22

Robotics & Automation in Indoor Agriculture FINAL · PDF fileROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015 4 1 INTRODUCTION On August 10, 2015, American astronauts sampled

Embed Size (px)

Citation preview

Page 1: Robotics & Automation in Indoor Agriculture FINAL · PDF fileROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015 4 1 INTRODUCTION On August 10, 2015, American astronauts sampled

ROBOTICS& AUTOMATION

October 2015

IN INDOOR AGRICULTURE

Page 2: Robotics & Automation in Indoor Agriculture FINAL · PDF fileROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015 4 1 INTRODUCTION On August 10, 2015, American astronauts sampled

ROBOTICS & AUTOMATION IN INDOOR AGRICULTUREOCTOBER 2015

1WWW.INDOOR.AG

ABOUT THE AUTHORS

NewbeanCapitalisaregisteredinvestmentadviserthatmanagesearlystageventurecapitalmandatesforinstitutionalinvestors.Itsfounder–NicolaKerslake–hasalongstandinginterestinagricultureinvestment,havingpreviouslycoveredagriculturestocksasanequityanalystandmanagedinstitutionalinvestmentportfoliosthatcoveredthesector.ShefoundedtheIndoorAg-Coneventthreeyears'agotoprovideameetingplaceforthosewhoareaspassionateassheisaboutthepromiseoftheindooragricultureindustry.

[email protected]

LocalRootsisathoughtleaderinindooragriculture,dedicatedtosolvingsystemicfoodchaininef�icienciesthroughinnovationandtechnology-drivensolutions.LocalRootsiscurrentlypioneeringmodularcontrolledenvironmentagriculturetechnologiesthatenableyearroundcropproductioninanyclimate,inanygeography.LocalRoots'Missionistoprovideeveryoneaccesstofresh,healthy,andaffordablelocally-grownproduce.

[email protected]

ACKNOWLEDGEMENTS

Theauthorswouldliketothankthefollowingfortheirinputintothispaper:YurijDudaatArgusControls,ChrisHigginsatHortAmericas,HenryAykroydatIntelligentGrowthSolutions,BillWhittakeratPriva,PaulSelinaatVillageFarms,JustinvanderPuttenatVisserNA,Dr.JochenHemmingatWageningenUR,EriHayashi.

DISCLAIMER

ThispublicationhasbeenproducedbyNewbeanCapital,aregisteredinvestmentadviser.Readershipofthispublicationdoesnotcreateaninvestmentclient,orotherbusinessorlegalrelationship.Itprovidesinformationabouttheindooragriculturemarkettohelpyoutobetterunderstandthisindustry.Thispublicationdoesnotpurporttoprovideinvestmentadvice,normayitberelieduponasasubstitutefor,speci�icinvestment,legalorotherprofessionaladvice.

NewbeanCapitalhasactedingoodfaithtoprovideanaccuratepublication.However,NewbeanCapitaldoesnotmakeanywarrantiesorrepresentationsofanykindaboutthecontentsofthispublication,theaccuracyortimelinessofitscontents,ortheinformationorexplanationsgiven.NewbeanCapitalhasnoobligationtoupdatethisreportoranyinformationcontainedwithinit.

NewbeanCapitaldoesnothaveanydutytoyou,whetherincontract,tort,understatuteorotherwisewithrespecttoorinconnectionwiththispublicationortheinformationcontainedwithinit.Tothefullestextentpermittedbylaw,NewbeanCapitaldisclaimsanyresponsibilityorliabilityforanylossordamagesufferedorcostincurredbyyouorbyanyotherpersonarisingoutoforinconnectionwithyouoranyotherperson'srelianceonthispublicationorontheinformationcontainedwithinitandforanyomissionsorinaccuracies.

Page 3: Robotics & Automation in Indoor Agriculture FINAL · PDF fileROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015 4 1 INTRODUCTION On August 10, 2015, American astronauts sampled

ROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015

2 WWW.INDOOR.AG

EXECUTIVE SUMMARYFrom1948to2011,totalfactorproductivityinagriculturegrewbyaround150%,withimprovementscommonlyattributedtosuccessivewavesofnewagriculturaltechnology.Thishasespeciallybeenthecaseforcapital-intensiveindooragriculturewherecostfallsseenoverrecentyearshavebeenalmostallowingtotechnology,suchaslowerLEDlightprices,cheapersensors,andbetteraccesstooff-the-shelfinternetofthingstechnologiesthroughwhicheverydayobjectscansendandreceivedata.

Akeyaspectofreducingbothcapitalandoperatingcostsistheintroductionofmoreautomationandroboticstoindoorfarms,atrendwhichmanagementconsultinggroupBostonConsultingGrouprecentlycitedasthesecondmostin�luentialtrendinagriculture.Thetopicispertinentnowaslaborcostscontinuetorise,skilledprofessionalsareeverscarcer,thereareincreasingpressurestominimizeresourceusage,foodsupplychainsarebeingrestructured,andconsumersareincreasinglydemandinglocalfoodthatcannotbegrownoutdoorsyear-round.

Thereisawiderangeofautomationandrobotictechnologydeployedinindoorfarmstoday,andalargerarrayofavailableandreadilyadaptabletechnologiesthathavenotyetfoundtheirwayintoindoorfarms.Thevastmajorityofgrowersutilizeatleastsomeautomationequipment;forinstance,60%ofgrowersuseirrigationcontrols.Someautomationsolutionshavebeenaroundforthirtyyears–suchasenvironmentalcontrolsystems–whileothersareinpilotstage.

Thepaththatindooragriculture'sinvolvementinautomationandroboticswilltakefromhereisprimarilydeterminedbyindustryadoptionratesandthespeedoftechnologycommercialization.Optionsareplentifulin“traditional”areasofautomation,suchasirrigationcontrols,butfarmorelimitedinthemoreadvancedroboticsanddata�ieldssoughtbylargegrowers.Further,thereareveryfewproductsthattargetmid-marketandsmallergrowers.There'sadistinctneedforsimplerdeviceswithfewerfunctionsandintuitiveuserinterfacesthatabeginninggrowercanpickupinafewhours;4outof5beginningfarmersdidnotgrowuponafarm.

Thankstotheproliferationofcheapsensorsandatleast54mnavailableplantsfromwhichtosampledata,weexpectawaveofanalyticsplatformsadaptedforuseindoors,andofuserinterfaceproductsthatassumeminimalfarmingknowledge,therealizationofthelong-heldexpectationthat“bigdata”willrepresentthedemocratizationoffarming.Datacouldturngoodgrowersintogreatgrowers,usingdataonplantbehaviortoestablishnormsthatgrowerscanfollow,andthatsmartersystemscanusetoautomaticallyadjustthemselves.Supplychainswilltightenasgrocerystoreinventorysystemsintegrateintofarmcontrolones,enabling“justintime”growing.

