44
6 June 2013 1 Rock Mass Characterisation using Geophysical Logs Peter Hatherly Coalbed Geoscience [email protected] Terry Medhurst PDR Engineers [email protected] 6th June 2013 Outline 1. Geophysical logging methods 2. Interpretation of geophysical logs 3. Geotechnical interpretation the GSR 4. Modelling the GSR and geophysical logging data

Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

Embed Size (px)

Citation preview

Page 1: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 1

Rock Mass Characterisation using

Geophysical Logs

Peter Hatherly – Coalbed Geoscience

[email protected]

Terry Medhurst – PDR Engineers [email protected]

6th June 2013

Outline

1. Geophysical logging methods

2. Interpretation of geophysical logs

3. Geotechnical interpretation – the GSR

4. Modelling the GSR and geophysical logging

data

Page 2: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 2

1. Geophysical logging methods

Types of logs

1. Radiometric logs – natural gamma

– density (gamma-gamma)

– neutron (neutron-neutron)

– spectrometric logging

2. Sonic logs – conventional (first breaks)

– full waveform sonic (cement bond logs)

3. ‘Electric’ logs – resistivity

– conductivity

– dip meter

– self potential

– magnetic susceptibility

– induced polarisation

Page 3: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 3

Types of logs (cont)

4. Caliper logs – single arm

– multi arm

– full hole

5. Survey tools (magnetic and non-magnetic)

6. Imaging tools – acoustic scanner

– electrical imaging

7. Temperature

Geophysical logging in coal mining

The basic log suite:

– natural gamma

– density

– sonic

– caliper

– borehole survey

– (also neutron,

acoustic scanner,

resistivity,

spectrometric logs)

Page 4: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 4

1. Radiometric tools

• natural gamma radiation

– isotopes of 40K and 238U, 232Th & their daughters

• sources

– 60Co or 137Cs source for gamma rays

– PuBe or AmBe for neutrons

• detectors

– NaI Detector – gamma radiation

– 3He – neutron detection

• can be run inside rods and in and out of water (calibration issues)

Natural

gamma

Caliper

Detectors

Source

1.1 Natural gamma logging

• K, U & Th tend to be more common in shales

• total counts and spectrometric logging

• raw units in counts per second (cps). Calibration required to

convert to units of API (American Petroleum Institute)

• quartz sandstone = 10-30 API, shale 180-250 API, coal < 50

API.

• for clay content calculations:

• beware of kaolinitic siltstones as well as lithic & otherwise ‘hot’

sandstones (heavy minerals, felsic)

sandshale

shaleV

sand

)(clayevolumeShalVshale

Page 5: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 5

Natural radioactivity

• U – reasonably common, soluble – sedimentary & organic

concentrations

• Th – most commonly associated with monazite – heavy beach

mineral

• K - 7th most abundant element and occurs in many silicate

minerals including micas, feldspars and clays:

- Kaolinite: (Al2Si2O5(OH)4

- Montmorillonite/Smectite:

(Ca, Na, H)(Al, Mg, Fe, Zn)2(Si, Al)4O10(OH)2-xH2O

- Illite (K,H)Al2(Si,Al)4O10(OH)2-xH2O (hydrated muscovite)

natural

gamma log 150

170

190

210

230

250

270

290

0 150 300

API

Dep

th (

m)

Page 6: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 6

1.2 Density (gamma gamma) logging

• measures back scattered gamma radiation – Electron density true density

• raw unit in counts per sec (cps) - Calibration required to convert to kg/m3 (also units of t/m3 = g/cm3 )

• Some densities (t/m3)

fresh water 1 clay minerals 2.65- 2.75

salt 2.1- 2.4 basalt 2.7- 3.3

limestone 2.5- 2.85 gabbro 2.8- 3.5

granite 2.5- 2.8 sphalerite 3.5- 4

sandstone 2.5- 2.75 pyrite 4.9- 5.2

quartz 2.65 galena 7.4- 7.6

coal 1.3- 1.9

density,

gamma 150

170

190

210

230

250

270

290

0 1.5 3

g/cc

Dep

th (

m)

150

170

190

210

230

250

270

290

0 150 300

API

Dep

th (

m)

Page 7: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 7

Density

• Density of rocks need not be the same as the density of

the mineral constituents because of porosity.

