28
5/27/2013 1 Role of Chemical Admixtures in Sustainability: The Opportunity Charles Nmai, Ph.D., PE, M.ASCE, FACI BASF Corporation (Admixture Systems) Cleveland, OH 2 Buildings Consume: 70% of all electricity 37% of all energy 28% of all water 30% of wood + materials Buildings Produce: 35% solid waste to landfills 36% CO 2 emissions 45% SO 2 emissions 19% NO x emissions 10% fine particulate emissions The case for green building – current construction is not sustainable The Need for Sustainable Construction 3 Greenhouse Gas Emissions Cement: 3% of GHG 5% of CO 2 (96% wrt concrete production) Water Consumption Material Resources Embodied Energy Cement: 85% of Concrete Worldwide Concrete Industry Concerns

Role of Chemical Admixtures in Sustainability - The Opportunity

Embed Size (px)

DESCRIPTION

.

Citation preview

Page 1: Role of Chemical Admixtures in Sustainability - The Opportunity

5/27/2013

1

Role of Chemical Admixtures in Sustainability:  The Opportunity

Charles Nmai, Ph.D., PE, M.ASCE, FACI

BASF Corporation (Admixture Systems)

Cleveland, OH

2

Buildings Consume:• 70% of all electricity• 37% of all energy• 28% of all water• 30% of wood + materials

Buildings Produce:

35% solid waste to landfills

36% CO2 emissions

45% SO2 emissions

19% NOx emissions

10% fine particulate emissions

The case for green building – current construction is not sustainable

The Need for Sustainable Construction

3

• Greenhouse Gas Emissions Cement: 3% of GHG

5% of CO2   (96% wrt concrete production)

• Water Consumption

• Material Resources

• Embodied Energy Cement: 85% of Concrete

Worldwide Concrete Industry Concerns

Page 2: Role of Chemical Admixtures in Sustainability - The Opportunity

5/27/2013

2

4

• Primarily used to modify the fresh & hardened properties of concrete

• Play an important role in the construction of environmentally friendly, sustainable concrete structures

• Can help to conserve natural resources

Chemical Admixtures

5

Water

Scarce in some regions of U.S. (and the world)

Water resources are heavily managed

Strategies being developed

water conservation

use of markets to allocate water

management practices

Source: U. S. Environmental Protection Agency

Sustainable Initiatives

6

One of the primary uses of chemical admixtures is to reduce mix water content

Water Conservation

Chemical Admixtures

Page 3: Role of Chemical Admixtures in Sustainability - The Opportunity

5/27/2013

3

Lower W/CHigher Strength and Durability

Similar WorkabilityHigher Shrinkage and

Heat Development

Control Concrete

Lower W/C

Higher Strengthand Durability

Same Workability

Similar Strength

Higher Workability

Higher Shrinkage andHeat Development

Similar Strength,Durability and

Workability

Lower Shrinkage andHeat Development

Similar Strengthand Durability

Higher Workability

To Save Cement(-Water, -Cement)

To Increase Strength (+Cement, - Water)

To Increase Workability(+ Cement, + Water)

Benefits of Water‐Reducing Admixtures

8

U.S. Mix Water Savings with High‐Range Water‐Reducing Admixtures

1 gal = 3.785 L

0

100,000,000

200,000,000

300,000,000

400,000,000

500,000,000

600,000,000

86 87 88 89 90 91 92 93 94 95 96 97 98 99 '00 '01 '02 '03 '04 '05 '06 07

Year

An

nu

al W

ater

Sav

ing

s (g

al)

Sustainable Initiatives ‐Water

9

U.S. Mix Water Savings with High‐Range Water‐Reducing Admixtures

In Perspective:

1.9 billion L   (500 million gal) ~6% of 33 billion L (8.7 billion gal) U.S. 2008 Bottled Water 

Consumption

Sustainable Initiatives ‐Water

Page 4: Role of Chemical Admixtures in Sustainability - The Opportunity

5/27/2013

4

10

U.S. Mix Water Savings with High‐Range Water‐Reducing AdmixturesCumulative since 1986

1 gal = 3.785 L

0

500,000,000

1,000,000,000

1,500,000,000

2,000,000,000

2,500,000,000

3,000,000,000

3,500,000,000

4,000,000,000

4,500,000,000

5,000,000,000

86 87 88 89 90 91 92 93 94 95 96 97 98 99 '00 '01 '02 '03 '04 '05 '06 07

Year

Cu

mu

lati

ve

Wa

ter

Sav

ing

s (g

al)