Aspotentialmarketsizesforindooragricultureequipmentaresmall,weanticipatethatitwillbetoughfor“singleproduct”technologystartupstothriveinthespace,andinsteadexpecttoseeentrepreneurstacklemultipleindustriessimultaneously,developseveralproductsinparallel,partnerwith�irmsthathaveestablisheddistribution,ordevelopproprietarytechnologiestoimproveyieldsattheirownfarms,asourceofcompetitiveadvantage.

Whilemostcommentatorsdonotexpectcommercialroboticandadvancedautomationproductstoplayamajorroleforatleastanotherdecade,historytellsusthatsuchchangeshappenfasterthanmostpredict;themeatlessstem-cellbasedhamburger,forinstance,wentfroma$325,000scienti�icpipedreamin2011toa$20productby2015.Thefuturemaybeheresoonerthanweknowit.

Page 4: Robotics & Automation in Indoor Agriculture FINAL · PDF fileROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015 4 1 INTRODUCTION On August 10, 2015, American astronauts sampled

ROBOTICS & AUTOMATION IN INDOOR AGRICULTUREOCTOBER 2015

3WWW.INDOOR.AG

TABLE OF CONTENTS

Executive Summary 2

1 Introduction 4

Chart One: Overview Of Agriculture Productivity & Technology Development Over Time 5

Chart Two: Most Influential Trends Affecting Farming Practices Through 2030 5

Chart Three: Plant Factory Cost Components 6

2 State of the Industry 8

Chart Four: Equipment & Automation: Who Has What? 8

A Nursery Operations 8

Chart Five: An Overview of Indoor Agriculture Automation & Robotics Technologies 9

Case Study: The Coming Fully Automated Vertical Farms 11

B Process Control 13

C Plant Management 15

D Resource Management 15

E Harvesting 16

F Post Harvesting 16

Chart Six: Ten Examples Of Robotic Harvesting Projects 17

3 What Comes Next 19

4 Conclusion 20

Page 5: Robotics & Automation in Indoor Agriculture FINAL · PDF fileROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015 4 1 INTRODUCTION On August 10, 2015, American astronauts sampled

ROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015

4 WWW.INDOOR.AG

1 INTRODUCTION

OnAugust10,2015,Americanastronautssampledthe�irstlettuceevergrowninspace,declaringtheaeroponically-grownproduce“awesome”¹.Theachievementwasonefurtherstepintheage-oldrelationshipbetweentechnologyandagriculture,acorrelationthatisnowheremoreobviousthanintheindooragriculturesector.

Thiswhitepaperlooksatoneaspectoftherelationship;thecurrentstateandprospectsforautomationandroboticsintheindooragricultureindustry,whichwede�ineasgrowingproduceinhydroponicsystemsinwarehouses,greenhousesandcontainers.Forthepurposesofthiswhitepaper,weviewautomationandroboticsasanyprocessthatutilizesmechanizationormachine-baseddatainterpretationtoreducefarmingcostsorincreasecropyield.Thisisabroadchurch,sowede�ineitmorecloselyinsectiontwobelow.Itisintentionallyaimedatthosewhoarespecialistsinneitherroboticsnorindooragriculture,anditsauthorsdonotconsiderthemselvesexpertsineithertopic.Ourintentistolookattheglobalpicture,butmanyofourreferencesarebasedintheUnitedStatesasitisourhomebase.We’veassumedthatreadershaveageneralknowledgeoftheindooragricultureindustry,andreferthosethatdonottoourMarch2015whitepaper“IndoorCropProduction:FeedingtheFuture”.Theautomation,roboticsandindooragricultureindustriesarejargon-rich,andwe’veattemptedtode�ineanyindustrytermsinfootnoteswhererelevant.Bytheverynatureoftheexercise,therearedoubtlessmanyworthwhileprojectsanddevelopmentswhichhavenotbeenincludedhere.

Asisshowninmoredetailinthechartoverpage,from1948to2011,totalfactorproductivityinagriculturegrewbyaround150%²;inputsfromlabormeanwhilefellbyanaverageof2.4%annuallyoverthesameperiod.Muchofthisproductivityrevolutioniscommonlyattributedtothespreadofsuccessivewavesofagriculturaltechnology,suchas,modernfertilizers(1940s),geneticallymodi�iedseeds(1994³),anddriverlesstractors(2008⁴).Thishasespeciallybeenthecaseforcapital-intensiveindooragriculturewherethereductionsincapitalcostsseenoverrecentyearshavebeenalmostexclusivelyowingtotechnology,suchaslowerLEDprices.LeadingacademicProfessorKozai,formerlyofChibaUniversity,forecaststhatplantfactory⁵laborandelectricitycostswillhalveoverthenext�iveyears⁶,anecessarydevelopmentiftheindustryistoreach‘�ieldparity’,thepointatwhichproducegrowninindoorsystemsiseconomicallycompetitivewith�ield-grownproduceyear-round.

Akeyaspectofreducingbothcapitalandoperatingcostsistheintroductionofmoreautomationandroboticstoindoorfarms,atrendwhichmanagementconsultinggroupBostonConsultingGroupcitedasthesecondmostin�luentialtrendinagriculturethrough2030inrecentsurvey⁷.Thetopicispertinentnowforseveralreasons:laborcostscontinuetorise,skilledprofessionalsareeverscarcer,thereareincreasingpressurestominimizeresourceusageincludingwaterandenergy,foodsupplychainsarebeingrestructured,andconsumersareincreasinglydemandinglocalfoodthatcannotbegrownoutdoorsyear-round.Wetakeanoverviewofeachofthesedrivingforcesinturnbeforemovingontolookatcurrenttechnologiesandthefutureofthesector.