• Density is affected by pressure and temperature

• Density is also relevant to gravity measurements &

seismic wave propagation (sonic logging)

fma log

fma

ma

logitymatrixDensma

tyfluidDensif

1.3 Neutron (porosity) logging

• neutrons emitted from source loose energy through collisions

with particles of similar mass to neutrons (ie H)

• raw measurements in counts per second but calibrated to

provide apparent porosity

• H is present in the form of water – free (pore) water and bound

water in clays (also hydrocarbons in coal and hydroxides etc)

• coal and iron rich strata have high apparent porosities

• when free gas is present, (porosity crossover)

• for clay calculations:

NSh

DNshaleV

(assumes øDSh = 0)

D

Page 8: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 8

neutron,

density,

gamma

150

170

190

210

230

250

270

290

0 1.5 3

g/cc

Dep

th (

m)

150

170

190

210

230

250

270

290

0 150 300

API

Dep

th (

m)

150

170

190

210

230

250

270

290

0 50 100

Neutron Porosity %

De

pth

(m

)

2. Sonic logging

• usually provides P-wave velocity through rocks in borehole wall – raw measurement is transit time between P-

wave arrivals at receivers (originally measured in microsecs/foot)

– velocity in km/s, ft/s

– velocity (km/s) = 304.8/transit time (usecs/ft)

– also full waveform tool

• requires water coupling – no casing

– no S-waves when Vs < 1550 m/s

• P-wave velocities in rocks – coal < 2,500 m/s

– Sediments: 2,500 – 5,000 m/s

– Igneous: 4,000 – 7,000 m/s

Page 9: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 9

Borehole wave

propagation

• P-wave from Tx is

refracted as P- and S-

waves along borehole

wall which refract

again as P-waves to

Rx array

• P-wave picked as 1st

arrival at each Rx

• Stoneley wave travels

within borehole fluid

Full waveform signals

velocity,

neutron,

gamma,

density

150

170

190

210

230

250

270

290

0 1.5 3

g/cc

Dep

th (

m)

150

170

190

210

230

250

270

290

0 150 300

API

Dep

th (

m)

150

170

190

210

230

250

270

290

0 50 100

Neutron Porosity %

De

pth

(m

)

150

170

190

210

230

250

270

290

2000 4000

Velocity m/s

Dep

th (

m)

Page 10: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 10

Acoustic scanner

(televiewer)

• rotating head obtains

oriented acoustic image

(reflections off) of borehole

wall

– fracture mapping

• also full borehole caliper

– borehole breakout (stress)

112

112

VV

VV

oefficientCreflection

3. Resistivity logging

• raw measurement is voltage between electrodes – converted to resistivity (ohm-m)

• ionic conduction through pore water and electron flow in metallic minerals and clay

• requires fluid coupling

• no steel casing

• typical values coal: 200 –10,000 ohm-m

sediments: 20-1,000 ohm-m

minerals: < 1 ohm-m

• focussed (laterlogs) logs, use guard electrodes to force the current flow into the formation.

• micro-resistivity tools (dip meters) use electrodes on caliper pads

Page 11: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 11

Electrical properties

Resistivity ρ is defined by the resistance R of a volume

of material length l and cross sectional area A

ohm-metre

Conductivity, σ = 1/ρ siemen/metre

(From now on, R is used for resistivity, not ρ)

l

RA

Typical values of resistivity

Page 12: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 12

resistivity,

neutron,

gamma

150

170

190

210

230

250

270

290

0 150 300

API

Dep

th (

m)

150

170

190

210

230

250

270

290

0 200 400

Resistivity (ohm m)

De

pth

(m

)

150

170

190

210

230

250

270

290

0 50 100

Neutron Porosity %

De

pth

(m

)

150

170

190

210

230

250

270

290

80 100 120

Caliper (mm)

Dep

th (

m)

150

170

190

210

230

250

270

290

15 20 25

Temperature C

De

pth

(m

)

150

170

190

210

230

250

270

290

0 150 300

API

Dep

th (

m)

150

170

190

210

230

250

270

290

0 1.5 3

g/cc

Dep

th (

m)

temperature

caliper,

gamma,

density

Page 13: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 13

2. Interpretation of geophysical logs

“Pretty, but does it mean anything?”