Sustainable Initiatives ‐Water

11

In Perspective:

17.4 billion L   (4.6 billion gal) ~53% of 33 billion L (8.7 billion gal) U.S. 2008 Bottled 

Water Consumption

U.S. Mix Water Savings with High‐Range Water‐Reducing AdmixturesCumulative since 1986

Sustainable Initiatives ‐Water

Requirements : 96.5 MPa + 14.5 MPa overdesign @56 d 51.4 GPa MOE @ 56 d Architectural concrete - white No discoloration Self consolidating - self leveling Smooth surface finish - zero bug holes Max. heat of hydration - 71 oC Zero visible cracking High SCM content – pumpable

Solution: Advanced mix optimization 71% SCM replacement Innovative admixture chemistry (HRWR)

440 Park Avenue, New York, NY

Page 5: Role of Chemical Admixtures in Sustainability - The Opportunity

5/27/2013

5

13.8% Reduction in Water Requirement

440 Park Avenue, New York, NY

Water

Water Savings(L/m3)

Total Water Savings(L/yr)

Equivalent Number of Truck Washouts

Equivalent Number of 0.5‐L Bottles of 

Water

22.7 1,563,750 1,836 3,127,167

Water Savings(kg/m3)

Total Water Savings(kg/yr)

Equivalent Number of Loads of Laundry

(Loads/yr)

Equivalent Number of Showers(Showers/yr)

22.7 1,563,750 10,320 33,794

14

Water reducers enable the judicious use of one of the most precious 

natural resources,

Water

Water‐Reducing Admixtures

15

Material Resources

Raw materials for cement production

Aggregates

Sustainable Initiatives

Page 6: Role of Chemical Admixtures in Sustainability - The Opportunity

5/27/2013

6

16

• Water‐reducing admixtures Lower w/cm

Less cement

Higher strength   smaller member sizes

Lower Permeability

Improved Durability & increased service life

• Set‐control admixtures Reduce perishable nature of concrete

• Workability retention admixtures Maintain concrete workability for a defined period

• Durability‐enhancing admixtures Help achieve design service lives      

Benefits of Chemical Admixtures

Sustainable Initiatives ‐Materials

17

U.S. Dept. of Energy Microwave Tower Footing; Monument Valley, Utah:

Several 34 m3 (45 yd3) Concrete Placements

Batched in Flagstaff, Arizona, 400 km (250 miles) away

Haul Time: 8 hours

Excellent Temperature Control, 17 oC to 19 oC (63 oF to 66 ºF)

Slump decreased from 165 to 100 mm (6.5 to 4 in.)

HCA Dosage: 520 mL/100 kg (8 fl oz/cwt)

Hydration‐Control Admixtures

Reduce rejected loads

Sustainable Initiatives ‐Materials

18

• Workability retention without retardation

• Dosage flexibility – for flexible levels of workability retention

0%

20%

40%

60%

80%

100%

120%

0 20 40 60 80

Time (minutes)

Wo

rkab

ilit

y R

etai

ned

Primary Water Reducer (PWR)

PWR + Low Dosage

PWR + Medium Dosage

PWR + High Dosage

A revolutionary new admixture formulated to control the workability (slump) retention of concrete without impacting other properties.

Workability Retention Admixture

Sustainable Initiatives ‐Materials

Page 7: Role of Chemical Admixtures in Sustainability - The Opportunity

5/27/2013

7

19

• Minimizes retempering or re‐dosing of high‐range water‐reducing admixture at the job site

• Promotes greater consistency of concrete workability, compressive strength and air content

• Enhanced in‐place performance

• Fewer rejected loads

• Faster truck turn‐around time

Workability Retention Admixture

Sustainable Initiatives ‐Materials

20

Re‐use of Returned Concrete 

Volume:

Estimate: 2‐10% concrete production returned to plants

9.6 – 48 million yd3 (7.3 – 36.7 million m3) annually

Hydration‐Control Admixtures

Sustainable Initiatives ‐Materials

21

Returned Concrete and Washwater 

Volume:

Estimate: 2‐10% concrete production returned to plants

9.6 – 48 million yd3 (7.3 – 36.7 million m3) annually

Estimate: Typical plant generates 1,400,000 gal (5,300,000 L) washwater annually

Sustainable Initiatives ‐Materials

Page 8: Role of Chemical Admixtures in Sustainability - The Opportunity

5/27/2013

8

22

Hydration Control Admixtures

Same‐Day Stabilization

HCA Washwater Treatment

HCA‐Treated + Fresh Concrete

Sustainable Initiatives ‐Materials

23

Benefits:

