance

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

6-17

Table 6-26 Clock timing and synchronization performance

Item Performance

External synchronization source

2048 kbit/s (compliant with ITU-T G.703 §9), or 2048 kHz (compliant with ITU-T G.703 §13)

Frequency accuracy

Pull-in, hold-in, and pull-out ranges

Noise generation

Noise tolerance

Noise transfer

Transient response and holdover performance

Compliant with ITU-T G.813

6.4 Integrated System Performance Integrated system performance includes the dimensions, power supply, EMC, lightning protection, safety, and environment.

Dimensions

Table 6-27 Dimensions

Component Dimensions

IDU 442 mm (width) x 220 mm (depth) x 88 mm (height)

ODU < 280 mm (width) x 92 mm (depth) x 280 mm (height)

Power Supply

Table 6-28 Power Supply

Component Performance

IDU Compliant with ETSI EN300 132-2 Supporting two –48 V/–60 V (–38.4 V to –72 V) DC power inputs (mutual backup)

Supporting the backup of the 1+1 3.3 V power units.

ODU Compliant with ETSI EN300 132-2 Supporting one –48 V (–38.4 V to –72 V) DC power input that is provided by the IDU

Page 78: Rtn950 Pdh,Sdh,Hybrid

6 Performance OptiX RTN 950 Radio Transmission System

Product Description

6-18 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

EMC Passes CE authentication. Compliant with ETSI EN 301 489-1. Compliant with ETSI EN 301 489-4. Compliant with CISPR 22. Compliant with EN 55022.

Lightning Protection Compliant with ITU-T K.27. Compliant with ETSI EN 300 253.

Safety Passes CE authentication. Compliant with ETSI EN 60215. Compliant with ETSI EN 60950. Compliant with IEC 60825.

Environment The IDU is a unit used in a place that has weather protection and where the temperature can be controlled. The ODU is an outdoor unit.

Table 6-29 Environment performance

Component Item

IDU ODU

Operation Compliant with ETSI EN 300 019-1-3 class 3.2

Compliant with ETSI EN 300 019-1-4 class 4.1

Transportation Compliant with ETSI EN 300 019-1-2 class 2.3

Major reference standards

Storage Compliant with ETSI EN 300 019-1-1 class 1.2

Operation –5°C to +55°C –35°C to +55°C Air temperature

Transportation and storage

–40°C to +70°C

Relative humidity 5% to 95% 5% to 100%

Noise < 7.2 bel, compliant with ETSI EN 300 753 class 3.2 attended

-

Earthquake Compliant with Bellcore GR-63-CORE ZONE 4

Mechanical stress Compliant with ETSI EN 300 019

Page 79: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description 6 Performance

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

6-19

Page 80: Rtn950 Pdh,Sdh,Hybrid
Page 81: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description A Glossary

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

A-1

A Glossary

Terms are listed in an alphabetical order.

A

ACAP The Adjacent Channel Alternate Polarization (ACAP) operation provides orthogonal polarizations between two adjacent communication channels.

ATPC Automatic Transmit Power Control. A method of automatically adjusting the transmit power at the opposite end based on the transmit signal detected at the receiver.

AM Refers to the adaptive modulation (AM) technology that implements automatic adjustment of modulation mode.

C

CCDP The co-channel dual polarization (CCDP) operation provides two parallel communication channels over the same link with orthogonal polarizations, thus doubling the link capacity.

E

ETH-OAM Being in compliance with the MAC-layer protocol, the ETH-OAM function checks the Ethernet link by transmitting the OAM protocol packet.

F

FD Frequency Diversity. Two or more microwave frequencies with certain frequency space are used to transmit/receive the same signal and selection is then performed between the two signals to ease the impact of fading.

H

Page 82: Rtn950 Pdh,Sdh,Hybrid

A Glossary OptiX RTN 950 Radio Transmission System

Product Description

A-2 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

Hybrid microwave

Refers to the microwave system that can transmit mixed E1 and Ethernet services.

I

IDU Indoor Unit. The indoor unit implements accessing, multiplexing/demultiplexing, and IF processing for services.