1“Space-GrownLettuceTastes"Awesome,"AstronautsSay”,SarahFecht,PopularScience,August10,20152“AgriculturalProductivityGrowthintheUnitedStates:Measurement,Trends,andDrivers,ERR-189”,SunLingWang,PaulHeisey,DavidSchimmelpfennig,andEldonBall,EconomicResearchService/USDA,July20153Calgene’sFlavrSavrtomatointroducedin19944FarmingequipmentmajorJohnDeereintroduceditsITECProtractorinearly2008,per“DeereTakesNextStepTowardsDriverlessTractor”,CharlesMurray,DesignNews,February4,20085PlantfactoriesareaJapanesetermforverticalfarmsthatareentirelyclosedenvironment,soexclusivelyusingLEDlighting6SpeakingatInternationalCongressonControlledEnvironmentAgricultureinPanamaCity,PanamainMay20157“CropFarming2030,theReinventionoftheSector”,BostonConsultingGroup,April2015

Page 6: Robotics & Automation in Indoor Agriculture FINAL · PDF fileROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015 4 1 INTRODUCTION On August 10, 2015, American astronauts sampled

ROBOTICS & AUTOMATION IN INDOOR AGRICULTUREOCTOBER 2015

5WWW.INDOOR.AG

LaborIssues

Asformuchinagriculture,thelargestdriverofroboticsandautomationadoptionistheneedtomanagelaboravailabilityandcost;laborcostsmakeup26-40%⁸oftotalproductioncostsinindoorsystems.Theproblemisnotcon�inedtotheUS:Indiaislosing2,000farmersadayowingtodrought,urbanizationanddebt-relatedsuicides,andhasseenitsfarmingpopulationfallfromathirdoftheworkforcein2001tojustunderaquarteroftheworkforceby2013⁹.BackintheUS,broaddemographicshiftsandregulatorychangesrenderfarmlaborevermorescarce,whilesocietalchangesincreasescrutinyongrowers.It’simportanttonotethatfarmworkersareunavailableatkeytimes,leavingcropsunharvested,andthisistheprimaryreasonforadoptionofautomatedharvestingequipment,ratherthanadesiretoreplaceworkerswithrobots.

19501940 1960 1970 1980 1990 2000 2010

DurableEquipment

0

1

-1

-2

-3

-4

-5

2

3

4

Labor

AVERAGE ANNUAL GROWTH OF INPUTS (%)

1940s

1941-5 > frozen food popularized1945-70 > change from horses to tractors1948 > Norbert Wiener of MIT publishes ‘Cybernetics’, describing concept of communications and control in electronic, mechanical, and biological systems

Late 1950s - 1960s > Anhydrous ammonia increasingly used as cheap source of nitrogen fertilizer, spurring higher crop yields1959 > Planet Corporation markets the first commercially available robot

1964 > Artificial intelligence research labs opened at M.I.T., Stanford University, and the University of Edinburgh. 1965 > 99% of sugar beets harvested mechanically1968 > 96% of cotton harvested mechanically

1970s > No-tillage agriculture popularized1973 > 1st commercial minicomputer-controlled industrial robot – T3 - developed by Richard Hohn for Cincinnati Milacron Corp.

1980 > industrial robot markets takes off, new one introduced each month1980s > introduction of seed plug & more automation in greenhouseLate 1980s > focus switches to reducing inputs in farming using sustainable ag techniques

1990s > dairy farmers began using robotic milking machines1990s > development of precision farming1999 > MIT scientists turn RFID into networking technology by linking objects to Internet through RFID tag

2005 > cheap microcontroller platform Arduino created2005 > Cornell University creates self-replicating robots2009 > Harvest Automation founded to create nursery robots

2011 > John Deere introduces driverless tractor2015 > IBM unveils ADEPT project, joint with Samsung, that creates a distributed IoT using block chain tech

1950s 1960s 1970s 1980s 1990s 2000s 2010s

Sources: Newbean Capital, various including IBM, RobotWorx, Forbes

Chart One: Overview Of Agriculture Productivity & Technology Development Over Time

0% 10% 20% 30% 40% 50% 60% 70%

Labor Shortage

Source: “Crop Farming 2030, the Reinvention of the Sector”, Boston Consulting Group, April 2015

Automation

Precision Farming

44%

28%

60%

Chart Two: Most Influential TrendsAffecting Farming Practices Through

826%�igureisforplantfactoriesperProfessorKozaiofChibaUniversity,40%�igureisforgreenhousesperdiscussionswithgrowers9“IndiaLosing2,000FarmersEverySingleDay”,InternationalBusinessTimes,May2,2013

Nicola_Samsung
Typewritten Text
2030
Nicola_Samsung
Typewritten Text
Nicola_Samsung
Typewritten Text
Nicola_Samsung
Typewritten Text
Nicola_Samsung
Typewritten Text
Page 7: Robotics & Automation in Indoor Agriculture FINAL · PDF fileROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015 4 1 INTRODUCTION On August 10, 2015, American astronauts sampled

ROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015

6 WWW.INDOOR.AG

Interestinmanuallaborasanoccupationisdwindlingasthenumberofcollegegraduatesrises.Between2002and2012,thepercentageof18-24yearoldsenrolledincollegerosefrom37%to41%¹⁰.TheNationalCenterforEducationStatisticsprojectsthatcollegeenrollmentamongunder25yearoldswillrisebyafurther12%from2012to2023¹⁰.

10NationalCenterforEducationalStatistics�igures,mostrecentavailable11“RobotsinNewPlanting,HarvestingRoles”,NASDAQ,April30,201512“RobotsGrabHoldofGrowers’MaterialHandlingNeeds”,GreenhouseGrower,March2,201513Basedon20acregreenhousewith3plantsperm214“Opinion:ThePlanetNeedsMorePlantScientists”,AlanMJones,TheScientist,October1,2014

Source: Professor Kozai, Chiba University

Labor

Other; consumablesseeds, repair, supplies,

water, land rental,miscellaneous

Packing, shipping& transportation

Electricity

Depreciation

11%12%

23%

28%

26%

Theundocumentedworkersthathavetraditionallymadeupalargepartoftheagriculturallaborforcemayalsobelessavailable;thePewResearchCenter,athink-tank,saysthatthenumberofillegalimmigrantsintheUSpeakedin2007andhassincefallenowingtoincreasedjobsinMexicoandtighterUSborderpatrols¹¹.Morestringentimmigrationenforcementisasigni�icantfactorinsomepartsoftheUS,withprogramssuchasI-9audits–whichrequirethatgrowerslayoffundocumentedworkers–frequentlycitedbygrowersasacauseforconcern.

Withtheissueoffarmworkerconditionsnowreceivingattention,thereisanimpetustoimprovehealth,safetyandwell-beingofworkers.Roboticsandautomationcanplayapartintheseimprovements.Forinstance,onegreenhouseoperation–AltmanPlants–usedtohave4-5injuriesperseasonfromspacing,aphysicallytaskingjob,butnowhasnonethankstotheincorporationofnurseryrobot�irmHarvestAutomation’sspacingrobotsintowork�low¹².