Reduces landfill waste 

Economical reuse of returned concrete and washwater ‐ sustainability

Environmental Audit Reports available through patented software

Promotes community and social responsibility

Hydration Control Admixtures

Sustainable Initiatives ‐Materials

24

ASR Damaged Pile Cap

Benefits of Chemical Admixtures

Sustainable Initiatives ‐Materials

Page 9: Role of Chemical Admixtures in Sustainability - The Opportunity

5/27/2013

9

25

• Durability‐enhancing admixtures Extend useful service life of concrete structures

Benefits of Chemical Admixtures

2003

1992

The High Cost of Repair

Sustainable Initiatives ‐Materials

26

Achieving design service lives through the use of low w/cm, low permeability concrete in combination with 

durability‐enhancing admixtures will minimize the need for major repairs and replacement of concrete structures.  

Benefits of Chemical Admixtures

Sustainable Initiatives ‐Materials

27

Overall, chemical admixtures will extenduseful service life

Conservation of Materialsover Life‐Cycle of Structure

Sustainable Initiatives ‐Materials

Page 10: Role of Chemical Admixtures in Sustainability - The Opportunity

5/27/2013

10

28

Embodied Energy

Sustainable Initiatives

29

Materials that have a lower overall embodied energy are more sustainable and ecologically better than those with a higher 

embodied energy

Embodied Energy

Sustainable Initiatives

30

Embodied Energy

Concrete has a low embodied energy relative to other materials, but…

Source: Tucker, Selwyn (2001). "The Embodied Energy in Buildings" www.dbce.csiro.au/ind‐serv/brochures/embodied/embodied.htm 

Sustainable Initiatives

Page 11: Role of Chemical Admixtures in Sustainability - The Opportunity

5/27/2013

11

31

Embodied Energy

Concrete is the most widely used construction material in the world, therefore…

Source: Tucker, Selwyn (2001). "The Embodied Energy in Buildings" www.dbce.csiro.au/ind‐serv/brochures/embodied/embodied.htm 

Portland cement accounts for ~85%

Sustainable Initiatives

32

Admixture Type

Solids1,2

Content,%

Total2,3

Energy,MJ/kg

Typical2

Dosage,% of cmt

Potential Embodied4 EnergyContribution

MJ/m3 % of Concrete

Air entrainer 3 – 14 2.1 0.2 – 0.5 1.4 – 3.5 < 0.1

Normal water reducer 30 – 45 4.6 0.2 – 0.7 3 – 11 0.09 – 0.3

High-range water reducer 30 – 45 18.3 0.5 – 2.2 30 – 135 0.9 – 4.2

Retarder 17 – 46 15.7 0.2 – 0.8 10 – 42 0.3 – 1.3

Accelerator 35 – 50 22.1 0.5 – 2.0 37 – 148 1.2 – 4.6

Waterproofer 10 – 43 5.6

1Reported valid range; 2 source: EFCA – www.efca.info;3 LCI data for electricity production are based on the European fuel mix; 4 assuming 30-MPa concrete mixture with 335 kg/m3 of cementitious materials (embodied energy of 3180 MJ/m3).

Potential Embodied Energy Contributed by Chemical Admixtures

Sustainable Initiatives ‐ Embodied Energy

33

Chemical admixtures can be used tooptimize portland cement content without compromising workability, strength or 

durability.

Reduction in the Embodied Energy of Concrete

Benefits of Chemical Admixtures

Sustainable Initiatives ‐ Embodied Energy

Page 12: Role of Chemical Admixtures in Sustainability - The Opportunity

5/27/2013

12

34

Reducing Embodied Energy of Concrete with SCMs

Source:PCA R&D Serial no. 3011

Sustainable Initiatives ‐ Embodied Energy

Chemical admixtures facilitate the use of higher replacement levels of SCMs.

35

Reducing Placement Energy of Concrete with Admixtures

Sustainable Initiatives ‐ Embodied Energy

MRWR, HRWR, VMAs facilitate concrete 

placement & finishing

Reduce jobsite energy needs

36

Non SCC SCC

Reducing Placement Energy of Concrete with Admixtures

Sustainable Initiatives ‐ Embodied Energy

Page 13: Role of Chemical Admixtures in Sustainability - The Opportunity

5/27/2013

13

37

Chemical admixtures will provide a net benefit in reducing the total energy associated with a concrete 

structure over its life cycle. 