LAS (Log ASCII Standard) format

Header

Data

Page 14: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 14

Import LAS format files to Excel

Basic Excel chart

CODE

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500 600

Page 15: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 15

Image files

• No standard formats for image files – i.e. files with multiple

measurements at each depth level

– Full waveform sonics

– Scanners

– Dip meters

• Use of proprietary binary formats

An approach to quantitative interpretation

• Determine porosity using density log

• Determine clay content using:

– Natural gamma log

– Neutron and density logs

– Resistivity and density logs

• Calculate velocity using porosity and clay content and

check with calculated velocity – provides a check on

porosity and clay determinations

• Calculate Geophysical Strata Rating (GSR)

Assume a clastic rock model where:

porosity + clay + quartz = 1

1 quartzshale VV

Page 16: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 16

Equations

porosity

sandstoneshale

sandstoneshaleV

NSh

DNshaleV

shalequartz VV 1

fma

ma

)(446.094.677.5 7.16 eVvelocity shale

Eberhart-Phillips et al, Geophysics (1989)

water

shaleshaleRR

RV81.0

1 2

clay

quartz

(density log)

(natural gamma log)

(neutron & density logs)

(resistivity & density

logs)

Demonstration

Page 17: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 17

Some practical considerations, pitfalls

and additional matters

Sampling interval

90

100

110

120

130

140

150

160

170

558 558.1 558.2 558.3 558.4 558.5 558.6 558.7 558.8 558.9 559

Depth (m)

Natu

ral gam

ma (

AP

I).

1 cm vs 5 cm vs 10 cm

Page 18: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 18

0

50

100

150

200

250

558 558.5 559 559.5 560 560.5 561 561.5 562

Depth (m)

Gam

ma r

ay r

esponse (

AP

I) .

0.01m samples

0.05m samples

0.1m samples

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

558 558.5 559 559.5 560 560.5 561 561.5 562

Depth (m)

Velo

city (

km

/s)

0.01m samples

0.05m samples

0.1m samples

ss st coarsening

upwards

st ss st ss st coarsening

upwards

4 m

Natural

gamma

Acoustic

scanner

Core

Sonic

Low gamma shales

gamma

100

120

140

160

180

200

220

240

260

0 50 100 150 200 250

API

depth

(m

)

density & sonic

100

120

140

160

180

200

220

240

260

1.00 2.00 3.00 4.00 5.00

units

depth

(m

)

neutron porosity

100

120

140

160

180

200

220

240

260

0.00 0.10 0.20 0.30 0.40 0.50

fraction

depth

(m

)

resistivity

100

120

140

160

180

200

220

240

260

0 100 200 300 400

ohm-m

depth

(m

)

Bald Hill

Claystone –

kaolinitic and

iron rich

Page 19: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 19

Caving S1942

514

524

534

544

554

564

574

584

594

90 100 110 120

caliper

depth

(m

)

S1942

514

524

534

544

554

564

574

584

594

0 50 100 150 200 250

resistivity

depth

(m

)

S1942

514

524

534

544

554

564

574

584

594

1.00 2.00 3.00 4.00 5.00

density & velocity

depth

(m

)

80 m

Clay occurrence

Dispersed clay

Laminated clay

Structural clay

Katahara, K.W., 1995. Gamma ray log response

in shaly sands. Log Analyst 36(4)