Thescarcityofexperiencedplantscientists–whohelpgrowerssolveeverythingfromdiseaseoutbreakstocropyieldconundrums-isaseparateconcern;weestimatethataplantscientistcanlookat5,000plantsaday,yetamediumsizedgreenhousehousesapproximately250,000plants,or50days’worth¹³.Asasociety,wehavebeengraduatingtoofewplantscientistsforaverylongtime.AcademicAlanMJonespointedout–inanopinionpieceinOctober2014’seditionofTheScientist¹⁴–thatoverthelastdecade,theUSmintedonly800plantscientistsworkinginappliedagriculturescienceannually,fewerthanthe1,000newemployeesrequiredinthedisciplinebythesixlargestplantsciencecompaniesalonethisyear.Theabilitytodelegatesimplerobservationtaskstomachines,andtoobserveplantsremotely,willaidinaddressingthisconcern.

ResourceManagement

Inconversationswithgrowersandindustrysuppliers,wefoundthat–whilelaborremainedthekeymotivationforautomation–otherresourcesareagrowingconcern.Thisisespeciallythecaseinareasofdroughtforwater,andingeneralforenergyusedforheatingandcoolingneeds.Itappliestobothgreenhouseand�ieldfarmingalike.Theirinterestisdrivenbothbyadesiretocontaincostsandtostaveoffcriticismaboutresourceusageinagriculture.

Chart Three: Plant Factory Cost

Page 8: Robotics & Automation in Indoor Agriculture FINAL · PDF fileROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015 4 1 INTRODUCTION On August 10, 2015, American astronauts sampled

ROBOTICS & AUTOMATION IN INDOOR AGRICULTUREOCTOBER 2015

7WWW.INDOOR.AG

ReshapingofFoodSupplyChain

Theseadvancementscomeinthecontextofwiderreshapingoftheglobalfoodandagriculturesupplychain,primarilydrivenbyachangeinattitudeswherebyconsumersviewfoodchoicesasawaytoexpresstheiridentityandrepresenttheirbeliefs.Inturn,thishasledtoarenewedfocusonsmaller,nichefarms,onnewdeliverymodels(18%ofAmericanshaveboughtgroceriesonline¹⁵)andontheuseoftechnologytoenablepersonalizedfood.Thetrendbene�itsindoorgrowersabletousetechnologytobettermeetdemandforlocalproduce.

Ag3.0

LanceDonny–CEOofagtechstartupOnFarmSystems–isoneofahandfulofinnovatorswhohavehighlightedthepotentialfor,ashecallsit,Ag3.0,adata-richapproachtofarmingthatutilizesinputsfromdiversesourcestomakebetterfarmingdecisions–includingsensorsonplantsandfarmequipment,weatherstationsandsatelliteimages¹⁶.Withcheapsensorsnowallowingustoconnecttoandunderstandthephysicalworldinawaythat’sbeenimpossibleonsuchascalepreviously,farsmartercommentatorsthanushavedescribedthe“bigdata”movementaspotentiallylargerthantheinternetrevolutionofthelate1990s.

AccordingtoCisco,the9bndevicescurrentlyconnectedtotheInternetwillriseto50bndevicesby2020¹⁷.That’smorethansixdevicesforeveryhuman¹⁸.Thesectorisinitsinfancy,andagricultureisbutoneofthenumerousindustriesacrosstheglobaleconomythatwillbeimpacted;managementconsultantMcKinseyGlobalInstituteestimatesthat25-50%offarmsgloballywilladoptprecisionfarming¹⁹,andindoingsoincreasingcropyieldsby10-20%²⁰.

WhilethebulkofinvestorandmediainterestinAg3.0hasthusfaraccruedtothelargertraditionalagriculturesector,indooragricultureisarguablybetterplacedtocapitalizeonthetrend.Indoorfarmshavefarfeweruncontrolledvariablesthan�ieldfarms.Givenauniformenvironment,moredatacanbecheaplycollectedonindividualplants.Further,indoorgrowershavetheabilitytoeasilyimplementdata-derivedobservationsinacontrolledenvironment.Andtheopportunityislarge;evenifweassumedthatallNorthAmericangreenhouses(soexcludingthe20orsocommercial-scaleverticalfarms)plantedonlyrelatively-sparselyspacedtomatoes,therearestill54mnplantsfromwhichtocapturedata²¹.

Forthecommercialsideoftheindooragriculturesector,weseetwoparticularbene�itsfromthiswaveofinterconnectivity.WeseeAg3.0asthedemocratizationoffarmingbecauseitoffersthepromisethatsomeofthespecializedknowledgethatcommercialfarmingrequirestodaywillbeavailabletoall,regardlessoftheirfarmingprowessoreconomicsituation.Thisispertinentatatimewhenmanypotentialgrowerscomenotfromfarmingbackgrounds,butinsteadtransitionintogrowingfromcareersasdiverseas�inanceandthemilitary.ANationalYoungFarmers’Coalitionsurveyfoundthat4of5farmersunder35weren’traisedonafarm²².Asaconsequence,oneofthemostsigni�icanthurdlesfornewgrowerstoovercomeisthatofeducation,somethingwithwhichbetteraccesstodatafromsensorsandothersourcescanhelp.

Forestablishedgrowers,there’sthepromisethatdatacouldturngoodgrowersintogreatgrowers.Usingdataonplantbehaviortoestablishnormsthatgrowerscanfollow,andthatsmartersystemscanuseto

15BostonConsultingGroup�igure16“TheInternetofThingsandtheFutureofFarming”,SteveLohr,NewYorkTimes,August3,201517“SeizeNewIoTOpportunitieswiththeCiscoIoTSystem”18Basedonglobalpopulationforecastof7.7bnin2020perGeoHive19De�inedasaninformationandtechnologybasedmethodoffarmmanagement20De�inedasconsumersurplus21BasedonCuestaRobleConsultingtotalgreenhousecapacityof4,436acresforNorthAmerica,whichis18mnm²andwithplantspacingof3perm²22“BigBotsinLittleAgriculture”,MarieLawrence,Slate,June1,2012

Page 9: Robotics & Automation in Indoor Agriculture FINAL · PDF fileROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015 4 1 INTRODUCTION On August 10, 2015, American astronauts sampled

ROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015

8 WWW.INDOOR.AG

automaticallyadjustthemselves,isonewayofmaximizingplantscientists’time.Supplychainscanbetightenedasgrocerystoreinventorysystemsareintegratedintofarmcontrolsystems,enabling“justintime”producegrowing.Academicresearchwillbehastenedbyaccesstoplentifulrealtimedata.

23“Equipment&Automation:WhoHasWhat?”,GreenhouseGrower,December22,2011

A. NURSERY OPERATIONS

Nurseryoperationsincludeseeding,propagating,grafting,transplantingandspacingplants.Commercialseedingmachines–whichplaceseedssuchthatplantshaveequalaccesstolight,waterandnutrients–havebeenavailableforwelloveradecade,andtherearereliablelowcostmachinesthatbreakevenattheequivalentofonly40hoursofweeklyseedinglaborbyourcalculation.Elsewhere,spacingrobots–primarilysuppliedbyHarvestAutomation–havebeencommercialforonlyafewyears.