IGMP Internet Group Management Protocol. The Protocol is used by IPv4 systems (hosts and routers) to report their IP multicast group memberships to any neighboring multicast routers.

IGMP Snooping

IGMP Snooping is the process of listening to IGMP traffic. IGMP snooping, as implied by the name, is a feature that allows the switch to "listen in" on the IGMP conversation between hosts and routers by processing the layer 3 IGMP packets sent in a multicast network.

L

LCAS Link Capacity Adjustment Scheme. A solution features flexible bandwidth and dynamic adjustment. In addition, it provides a failure tolerance mechanism, which enhances the viability of virtual concatenations and enables the dynamic adjustment to bandwidth (non-service affecting).

M

MSP Multiplex section protection. The function performed to provide capability for switching a signal between and including two MST functions, from a "working" to a "protection" channel.

N

N+1 protection A microwave link protection system that employs N working channels and one protection channel.

O

ODU Outdoor Unit. The outdoor unit implements frequency conversion and amplification for RF signals.

QoS Indicates the quality of Ethernet services.

P

PDH Plesiosynchronous Digital Hierarchy. A multiplexing scheme of bit stuffing and byte interleaving. It multiplexes the minimum rate 64 kit/s into the 2 Mbit/s, 34 Mbit/s, 140 Mbit/s and 565 Mbit/s rates.

Page 83: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description A Glossary

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

A-3

Q

QinQ The QinQ, a Layer 2 tunnel protocol developed based on the IEEE 802.1Q encapsulation, allows for individual VLANs with extra tag information to traverse the backbone networks and thus provides Layer 2 VPN tunnels for users.

R

RSTP Rapid Spanning Tree Protocol. The protocol is an evolution of the Spanning Tree Protocol, providing for faster spanning tree convergence after a topology change.

S

SD Space Diversity. Two or more antennas separated by a specific distance transmit/receive the same signal and selection is then performed between the two signals to ease the impact of fading. Currently, only receive SD is used.

SDH Synchronous Digital Hierarchy. A hierarchical set of digital transport structures, standardized for the transport of suitably adapted payloads over physical transmission networks.

SNCP Subnetwork connection protection. A working subnetwork connection is replaced by a protection subnetwork connection if the working subnetwork connection fails, or if its performance falls below a required level.

STP The Spanning Tree Protocol (STP), defined in the IEEE Standard 802.1D, is an OSI layer-2 protocol that ensures a loop free topology for any bridged LAN.

T

T2000 A subnet management system (SNMS). In the telecommunication management network architecture, the T2000 is located between the NE level and network level, which can supports all NE level functions and part of the network level management functions.

Page 84: Rtn950 Pdh,Sdh,Hybrid
Page 85: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description B Acronyms and Abbreviations

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

B-1

B Acronyms and Abbreviations

Acronyms and abbreviations are listed in alphabetical order.

A

AM Adaptive Modulation

APS Automatic Protection Switching

ARP Address Resolution Protocol

ATPC Automatic Transmit Power Control

AU Administrative Unit

B

BER Bit Error Rate

BIP Bit-Interleaved Parity

BPDU Bridge Protocol Data Unit

C

CAR Committed Access Rate

CBS Committed Burst Size

CCDP Co-Channel Dual Polarization

CGMP Cisco Group Management Protocol

CIR committed information rate

CLNP connectionless network protocol

CLNS Connectionless Network Service

CoS Class of Service

CPU Central Processing Unit

CRC cyclic redundancy check

Page 86: Rtn950 Pdh,Sdh,Hybrid

B Acronyms and Abbreviations OptiX RTN 950 Radio Transmission System

Product Description

B-2 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

CVLAN Customer VLAN

C-VLAN Customer VLAN

D

DC Direct Current

DCC Data Communications Channel

DCN Data Communication Network

DSCP differentiated services code point

DVMRP Distance Vector Multicast Routing Protocol

E

ECC Embedded Control Channel

EPL Ethernet Private Line

EPLAN Ethernet Private LAN

ES-IS End System to Intermediate System

EVPL Ethernet Virtual Private Line

F

FCS Frame Check Sequence

FD Frequency Diversity

FE Fast Ethernet

FIFO First In First Out

FLP Fast Link Pulse

FTP file transfer protocol

G

GE Gigabit Ethernet

GFP Generic Framing Procedure

GTS Generic Traffic Shaping

GUI Graphical User Interface

H

HDLC High level Data Link Control procedure

Page 87: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description B Acronyms and Abbreviations