Sustainable Initiatives ‐ Embodied Energy

38

Chemical admixtures enable other benefits from a social responsibility perspective

Preservation of the environment

Chemical Admixtures

39

• Hydration‐control admixtures Reduce/eliminate return concrete waste & washwater 

pollution

• Antiwashout admixtures Minimize washout of cement/fines in underwater 

concreting

• Specialty concrete mixtures Pervious concrete

Very high‐early strength concrete

Benefits of Chemical Admixtures

Sustainable Initiatives – Social Factors

Page 14: Role of Chemical Admixtures in Sustainability - The Opportunity

5/27/2013

14

40

Antiwashout Admixtures

Underwater Concreting Challenges:

Difficult placement

Washout of cement & fines

Cloudy surroundings – safety

Quality of in‐place concrete

Environmental concerns

Relatively high cost

19.1%

3.8%1.3%

0

4

8

12

16

20

24

Untreated 10 (650) 15 (975)

Antiwashout dosage fl oz/cwt (mL/100 kg)

% M

ass

Loss

Sustainable Initiatives – Social Factors

41

AWA TreatmentAWA Treatment Untreated ConcreteUntreated Concrete

Benefits:

Reduce/eliminate dewatering costs

Superior and predictable in‐place concrete properties

Minimizes environmental impact of cement washout on aquatic life

Lower in‐place cost

Reduction in washout of cement and finesAntiwashout Admixtures

Sustainable Initiatives – Social Factors

42

Pervious Concrete No stormwater collection and disposal No contaminated runoff to be treated Increased site utilization  No retention & detention ponds

Challenges: Difficult mix to get out of the truck & place Additional water added on site (inconsistent

mix quality) Short workable life

Admixture System: HRWR, MRWR, Hydration Control and VMA

Admixture system facilitates placementBenefits: Allow mix to easily discharge from truck No need to add water on site (user friendly) Increases workability time Improves flow for ease of placement Increases compressive strength Inhibits paste drain down

Sustainable Initiatives – Social Factors

Page 15: Role of Chemical Admixtures in Sustainability - The Opportunity

5/27/2013

15

43

Pervious Concrete

Sustainable Initiatives – Social Factors

44

Heat Island Effects

Source: American Concrete Pavement Association (QD 007P)

Dark surfaces contribute towards “heat island” effects increased lighting requirements 

Energy demands increase for cooling lighting

Result: increased power plant emissions heat‐trapping greenhouse gases

Concrete is more light reflective and MUCH cooler than asphalt

Can help to reduce energy demand on electric grids

Sustainable Initiatives – Social Factors

45

Pigments & Liquid‐Coloring Admixtures

Titanium dioxide (TiO2) and liquid‐coloring admixtures can be used to produce “light‐colored” concretes with high SRI values 

Sustainable Initiatives – Social Factors

Page 16: Role of Chemical Admixtures in Sustainability - The Opportunity

5/27/2013

16

46

Bridge Deck & Pavement Repairs

Highways, roads, and streets need replacement

Traffic volumes have increased

Motorists can be impatient

ACPA estimates

Road user delays = 3.7 billion h

2.3 billion gal (8.7 billion L) wasted fuel

Increased CO2 emissions

FHWA “Highways for Life” program

Patented Admixture System:

Synthetic high‐range water‐reducing admixture ‐ provides fluidity and strength

Hydration control (extended‐set) admixture or workability‐retaining admixture ‐ provides workability control

Accelerating admixture ‐ provides early strength

Sustainable Initiatives – Social Factors

47

High‐early strength concrete (3 ‐ 4 hours)

Benefits:

Reduces traffic congestion

Reduces gasoline waste and emissions

Highly durable pavement increases service life – sustainable construction

Sustainable Initiatives – Social Factors

High-Performance Green Concretes

48

Admixtures Facilitate Development of…..

Page 17: Role of Chemical Admixtures in Sustainability - The Opportunity

5/27/2013

17

Definition – an environmentally preferable, cost-effective concrete with optimized proportions in which supplementary cementitious materials and non-cementitious fillers are used with select chemical admixtures to meet or exceed performance targets.

Utilizes Advanced Concrete Mixture Optimization Techniques

Recycled materials

Specially formulated HRWRs & workability-retaining admixture

Improves ease of constructability

Increases the service-life (durability) of structures

and it’s ecological and economical !!!