CompanyExamples:BerrySeeder(seeding),ConicSystems(grafting),HamiltonDesigner(seeding),HarvestAutomation(spacing),HelperRobotech(grafting),Iseki(grafting),ISOGroup(grafting),Seederman(seeding),VisserNA(seeding,propagation)

2 STATE OF THE INDUSTRY

Thereisawiderangeofautomationandrobotictechnologydeployedinindoorfarmstoday,withthevastmajorityusingatleastsomesuchequipment,forexample,trademagazineGreenhouseGrowerfoundthat60%ofgrowershadirrigationcontrols²³.Theyvaryintheirsophistication;acomplexenvironmentalmonitoringsystemthatworkswellforalargemono-cropgreenhousewouldlikelynotbea�itforasmallmulti-cropverticalfarm.Withcompletecontroloverlightingconditions,verticalfarmsdon’tnecessarilyneedacomplexmonitoringsystems.Someofthesesolutionshavebeenaroundforthirtyyears–suchasenvironmentalcontrolsystems–whileothersareinpilotstage.Asisshowninthechartoverpage,wedividethesectorintoeightbroadstagesofthegrowingprocessandbrie�lyoutlineactivityineachbelow.

ImageCourtesyofNewlux

0%

10%

20%

30%

40%

50%

60%

70%

Source: Survey of 100 Growers in Late 2011, Greenhouse Grower

VENT

ILAT

ION

SYST

EM

IRRI

GATI

ON C

ONTR

OLS

FLAT

FIL

LERS

LIGH

TING

FOGG

ING

/ MIS

TING

EQUI

PMEN

T

SEED

ER

POTT

ING

MAC

HINE

TRAN

SPLA

NTER

S

AUTO

MAT

EDIN

TERN

AL T

RANS

PORT

Chart Four: Equipment & Automation: Who Has What?% who use

Page 10: Robotics & Automation in Indoor Agriculture FINAL · PDF fileROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015 4 1 INTRODUCTION On August 10, 2015, American astronauts sampled

ROBOTICS & AUTOMATION IN INDOOR AGRICULTUREOCTOBER 2015

9WWW.INDOOR.AG

Chart Five: An Overview of Indoor Agriculture Automation & Robotics Technologies

NURSERYOPERATIONSe.g. Plant SpacingSeeding

e.g. Control Systems,Data Capture (Drones,Sensors) & Interpretation

e.g. Grafting, Pruning& Thinning

e.g. LED Lighting,Water & EnergyManagement

e.g. Harvest Robots

PROCESS CONTROL POST HARVESTINGe.g. Cleaning, ConveyorSystems for AutomatedPacking

PLANT MANAGEMENT

RESOURCE MANAGEMENT

HARVESTING

UseCase:DutchsupplierVisserNAisbestknownforitshigh-precisionseedingmachines,butalsosuppliesapropagator,the‘NewluxLighthouse’,thathouses15,000-25,000plugsinlessthan20ft²ofgreenhouse�loorspace.TheCompanydescribestheproductas‘plug-inandgrow’asitcomesfullyassembled,andsaysthatithaslowpowerconsumption,andcanbeusedtoslowdownorspeedupproductiontimesusingadjustablecontrolsoverlightintensityandpower.

What’sNeeded:Spacingtechnologiesarenotreadilyavailabletosmallerfarms.Amethodofcontinuousplanttransplantthatischeapandeasilyinstalledinaverticalfarmwouldbebene�icial.

Page 11: Robotics & Automation in Indoor Agriculture FINAL · PDF fileROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015 4 1 INTRODUCTION On August 10, 2015, American astronauts sampled

ROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015

10 WWW.INDOOR.AG

Image Courtesy of Intelligent Growth Solutions

Page 12: Robotics & Automation in Indoor Agriculture FINAL · PDF fileROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015 4 1 INTRODUCTION On August 10, 2015, American astronauts sampled

CASE STUDY: THE COMING FULLY AUTOMATED VERTICAL FARMS

Oneoftheholygrailsoffarmautomationhaslongbeenthenotionofafullyautomatedverticalfarmforleafygreensandothercommoditycrops,afeatthathasalreadybeenachievedinthebiopharmaceuticals�ieldbycompaniessuchasKentuckyBioProcessing,whichwaspartofagroupofcompaniesthatdevelopedanexperimentalZMappserumforEbolatreatmentusingtobaccoplants²⁴.

Thevisionisthat–withfewlaborrequirements–facilitiesshouldbeabletoreach�ieldparityfasterthanmoretraditionalverticalfarms,andtoscalemoreeasilywithouttheneedforhighly-skilledplantscientistandtechnicalstaff.Capitalcostsandthevagariesofnature–gettingplantstobehaveuniformlyisunderstandablydif�icult-havepreventedsuchdevelopmenttodate,butseveral�irmscontinuetoworktowardsthisgoal.

Spread,Japan

Inspring2015,JapanesegrowerSpreadannouncedthatitwillbuilda1.2acre(4,800m²)fullyautomatedplantfactorynearKyoto,Japan.The�irmhasdevelopedaproprietarycultivationenvironmentcontroltechnologythatlowersproductioncostthroughef�icientresourceusage.Forinstance,98%ofwaterwillberecycled.Thefacilitywillbefullyautomated,everythingfromseedingandwateringtoapplyingfertilizerandharvesting.Itisslatedfor2017startup²⁵.

IntelligentGrowthSolutions,UnitedKingdom

Followingtwoyearsofresearch,IntelligentGrowthSolutionshasdevelopedacommercialscalefullyautomatedverticalfarmdesign,forwhichitintendstoconstructaproofofconceptataresearchinstituteinDundee,ScotlandinJanuary2016.TheCompany’sfocusisoncompetinginacommoditymarket,offeringleafygreensthatareatleastasgoodascompetitorsbutnotassumingthatconsumerswillconsistentlypayasigni�icantpremiumforhydroponicallygrownproduce.