Page 20: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 20

Clay vs porosity cross-plots

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3

porosity

cla

y

dispersed

laminated

structural

390 m - 550 m

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.05 0.1 0.15 0.2 0.25 0.3

DEPO

Vshale

gam

ma

Narrabeen Group - laminated porosity & clay

390

410

430

450

470

490

510

530

550

0.00 0.25 0.50 0.75 1.00

fraction

depth

(m

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3

porosity

cla

y

dispersed

laminated

structural

Page 21: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 21

non-coal, 90m - 217 m

0

0.2

0.4

0.6

0.8

1

1.2

0 0.05 0.1 0.15 0.2 0.25 0.3

DEPO

Vshale

gam

ma

porosity & clay

90

110

130

150

170

190

210

0.00 0.25 0.50 0.75 1.00

fraction

depth

(m

)

Non-coal 90-217 m

Moranbah Coal Measures - structural

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3

porosity

cla

y

dispersed

laminated

structural

4. Geotechnical interpretation – the GSR Velocity

100

110

120

130

140

150

160

170

180

190

200

1.00 2.00 3.00 4.00 5.00

km/s

depth

(m

)

GSR

100

110

120

130

140

150

160

170

180

190

200

0 20 40 60 80

units

depth

(m

)

Porosity & Clay

100

110

120

130

140

150

160

170

180

190

200

0.00 0.25 0.50 0.75 1.00

fraction

depth

(m

)+

Page 22: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 22

Some background

• Sonic velocity / UCS relationships have been available and

utilised since early work (1980’s) of McNally, Davies, Ward

and others.

• It has been recognised that care is required in applying these

relationships from site to site, particularly in low strength

rocks.

• Through a series of ACARP projects since 2002, we have

looked more carefully at the relationships between

geophysical log responses, rock type and rock strength. This

has resulted in the development of a rating scheme we have

called the Geophysical Strata Rating (GSR).

Overview

1. Sonic velocity and UCS

2. The measurement and meaning of sonic velocity

3. Geophysical Strata Rating (GSR) for clastic rocks and

coal

Page 23: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 23

Transit time vs UCS

Oyler, Mark and Molinda, NIOSH 2010

Recognised limitations to UCS

relationships

• site specific

• function of rock

type

• depth dependent

Lawrence 1999

Page 24: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 24

Roadway roof hazard map - Crinum Mine (Payne, 2008)

Steps involved in analysis:

1. Identify roof units on the basis of sonic, gamma logs

2. Choose representative sonic transit times

3. Convert to UCS

4. Prepare roof sections & plans – ½ m, 2 m and 12 m

Average UCS for 2m roof (Payne, 2008)

Page 25: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 25

Rippability

Caterpillar Performance Handbook,

edition 38

What is seismic velocity measuring?

• Velocity is responding to bulk conditions in-situ

– defined by the elastic constants (it is related to the bulk

modulus and shear modulus)

– a function of fracturing and defects

– a function of composition and pressure

Page 26: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 26

3/4

KVp

sV

P-waves

(compressional

waves)

S-waves (shear

waves)

Seismic wave velocities

Dynamic vs static modulus

0

10

20

30

40

50

0 5 10 15 20 25

Static modulus (GPa)

Dynam

ic m

odulu

s (

GP

a)

Oaky Ck

Callide

(greater by a factor of 2)

Page 27: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 27

Velocity vs fracture

0

25

50

75

100

2.5 3.5 4.5 5.5

P-wave velocity (km/s)

RQ

D

0

5

10

15

20

Cra

cks/

m

RQD

Fracture

frequency

Sjogren et al 1979

Porosity

Clay

Quartz

2 .5

3 .0 3 .5

4 .0

4 .5

Velocity vs composition

epeshalep epVV

7.16446.073.194.677.5

5 MPa

confinement

Eberhart-Phillips et al, Geophysics (1989)

Page 28: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 28

Velocity vs pressure

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

0 100 200 300 400 500 600 700

Depth (m)

Velo

city (

km

/s)

25 Mpa/km

mixed

15 Mpa/km

shale = 50%

porosity = 10%

)(446.094.677.5 7.16 eVV shalep

What is seismic velocity measuring?