49

High‐Performance Green Concrete

Redefining the Concrete Space

High High

Low

Low

HighWorkability

Durability

Co

st

Po

rosi

ty

H-P Green Concrete

ReferenceConcrete

Low

Relative performance potential 50

High‐Performance Green Concrete

Low

High

Advanced Optimization+

Recycled Materials+

Chemical Admixtures

51

Quantifying the Benefits of Sustainability Initiatives

How do we capture the true sustainability benefits of concrete?

USGBC, GBI, BREEAM???

Sustainable – Quantifying Benefits

Page 18: Role of Chemical Admixtures in Sustainability - The Opportunity

5/27/2013

18

52

The Leadership in Energy and Environmental Design (LEED) Green Building Rating System™ encourages and accelerates global adoption of sustainable green building and development practices through the creation and implementation of universally understood and accepted tools and performance criteria. 

Quantifying the Benefits of Sustainability Initiatives

USGBC – LEED Rating System

53

Quantifying the Benefits of Sustainability Initiatives

USGBC – LEED Rating System

54

Typical Green Concrete “Buzz Words”

Reduce cement content

Use more supplementary cementitious materials

Use recycled concrete

Which Mix is More Sustainable?

Cement for Mix A comes from China – larger CO2 footprint

California project – no fly ash Fly ash from east of Mississippi; has carbon footprint

Depends on recycler efficiency and distance

So how does one know which mix is more sustainable???

Sustainable – Quantifying Benefits

Recycled ContentMix A Mix B0 % 20 %

Mix A Mix BMaterial (kg/m3) Material     (kg/m3)Cement         307 Cement         335

Mix A Mix BMaterial (kg/m3) Material     (kg/m3)Cement         335 Cement         284

Fly Ash            50

Page 19: Role of Chemical Admixtures in Sustainability - The Opportunity

5/27/2013

19

55

Quantifying the Benefits of Sustainability Initiatives

Current rating systems do not necessarily capture the overall ecological benefits of 

green concrete mixtures. 

Sustainable – Quantifying Benefits

56

Quantifying the Benefits of Sustainability Initiatives

Sustainable – Quantifying Benefits

Eco‐Efficiency Analysis is a strategic life‐cycle methodology for comparing the relative ecological and economic efficiencies of alternative

Products (like baby diapers or concrete)

Processes (curing compounds or steam curing)

Technologies (automobiles or motorcycles)

Sustainable – Quantifying Benefits

Page 20: Role of Chemical Admixtures in Sustainability - The Opportunity

5/27/2013

20

58

Environmental Impact Categories

Global Warming Potential

Ozone Depletion Potential

Photochemical Ozone Creation Potential

Acidification Potential

Air Emissions

•Cumulative energy utilized in the production, use, & disposal phases

•Fossil and renewableresources areincluded

Consumptionof Energy

•Cumulative energy utilized in the production, use & disposal phases

•Fossil and renewableresources areincluded

Consumptionof Energy

Emissions

•Described bycategories‐ Air‐ Water‐ Solids

Emissions

•Described bycategories‐ Air‐ Water‐ Solids

Toxicity Potential

•Potential effect on human health toxicity

Toxicity Potential

•Potential effect on human health toxicity

Risk Potential

•Potential for physical haz. (i.e. wrk. accid. & occupational disease)

•Based on published stat.data (e.g . insurance assoc )

Risk Potential

•Potential for physical haz. (i.e. work accid. & occupational disease)

•Based on published stat.data (e.g . insurance assoc )

Consumptionof Raw

Materials

•Materials  areweightedaccording to reserves and global consumption

Consumptionof Raw

Materials

•Materials  areweightedaccording to reserves and global consumption

Land Use 

•Degree of land development needed to fulfil the production, use, & disposal of 1 yd 3 of concrete

Land Use 

•Degree of land development needed to fulfill the production, use & disposal of 1 yd 3 of concrete

EEA Environmental Impact Categories

59

An Eco‐Efficiency Analysis methodology for concrete has been third‐party validated by TÜV Rheinland® (certificate number: 5711150561).

TUV appraises, tests and certifies technical equipment and products according to international quality standards and then registers those in compliance.

Methodology also validated by NSF International. (Protocol P352)NSF International, a not‐for‐profit, non‐governmental organization, develops national standards and provides third‐party conformity assessment services.