Asaconsequence,itsfocushasbeenondesigningasystemthatminimizescosts,boththrougheconomiesofscale–“selling50-100towerstoonecustomerratherthanoneatatime”–andbyemployinginnovativewaysofreducingenergyandlaborcosts.Thekeys,accordingtotheCompany,areinitsapproachtolighting,powergenerationandautomation.Itintendstousealowcost,�lexible‘quadpower’system,throughwhichitsaysithasseensavingsinexcessof50%onpowercosts.Inmanycases,ithasadaptedtechnologiesfromotherindustries,forexample,itstowersystemismodi�iedfromoneoriginallydesignedatsomecostforSwedishfurnitureretailerIKEA;plant-�illedtraysrotatetothebottomofthetower,sosubstantiallyreducingthelaborinvolvedinrackingtrays.TheCompanyiscontinuingtoiterateitsdesign,seeingparticularbene�itsinincorporatingsensorsintotrays,whichwilleventuallyallowreal-timemodi�icationstotheenvironmentalconditionsofeachindividualtrayofplantsaccordingtotheirneeds.

Thesystem–likemostverticalfarms–iscapitalintensive,withtheminimumcommerciallyviableunit'scapitalcostbeing$16mn(£10mn²⁶)accordingtotheCompany.Atscale,itestimatesthatitscapitalcostperm²willbeintheregionofthatofagreenhouse.Itforecastsa�iveyearpaybackperiod,andexpectsthatitsprimarycustomerbasewillbethelargeEuropeangroceryretailersforwhomsupplychainstabilityisanever-presentconcern.

24“TobaccoplantmaybekeytoEboladrugs”,MadeleineStix,CNN,October3,201425“EntirelyRoboticLettuceFarmtobeBuiltinJapan”,TerezaPultarova,Engineering&TechnologyMagazine,August4,201526£1:$1.56exchangerateasatSeptember17,2015

ROBOTICS & AUTOMATION IN INDOOR AGRICULTUREOCTOBER 2015

11WWW.INDOOR.AG

Page 13: Robotics & Automation in Indoor Agriculture FINAL · PDF fileROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015 4 1 INTRODUCTION On August 10, 2015, American astronauts sampled

ROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015

12 WWW.INDOOR.AG

Page 14: Robotics & Automation in Indoor Agriculture FINAL · PDF fileROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015 4 1 INTRODUCTION On August 10, 2015, American astronauts sampled

LangmeadGroup,UnitedKingdom

WhilealreadyanestablishedgrowingmethodintheNetherlandsinparticular,automatedgreenhousesarenowspringingupelsewhere.InJuly2015,BritishfarmerstheLangmeadGroupdebutedafullyautomatedgreenhouseinWestSussex,UK.The$4.7mn(£3mn)facilityona3acre(1.2ha)sitecanproduce5mnpotsofherbs–basil,parsley,mint,thyme,chives–annually,requiringminimalhumanintervention.It’suniqueautomaticpotting,sowingandgrowingsystemcanrun24hoursadayandenables,forexample,growingbenchestobesownandmovedrobotically.Heatedbyabiomassfuelsystem,thefacilityusesnotapwater,insteaddrawingfromalocalreservoirandrecyclingallwastewater²⁷.

B. PROCESS CONTROL

Systemsthatmonitorandcontrolenvironmentalconditionsingreenhousesandverticalfarmsarelongstandingmainstaysofindoorfarming.Environmentalcontrolsystemshavebeencommercialforthirtyyears,thoughmorerecentiterationsnaturallyreactmoreintelligentlytodatathandidtheirearliercounterparts.Severalsuppliershaveofferedaremote-accessversionoftheirsoftwaresincethedaysofdial-up.Establishedindustryplayershavealreadycapturedsubstantialamountsofdataregardingplantsandoperations,forexample,oneleadingcontrolscompanytoldusthattheyhavemillionsofpiecesofdatastoredonserversforclientuseatsomestage.Morerecentdevelopmentsincludeenhanceddatacapture–whetherviasensorsordrones–andmoregranularresponsestodatabyfocusingonindividualplants.Asisdescribedinsection3below,webelievethatthisareawilllikelybemostimpactedbyAg3.0.

CompanyExamples:ArgusControlSystems,Autogrow,ClimateControlSystemsInc,Nepon,Priva,Stolze

UseCase:Withcomparativelylowcosts,easeofuseandhigherqualityimages,droneshavebeenrapidlyadoptedbytraditionalfarming,andhavenowbeentrialedingreenhouseapplications.TheSpanishCentreforAutomationandRobotics(CAR)hastrialedagreenhousedronethatmeasurestemperature,humidity,luminosityandcarbondioxideconcentration,andthenusesthisdatatoimproveclimatecontrolsystemsandmonitorcrops.Ithasacontrolleron-boardtosenddataviaWiFi.Todate,theprojectisattrialstage²⁸.

AnexampleoftechnologydevelopmentfromestablishedplayersisDutchcontrolcompanyPriva’sTopCropproduct,whichusesaninfraredcameratomonitorplanttemperatureandthencompareittogreenhousetemperaturetogetameasureofplantstresslevels.AftersuccessfulDutchtrials–oneofwhichledtoanincreasein�loweringinplantsfrom50%to85%–theproductisbeingtrialedby�iveNorthAmericancustomers.

What’sNeeded:Thereareseveraldevelopmentsthatwouldaidprocesscontrol:newandcheapersensors,betteranalyticsandmoreintuitiveuserinterfaces.Inaddition,onesuppliernotedthattheirsoftwarecanaccomplishmyriadsophisticatedtasks,butthatthereisagapingrowers’understanding,forwhichtheyviewimprovededucationasthesolution.Therearecurrentlyfewanalytictoolsadaptedforuseingreenhouseandverticalfarmsettings,asituationthatcouldberesolvedthroughpartnershipsbetweengrowers,analytics�irmsandcontrolcompanies.Simpleruserinterfaceswithfasterlearningcurveswouldbeofusetothosewithlessexperienceinthegreenhouseandverticalfarm.

27“UK:FullyAutomatedGlasshouseOpenedbyLangmeadGroup”,HortiDaily,July24,201528“UsingDronesforBetterCrops”,Phys.org,July13,2015

ROBOTICS & AUTOMATION IN INDOOR AGRICULTUREOCTOBER 2015

13WWW.INDOOR.AG

Nicola_Samsung
Typewritten Text
Page 15: Robotics & Automation in Indoor Agriculture FINAL · PDF fileROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015 4 1 INTRODUCTION On August 10, 2015, American astronauts sampled

ROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015

14 WWW.INDOOR.AG

Page 16: Robotics & Automation in Indoor Agriculture FINAL · PDF fileROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015 4 1 INTRODUCTION On August 10, 2015, American astronauts sampled

C. PLANT MANAGEMENT

Pruning,trimmingandthinningplantsareamongthetime-consumingactivitiesinindoorfarms,andthereareconsequentlyanumberofresearcheffortsaimedatcreatingroboticthinningandtrimmingmachines.Companiesfocusedonweedingandthinning,suchasBlueRiver,haveoperatedintraditional�ieldagricultureforsometime.Pollinationisagrowingconcernforindoorcropproductionasmoreindoorgrowersproducehigh-valueberriesandfruitsthatrequirepollination.