• Velocity is responding to bulk conditions in-situ

– defined by the elastic constants (it is related to the bulk

modulus and shear modulus)

– a function of fracturing and defects

– a function of composition and pressure

• Velocity is related to UCS as much as modulus is

related to UCS

strain

str

ess

stiff rock is strong

soft rock is weak

Page 29: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 29

Geophysical Strata Rating (GSR)

EMPIRICAL SCHEME 0-100

• Sonic (P-wave) velocity to estimate in-situ rock mass

properties.

• Consideration of pressure and compositional factors:

– Porosity

– Clay content

• Defect scores according to variability in previous scores

(‘fracture’) and variability in clay content (‘bedding’).

Medhurst and Hatherly since 2002

For GSR calculations

Geophysical logging data:

• Sonic logs

• Density logs (for porosity)

• Natural gamma logs (for clay content) but can also use

neutron logs and resistivity logs

Implemented using macros written for Excel

Page 30: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 30

Geophysical Strata Rating

1. Strength score 0 to 55 plus

2. Cohesion score 10 to 25 plus

3. Porosity score -15 to 0 plus

4. Moisture score -10 to 0 plus

5. Defect score

– fracture score 0 to 10 plus

– bedding score 0 to 10

For velocity range 2.5 to 5 km/s…

upper limit 100, lower limit 5

Initial

(intact)

GSR

0

10

20

30

2 2.5 3 3.5 4 4.5 5

Velocity (km/s)

Co

he

sio

n s

co

re

1. Strength score

2. Cohesion

score

Qtz > 0.67

Qtz < 0.57

0

20

40

60

2 2.5 3 3.5 4 4.5 5

Velocity (km/s)

Str

en

gth

sco

re

(correct velocity for

pressure)

Page 31: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 31

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Porosity

Vsh

ale

3. Porosity score

4. Moisture

score

-15

0

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Porosity

Vsh

ale

0

-10

Only applied if Vp < 4 km/s.

Linearly scales to zero while 4

< Vp < 5

5. Defect score

• Fracture score: 0 to 10

Fractures cause variations in initial GSR so use

variability (derivative) in GSRi to define fracture score

(10 = no variability)

• Bedding score: 0 to 10.

Boundaries between sands and silts/clays reflected in

the gamma log. Use derivative of clay content to

provide bedding score (10 = no variability)

Page 32: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 32

Velocity

100

110

120

130

140

150

160

170

180

190

200

1.00 2.00 3.00 4.00 5.00

km/s

depth

(m

)

GSR

100

110

120

130

140

150

160

170

180

190

200

0 20 40 60 80

units

depth

(m

)

Porosity & Clay

100

110

120

130

140

150

160

170

180

190

200

0.00 0.25 0.50 0.75 1.00

fraction

depth

(m

)

+

Geophysical Strata Rating

porosity & clay

90

100

110

120

130

140

150

160

170

0.00 0.25 0.50 0.75 1.00

fraction

depth

(m

)

porosity & clay

100

110

120

130

140

150

160

170

180

0.00 0.25 0.50 0.75 1.00

fraction

depth

(m

)

porosity & clay

116

126

136

146

156

166

176

186

196

0.00 0.25 0.50 0.75 1.00

fraction

depth

(m

)

porosity & clay

138

148

158

168

178

188

198

208

218

0.00 0.25 0.50 0.75 1.00

fraction

depth

(m

)

porosity & clay

164

174

184

194

204

214

224

234

244

0.00 0.25 0.50 0.75 1.00

fraction

depth

(m

)

GSR

90

100

110

120

130

140

150

160

170

0 20 40 60 80

units

depth

(m

)

GSR

100

110

120

130

140

150

160

170

180

0 20 40 60 80

units

depth

(m

)

GSR

116

126

136

146

156

166

176

186

196

0 20 40 60 80

units

depth

(m

)