Data acquisition and calculation typically in line with ISO environmental protocol ISO 14040 and 14044 (ecological part).

Eco‐Efficiency Analysis (EEA) of Concrete Mixtures

Sustainable – Quantifying Benefits

Concrete Plant

Cement Production

Aggregate Quarry

•Blast/mine

•Crush

•Separate sizes

•Store/load/ship

•Mine raw materials

• Heat in kiln

•Grind with gypsum

• Store/load/ship

Cement Production

• Receive raw material

•Manufacture molecules

• Blend ingredients

• Store/load/ship

Chemical Admixtures

• Reduced usage of potable water

Water

• Separate and process

• Store/load/ship

RecycledMaterials

EEA concrete analyses can be conducted on ready mixed, precast, manufactured concrete products, paving, self-consolidating and pervious concrete.

EEA of Concrete – Cradle to Gate

Page 21: Role of Chemical Admixtures in Sustainability - The Opportunity

5/27/2013

21

61

1. Customized Interactive Programspecifically for concrete mixtures

Data gathered from Chemical Company, Industry Associations, Government Databases, Contract Consultants

2. Evaluates environmental and economical impact of concrete ingredients based on input

3. Compares five different concrete mixture proportions for six environmental impact areas

4. Quantifies environmental and economical impact for each mix

Eco-Efficiency Analysis can be used to quantify the economical and ecological impact of Green Concrete mixtures

Eco-Efficiency Analysis

Eco‐Efficiency Analysis (EEA) of Concrete Mixtures

Sustainable – Quantifying Benefits

Based on an annual production of 60,000 yd3 (45,900 m3) of concrete

Example of CO2 emissions, energy usage, and annual

water consumption savings and practical equivalents

compared to reference mix.

Environmental impact categories include:

Energy consumption

Emissions (air, water, and solid waste)

Toxicity potential

Risk potential 

Raw material consumption

Use of area (land)

62

Water Saved - Truck Washout and Bottled Water

AlternativeWater Saved

(gal/yd3)

Annualized Water Saved

(gal/yr)

Equivalent Annualized

Number of Truck Washouts

Equivalent Number of 1/2 liter

Bottles of Water

Fly Ash 15% 1 43,217 192 327,155

Fly Ash 40% 3 180,072 800 1,363,145

Slag 50% 4.20 252,101 1,120 1,908,403

Green Sense 7 396,158 1,761 2,998,920

Energy Saved - US Homes Equivalent

AlternativeEnergy Saved

(kWh/yd3)

Annualized Energy Saved

(kWh/yr)

Annualized US Energy Savings

Equivalent (homes/yr)

Fly Ash 15% 69 4,116,295 356

Fly Ash 40% 181 10,884,852 941

Slag 50% 158 9,480,149 819

Green Sense 199 11,945,185 1,032

Smaller Carbon Footprint -Volume of Gasoline Equivalent

Alternative

Emissions Saved (lb CO2

equiv./yd3)

Annualized Emissions

Saved (lb CO2

equiv./yr)

Annualized Volume of Gas Saved

(gal/yr)

Fly Ash 15% 87 5,245,325 276,070

Fly Ash 40% 235 14,084,608 741,295

Slag 50% 254 15,218,338 800,965

Green Sense 247 14,807,727 779,354

Ecological Analysis

The impact of each ingredient is determined for each of the six environmental impact categories and more.

63

0

100

200

300

400

500

600

700

800

900

1,000

1,100

ReferenceMix

Fly Ash 15% Fly Ash 40% Slag 50% Green Sense

lb C

O2-e

qu

ival

ent/

yd3

Transportation

Admixtures

Water

Aggregates

Powders

Cement

Green Concrete

Ecological Analysis – Emissions Potential

Page 22: Role of Chemical Admixtures in Sustainability - The Opportunity

5/27/2013

22

64

The four concrete alternatives are shown to be progressively more environmentally preferable in relation to the Reference Mix.  

0.00

Energy consumption

Emissions

Toxicity potential

Risk potential

RM consumption

Use of area

Reference Mix

Fly Ash 15%

Fly Ash 40%

Slag Cement  50%

Green Sense Concrete

Ecological Fingerprint

65

0.5

1.0

1.5

0.5

Costs (normalized)

Environmental Im

pact (norm

alized)

Reference Mix

Fly Ash 15%

Fly Ash 40%

Slag Cement 50%

Green Sense Concrete

1.5 1.0

The Green Concrete mixture has the lowest overall environmental burden and is the most economical to produce.