CompanyExamples:AgriNomix,BlueRiver,Hortiquip(staking),Logiqs

UseCase:Thisisoneoftheleastexoticareasofthesector,howevertheresearchbrightpointisrobobees,bee-likemicro-aerialvehiclesthatcouldconceivablybeusedtopollinateindoorcropsinthefuture.AHarvard-basedteambelievesthatitsworkwillleadtorobobeeswarmsthatcanindependentlypollinateacropinassoonasadecade,thoughtherobobeeswill�irstneedtobeabletocarrymoreweight,to�lyunaidedandtomeshnetwork(“talk”)withoneanothertocarryouttasks²⁹.RobobeeswouldbeonlyastopgapmeasurewhilealternatesolutionsarefoundtoColonyCollapseDisorder,thephenomenonwherebynoadultbees,asidefromthequeenbee,remaininahoneybeecolony.

What’sNeeded:Ongoingresearchisdevelopingautomatedthinningmachinesthatarefaster,moreprecise,anddonotdamagecrops.Thefocusoftheseactivitiesshouldbeonmeasuringreturnoninvestmentasthesetasksareperformeddaily,andassuchdrawlessattentionthanperiodicharvestinglaborshortages.

D. RESOURCE MANAGEMENT

Optimizingenergy,waterandnutrientuseisanincreasinglyimportantissueinaresource-consciousworld.Itisespeciallypressingforverticalfarms,whereenergy-intensiveLEDlightingandHVACsystemsaccountformorethanaquarterofongoingcosts³⁰.Nutrientdeliveryandwatermanagementsolutionshavebeencommerciallyavailableforseveraldecades.Furthertechnicaldevelopmentswereseenwiththeintroductionandintegrationofalternateenergysources,primarilysolarandbiomass.Forexample,solarmodulecompanySolariaandgreenhouseintegratedphotovoltaicproviderSoliculturecollaboratedtocreateasolarintegratedgreenhousethatdoesnotimpactcropyieldsaccordingtothejointventure.The�irstinstallationisinNorthernCalifornia,andtheestimatedreturnoninvestmentisunder6years³¹.Thecurrentwaveofdevelopmentfocusesonusingdataandanalyticstooptimizeresourceusage,suchas,managingandcyclingLEDlightsinresponsetogridsell-inratesforsolarenergy.

CompanyExamples:CherryCreekSystems,DosatronIntl.,DRAMM,Solaria/Soliculture

UseCase:InApril2015,DosatronIntlintroducedaversionofitsfertilizerandchemicalinjectorproductdesignedspeci�icallyforcontrolledenvironmentagriculture.Theproductallowsgrowerstoautomatethe“delicatescience”ofcreatingtheperfectnutrientmix,sotakingtheguessworkoutofaprocessthatisessentialtomaintainingyields³².

What’sNeeded:Asforprocesscontrol,thereareplentifuloptionsavailableforlargerfarmsandforthoseseekingsophisticatedsolutions,butfewavailableforthoseseeking,lowcostnutrientdeliverysystemsorsimpleanalyticssystemsforenergymanagement.

29“TinyFlyingRobotsAreBeingBuiltToPollinateCropsInsteadOfRealBees”,DinaSpector,BusinessInsider,July7,201430PerProfessorKozaiofChibaUniversity31“GenerateGreenPVElectricityonGreenhouseRoofsWithZeroNegativeImpactonPlantYield”,PressRelease,July28,201532“DosatronInternationalIntroducestheD14MZ2intoControlledEnvironmentAgriculture(CEA)”,PressRelease,April27,2015

ROBOTICS & AUTOMATION IN INDOOR AGRICULTUREOCTOBER 2015

15WWW.INDOOR.AG

Page 17: Robotics & Automation in Indoor Agriculture FINAL · PDF fileROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015 4 1 INTRODUCTION On August 10, 2015, American astronauts sampled

E. HARVESTING

Findingsuf�icientlaborforharvestingisoneofthetougherchallengesfacedbygreenhousegrowersinparticular,primarilyasitisrequiredintenselyforacomparativelyshortperiod.Forinstance,onegreenhouseeconomicsstudycalculatedtomatoharvestingat27hoursforacrop,incomparisonto21hoursforallpruningactivitiesoveraperiodofmonths³³.Consequently,thereisagooddealofinterestin�indingroboticharvestingsolutions.Somehardyrowcropshavebeenharvestedmechanicallyformorethan50years,butdealingwithdelicateproducecropsisthebiggerchallengethatisnowbeingtackled.

CompanyExamples:Agrobot,AppliedFoodScience,FarmersFriend,Growponics,HarvestCroo

UseCase:Tenexamplesofroboticharvestingprojectsareshownintablesixoverpage;thebulkfocusonthelarger�ieldfarmingopportunityatpresent,butweanticipateiterationsofthesemachineseventuallymovingindoors.Moreover,weenvisage“semi-automated”solutionsproliferating,wherebyarobotharvesterworksovernightcollectingtheproducethat’seasiesttospotmechanically,andthenskilledfarmworkers�inishtheharvestduringtheday.

What’sNeeded:Theprimarydevelopmentsthatwouldmakeharvestrobotscommerciallyviablearebetterspeedandaccuracy.Costisalsoanissue,forexample,FrenchroboticscompanyNaio–whichsoldten�ieldharvestingrobotslastyear–predictsreturnsin5-7yearsforthisearlygenerationofmachines,comparedtothe1-2yearsconsideredacceptablebymostgrowers³⁴.

F. POST HARVESTING

Postharvestingactivitiesincludesorting,gradingandpackingproduce,aswellassystemcleandown.Theseactivitiestypicallyrequireconveyorsystems,whethermobileor�ixed,aswellasgradingmachinery,eachofwhichhavebeencommerciallyavailableforsomeyearsandwhichhaveoftenbeenadaptedfromotherindustries,suchasretailandwarehousing.Arguably,wemightalsoincludetrackingtechnologiesinthiscategory,suchasHarvestMark’ssystemtotraceproducefromverticalfarmtoconsumer.

CompanyExamples:Agemchtronix(EndofLineCounter),Aweta,BTM,CherryCreekSystems(Echo-Veyer),Greefa(Combisort),SBMachinerie(SB10),WPS(SmartFlo)

UseCase:DutchpeppergrowerDuijndamrecentlyreplacedanexistingtwentyyearoldgradingmachinewithonefromDutchgradingtechnologycompanyGreefa,speciallydesignedforgradingbellpeppers.Thenewmachinegradesonbothsizeandweight,animportantfeatureinamarketwherepeppersareoftenpre-packagedintocontainersbasedonweight,andallowsforpackagestobeplacedinshippingboxessemi-automatically³⁵.Inotherusecases,paybacksofunderayearhavebeenreportedforconveyorsystems³⁶.