GSR

138

148

158

168

178

188

198

208

218

0 20 40 60 80

units

depth

(m

)

GSR

164

174

184

194

204

214

224

234

244

0 20 40 60 80

units

depth

(m

)

GSR reflects rock

quality in a

geological context

Page 33: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 33

53

35

53

36

53

42

53

68

53

49

54

23

57

02

70

51

637800 638000 638200 638400 638600 638800 639000 639200 639400 639600 6398000

2

4

6

8

10

12

5

10

15

20

25

30

35

40

45

50

55

60

65

UCS section

GSR section modelled using Golden Surfer

GSR for coal & carbonaceous materials

• Require different treatment because porosity calculations assume that discrete rock grains are present.

• Velocity is abnormally low compared to other rocks but there is still some inherent strength.

• Generally bright coals are weaker and have lower ash than dull coals.

• Analysis requires recognition of these rock types and then applying appropriately modified GSR formula.

density & velocity

520

525

530

535

540

1.00 2.00 3.00 4.00 5.00

units

depth

(m

)

GSR

520

525

530

535

540

0 20 40 60 80

units

depth

(m

)

Page 34: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 34

GSR vs CMRR

• There are differences between GSR and CMRR, particularly in weaker mudstones

• CMRR limited by sensitivity of PLT data in weak rocks (CMRR < 30)

• Differences can also occur depending on how units are determined

• For an approximate conversion for GSR > 25

CMRR ≈ 0.5GSR + 20

Q-value vs velocity

Barton, 2002

Page 35: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 35

5. Modelling the GSR and geophysical

logging data

Geological modelling of a stratified deposit

• Establish positions for lithological boundaries within boreholes – Core, chips, geophysical logs

• Interpolate boundaries between boreholes (create wireframes)

• Take chosen geological parameter (ore grade, coal quality) from borehole and apply geostatistics to interpolate parameter values between boreholes and within boundaries

• Requires sufficient boreholes and test results. Not usually the case with geotechnical work.

• Geophysical logging data can be modelled in this same way

Page 36: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 36

Natural gamma logs

Density logs

Page 37: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 37

Control surfaces

Clay content model

Page 38: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 38

GSR model

Channel example 1. Clay content faults

Page 39: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 39

Channel example 2. GSR

Page 40: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 40

Coal seam silling. GSR

Seam splitting. GSR

Page 41: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 41

Seam splitting model without control

surfaces for splits

Grid spacings 25 m x 0.1 m

Average GSR 0-5m into roof

Page 42: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 42

Average GSR 0-5m into roof no

control surfaces

Average GSR 0-5m into roof

With lithological control No lithological control

Page 43: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 43

Demonstration – interactive 3D GSR and

clay content models

Conclusions 1 - modelling

• Calibrated geophysical logs provide a rich source of

information on physical properties of the strata.

– coal & other lithological boundaries, clay content, GSR

• Geophysical logging data can be modelled in the same way

that geologists model seams and their quality

• To properly construct the models, the lithological boundaries

need to be honoured

Page 44: Rock Mass Characterisation using Geophysical Logsbbugs.org.au/wp-content/.../BBUGSLoggingGSRcourse.pdf · Rock Mass Characterisation using Geophysical Logs ... – resistivity

6 June 2013 44

Conclusions 2 - applications

• Geotechnical applications for GSR & geophysical models

include:

– 3D models of strata characteristics

– Hazard plans for roof horizons

– Understanding of caving behaviour

– Basis for understanding highwall behaviour

– Blast design

– Floor failure

– A starting model for 3D numerical modelling

– Etc.

Conclusions 3 – developments

• ACARP C20025. Investigations for open pit geomechanics

using geophysical logs. Report completed in May 2103

• ACARP C20032. Dynamic response of longwall systems and

their relationship to caving behaviour. Medhurst, LVA (Hoyer)

& Hatherly. Completion within next few months.

• New ACARP project C22008. Investigation into roadway roof

support design using Geophysical Strata Rating. Medhurst &

Hatherly. 18 months.