Eco‐Efficiency Profile

Challenges:

Homeowner demands for green construction

Home builders looking to meet demand and differentiate

Solution:

Sustainable concrete mixes Foundations

Sidewalks

Driveways

Slabs

HPGC in Residential Construction

Page 23: Role of Chemical Admixtures in Sustainability - The Opportunity

5/27/2013

23

Environmental SavingsParameter Reference Optimized % Savings

Energy (kWh/yd3) 388.28 367.40 5.4%

Raw Material Resource Consumption (lb/yd3) 45.85 41.33 9.9%

Fossil Fuel Consumption (lb/yd3) 17.72 17.14 3.3%

Global Warming Potential (lb CO2eq/yd3) 388.33 339.92 12.5%

Photochemical Ozone Creation Potential

[Summer Smog] (lb Ethene eq/yd3)0.07 0.07 3.1%

Acidification Potential [Acid Rain] (lb SO2eq/yd3) 2.62 2.34 10.5%

Solid Waste (lb/yd3) 93.77 83.58 10.9%

Land Use (ft2/yd3) 213.14 210.92 1.0%

120 Home Sub DivisionCategory

Environmental Parameter

Optimized Concrete Savings

Practical Equivalent Savings

Value

Energy Energy (kWh) 175,456 Homes: (homes/year) 15

Carbon FootprintAir Emissions

(lb CO2 equiv.)406,631 Forest: (acres/project) 231

Acidification Potential

Air Emissions

(lb SO2 equiv.)2,317 Air Conditioners:(number/year) 154

Solid Waste Generation

Solid Emissions (lb)

85,555 Solid Waste: (persons/day) 17,111

Fossil Fuel Consumption

Fossil Fuel (lb) 10,864 Barrels of Oil Saved on Project 220

HPGC in Residential Construction

Project Specifications and Other Details:

4 High Rise Buildings

WTC 9/11 Memorial 

1 Transportation Hub

Up to 74% SCM Replacement using  fly ash, slag cement & silica fume

96.5 MPa @ 28 days

13.8 MPa overdesign

Modulus of Elasticity > 48.3 GPa

Nearly 765,000 m3 to be used

Required SCC spread of 685 mm

Specifier – Port Authority of New York / New Jersey

68

World Trade Center Project, New York

96‐MPa Mix 83‐MPa Mix 55‐MPa Mix*

Cement, kg/m3  178 171 178

Fly Ash, kg/m3 42 95 59

Slag Cement, kg/m3 288 294 267

Silica Fume, kg/m3 42 21 ‐‐

SCM Content, percent 68 70 65

s/a 0.41 0.43 0.47

w/cm 0.24 0.26 0.40

PCE HRWR, mL/m3 5,100 4,060 1,930 – 2,320

HCA, mL/m3 1,860 1,930 1,930 – 2,710

Defoamer, mL/m3 620 ‐‐ ‐‐

Workability Retainer, mL/m3 As needed As needed As needed

Slump Flow Spread, mm 685 725 635 – 760

* Winter version of mix. Source: Port Authority of New York / New Jersey 69

World Trade Center Project, New York

Page 24: Role of Chemical Admixtures in Sustainability - The Opportunity

5/27/2013

24

Total Project

Environmental Impacts Environmental Savings

Energy (kWh) 25,402,200 kWh savings

Resource Consumption (kg) 1,261200 kg savings

Fossil Fuel Consumption (kg) 504,570 kg savings

GHG (lb CO2 eq) 15,857,300 kg CO2 reduction

POCP (lb ethene eq) 1,290 kg ethene reduction

AP (lb SO2 eq) 100,830 kg SO2 reduction

Water Production (L) 588,440 L water production savings

Water Emissions (L) 19,860,080 L water emissions savings

Solid Waste (kg) 781,860 kg solid waste savings

Land Use (m2) 206,370 m2 land savings

70

World Trade Center Project, New York

One World Trade Center won The Concrete Producer       “Readers Choice” 2010 Green Site Award

for use of

High‐Performance Green Concrete

71September 2010

World Trade Center Project, New York

Owner:  City & County of San Francisco

General Contractor:  Webcor Builders

Concrete Producer:  Central Concrete

Resilient Post‐Tensioned Concrete Structure

13‐Story; 277,000 ft2 (25,730 m2)