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

B-3

HSB Hot Standby

HSM Hitless Switch Mode

I

ICMP Internet Control Message Protocol

IDU Indoor Unit

IEEE Institute of Electrical and Electronics Engineers

IETF The Internet Engineering Task Force

IF Intermediate Frequency

IGMP Internet Group Management Protocol

IP Internet Protocol

IPv6 Internet Protocol version 6

IS-IS Intermediate System to Intermediate System

ISO International Standard Organization

ITU-T International Telecommunication Union - Telecommunication Standardization Sector

IVL Independence VLAN learning

L

LAN Local Area Network

LAPD Link Access Procedure on the D channel

LAPS Link Access Procedure-SDH

LCAS Link Capacity Adjustment Scheme

LCT Generation-Local Craft Terminal

LMSP Linear Multiplex Section Protection

M

MAC Medium Access Control

MBS Maximum Burst Size

MDI Medium Dependent Interface

MIB Management Information Base

MPLS multiprotocol label switching

MSP Multiplex Section Protection

Page 88: Rtn950 Pdh,Sdh,Hybrid

B Acronyms and Abbreviations OptiX RTN 950 Radio Transmission System

Product Description

B-4 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

MTU Maximum Transmission Unit

N

NE Network Element

NLP Normal Link Pulse

NMS Network Management System

NNI Network-to-Network Interface or Network Node Interface

NSAP Network Service Access Point

O

ODU Outdoor Unit

OSI Open Systems Interconnection

OSPF Open Shortest Path First

P

PDH Plesiochronous Digital Hierarchy

PIM-DM Protocol Independent Multicast-Dense Mode

PIM-SM Protocol Independent Multicast-Sparse Mode

PPP Point-to-Point Protocol

Q

QinQ 802.1Q in 802.1Q

QoS Quality of Service

R

RF radio frequency

RFC Request For Comment

RIP Routing Information Protocol

RMON Remote Monitoring

RSL Received Signal Level

RSTP Rapid Spanning Tree Protocol

RTN Radio Transmission Node

Page 89: Rtn950 Pdh,Sdh,Hybrid

OptiX RTN 950 Radio Transmission System Product Description B Acronyms and Abbreviations

Issue 01 (2009-06-30) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

B-5

S

SD Space Diversity

SDH Synchronous Digital Hierarchy

SNC SubNetwork Connection

SNCP Sub-Network Connection Protection

SNMP Simple Network Management Protocol

SNR Signal-to-Noise Ratio

STM Synchronous Transport Module

STM-1 SDH Transport Module -1

STM-1e STM-1 Electrical Interface

STM-1o STM-1 Optical Interface

STM-4 SDH Transport Module -4

STM-N SDH Transport Module -N

STP Spanning Tree Protocol

SVL Shared VLAN Learning

T

TCI Tag Control Information

TCP Transfer Control Protocol

TU Tributary Unit

U

UDP User Datagram Protocol

UNI user-network interface

V

VC Virtual Container

VC12 Virtual Container -12

VC-12 Virtual Container -12

VC3 Virtual Container -3

VC-3 Virtual Container -3

VC4 Virtual Container -4

VC-4 Virtual Container -4

Page 90: Rtn950 Pdh,Sdh,Hybrid

B Acronyms and Abbreviations OptiX RTN 950 Radio Transmission System

Product Description

B-6 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.

Issue 01 (2009-06-30)

VCG Virtual Concatenation Group

VLAN Virtual LAN

VoIP Voice over IP

VPN Virtual Private Network

W

WAN Wide Area Network

WRR Weighted Round Robin

WTR Wait to Restore Time

X

XPD Cross-Polarization Discrimination

XPIC Cross-polarization interference cancellation