LEED® Platinum

Up to 70% SCM Replacement 

CO2 Emissions – 7.4 x 106 lb (3.4 x 106 kg) net savings

72

San Francisco PUC Building, CA

Page 25: Role of Chemical Admixtures in Sustainability - The Opportunity

5/27/2013

25

Project:

Pushing the boundaries of engineering :‐height of 2,625 ft (800 m)

Compressive Strength:‐ 14,500 psi (145 MPa)

Concrete Volume:‐ 222,340 yd3 (170,000 m3)

Challenge:

Pumping concrete to formidable heights

Solution:

Advanced mix optimization

Fly ash (performance – durability [life cycle] and heat of hydration control)

Special PCE admixture

The Burj Khalifa, Dubai

Environmental Benefits and Trade Offs

Optimized

The Burj Khalifa, Dubai

Solid Waste Generated

Emissions SavingsSolid Waste Equivalent

Mass per UnitVolume

ProjectTotal

Persons/day

12.9 lb/yd3

(7.6 kg/m3)2,878,825 lb(1,305,810 kg) 

575,675

Optimized

31.9% Savings

The Burj Khalifa, Dubai

Page 26: Role of Chemical Admixtures in Sustainability - The Opportunity

5/27/2013

26

76

Developed in partnership with Rockefeller Group Development Corporation

One of New Jersey’s largest sustainable buildings

Designed to achieve LEED® “Double” Platinum certification

5-story building, 2-story lobby

325,000 ft2 (30,190 m2) building with space for up to 1,400 people

Construction time: August 2010 to May 2012

High-Performance Green Concrete used exclusively

BASF Headquarters, Florham Park, NJ

77

Sustainable design features:  

Water Efficiency 

Indoor water usage is estimated to be reduced by at least 40% by using low‐flow plumbing fixtures.  

Landscape plan incorporates native and non‐invasive plantings that require 85% less water to survive.  

Site Development

Maximize open space: over 40% of site will remain as open space.  

Natural filtering and recharge of storm water achieves more than the 80% TSS (total suspended solids) removal rate. 

Material Selection

At least 20% of the materials purchased for the project have recycled content, while at least 10% were purchased from local suppliers lessening the transportation impacts and benefiting the local economy.  

At least 75% of the construction waste was diverted from landfills and recycled. 

Porous pavement system is made from 100% post‐consumer recycled glass and polyurethane binder. The system prevents stormwater runoff, allows water to return to natural aquifers and can filter as much as 4,000 L (1,070 gal) of water per hour. 

BASF Headquarters, Florham Park, NJ

78

CATEGORY LEED Core & Shell v2.0

Commercial Interiors v2009

Sustainable Sites 11/15 15/21

Water Efficiency 4/5 11/11

Energy & Atmosphere 10/14 31/37

Materials & Resources 8/11 7/14

Indoor Environmental Quality 11/11 14/17

Innovation in Design 5/5 3/6

Regional Priority n/a 4/4

PLATINUM 49/61* 85/110*

* Total points pending final Green Building Certification Institute (GBCI) review.

BASF Headquarters LEED Points Potential

USGBC’s Highest Achievement

Page 27: Role of Chemical Admixtures in Sustainability - The Opportunity

5/27/2013

27

79

4000 psi (27.6 MPa) High-Performance Green Concrete

4000 psi (27.6 MPa) Mix

5000 psi (34.5 MPa) High-Performance Green Concrete

5000 psi (34.5 MPa) Mix

BASF Headquarters EEA Fingerprint

Cement Replacement – 32.9%Recycled Material Content – 32.2 %

Environmental Savings from Green Concrete:

Environmental Benefits in Human Terms!

Quantity Practical Equivalence

Water Savings 71,654 L143,308 0.5‐L bottles of water

Energy Savings 885,010 kWhAnnual energy used by 69 U.S. homes

CO2 Equivalent Savings

520,923 kg 228,800 L of gasoline

81

• Provide Sustainable Concrete Construction Opportunities

– Reduce water usage & facilitate use of SCMs

– Reduce and help manage returned concrete and washwater

– Help in facilitating stormwater management

– Contribute towards reducing heat island effects

– Reduce energy consumption

– Help protect aquatic life

– Reduce gasoline waste and emissions

– Benefits can be quantified through Eco‐Efficiency Analysis

Performance‐Based Sustainable Construction

Benefits of Chemical Admixtures

Sustainable Concrete – In Summary

Page 28: Role of Chemical Admixtures in Sustainability - The Opportunity

5/27/2013

28

82

Thank You!