What’sNeeded:Asverticalfarmsproliferate,therewillbeanincreasingneedformore�lexibleandmobileconveyorandpackingsolutionstoaccommodatethedifferinglayoutsofsuchfacilities.

33Figuresfromestimatedresourceuseanddirectcostsforspringtomatocropforgreenhouseproduction,Mississippi,2005,from“BudgetforGreenhouseTomatoes”,MississippiStateExtension,September200734“Frenchcompanydevelopsautonomousgreenhouserobot”,HortiDaily,June19,201535“GreefaCombiSortsortspeppersonsizeandweight”,HortiDaily,September4,201536“GardenState’sConveyors:AdvancedAutomation”,KevinYanik,GreenhouseGrower,June17,2009

ROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015

16 WWW.INDOOR.AG

Page 18: Robotics & Automation in Indoor Agriculture FINAL · PDF fileROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015 4 1 INTRODUCTION On August 10, 2015, American astronauts sampled

PROJECT

Agrobot

AutoControlSystems

BroccoliHarvestingProject

CROPSProject

EnergridTech

HarvestCrooRobotics

NaioTech

RoboticsPlus

VinelandResearch&InnovationCenter

WashingtonStateUniversity

TARGET CROPS

Field,Greenhouse

Field,Greenhouse

Field

Greenhouse,Orchard

Orchard

Field,Greenhouse

Field

Orchard

Field,Greenhouse

Orchard

LOCATION

Europe

US

Europe

Global

US

US

Europe

NewZealand

Canada

US

STAGE

Commercial

Research

Research

Research

Prototype

Research

Commercial

Research

Research

Research

DESCRIPTION

FrenchcompanyAgrobothasdevelopedastrawberrypickingmachine,pricedat$100,000.Ituseshighpoweredcomputing,colorsensorsandsmallmetalbasketsattachedto14roboticarmstoachievethis.A2ndlargerprototypeisunderdevelopment,andwell-knownberrygrowersarepartially�inancingdevelopment.

Cohasdevelopedarobotichanddesignedtoworkalongsidehumans,thatcanpickthingsupandputthemdown.Itaimstousethemforstrawberrypicking,andclaimsthatacommercialsystemwillhaveareturnoninvestmentofunderayear.

AjointprojectledbyProfTomDuckettoftheUniversityofLincolnisexploringwhether3Dcameratechnologycanbeusedtoidentifyandselectwhenbroccoli,usuallyahandharvestedcrop,isreadyforharvesting.FundedbyAgri-TechCatalyst,aUKgovernmentinitiativedesignedtodevelopagtech.

BeguninOctober2010,theEU-fundedCROPSprojectwasa14-universitycollaborationtodevelop"scienti�icknow-howforahighlycon�igurable,modularandclevercarrierplatformthatincludesmodularparallelmanipulatorsandintelligenttools(sensors,algorithms,sprayers,grippers)thatcanbeeasilyinstalledontothecarrierandarecapableofadaptingtonewtasksandconditions".Ofparticularinterestisthesweetpepperharvestingrobotthatiscapableof"selectiveharvestingoffruit(detectsthefruit,determinesitsripeness,movestowardsthefruit,graspsitandsoftlydetachesit)"

EnergridTechhasdevelopedaroboticcitrusharvestingmachinethatpicksat2-3secondsperorangeandhas80%thoroughnessinrecenttrials.Itusesaheavybase,thatcontainscameras,withaboom,thathouses"frogtongues"thatstrikethetreetodetachfruit.Itisexpectedtoretailfor$200,000-300,000perPattiOrtonKumawhitepaper.ProjectisfundedbytheUSDA.

Establishedin2013,HarvestCroohasraised$1mnfrombackerstodevelopanautomatedstrawberrypicker.Itexpectstoraiseafurther$1.5mnroundbeforereachingacommercialmodel.

Cothatisaimingtofullyautomatewaythatgrowersplant,maintain&harvestrowcrops.Hasreleasedarobotthatcanweeda�ieldunaided,basedonrowlengthandnoofrowsin�ield.Workingonadditionalfeatures.

AcollaborationbetweenRoboticsPlusLtd,UniversityofAuckland,UniversityofWaikatoandPlantandFoodResearchaimingtoautomateharvesting&pollinationofkiwifruit&apples.Teamhassecured$10mn+infunding.TheAutonomousMobileModularPlatform(AMMP)willbecapableofdrivingaroundanorchardbyitself,stoppingattheappropriatespotsfortaskstobeperformed.Thesystemismodular&cansupportoperationssuchas,sensingsystems,customroboticarmsorsprayingsystems,soallowingittomulti-task.

VinelandResearch&InnovationCenterisdevelopinganautonomousmachinethatcanchoosewhichmushroomtopick,processandmoveitgentlytoitspackagingcase.It'sbackedbyanalgorithmthatdecideswhentopickbasedonarangeofvariables.Cycletoselectandpickonemushroomtakes6seconds,andusesaproprietarygrippertopickmushroom,cutstemandputitinpackaging.

AUSDA-fundedcollaborationatWashingtonStateUniversityisfocusedondevelopingarobotichandtobetestedforspeed&effectivenessindetachingapples.Expectsitbereadyfortestingin5-7years,andforcommercializationin15years.

Sources:CompanyWebsites,NewsReports,DiscussionswithResearchers,NewbeanCapital

Chart Six: Ten Examples Of Robotic Harvesting Projects

ROBOTICS & AUTOMATION IN INDOOR AGRICULTUREOCTOBER 2015

17WWW.INDOOR.AG

Page 19: Robotics & Automation in Indoor Agriculture FINAL · PDF fileROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015 4 1 INTRODUCTION On August 10, 2015, American astronauts sampled

ROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015

18 WWW.INDOOR.AG

Page 20: Robotics & Automation in Indoor Agriculture FINAL · PDF fileROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015 4 1 INTRODUCTION On August 10, 2015, American astronauts sampled

ROBOTICS & AUTOMATION IN INDOOR AGRICULTUREOCTOBER 2015

19WWW.INDOOR.AG

3 WHAT COMES NEXT

Thepaththatindooragriculture’sinvolvementinautomationandroboticswilltakefromhereis,inouropinion,primarilydeterminedbyindustryadoptionratesandthespeedoftechnologycommercialization.

It’snosecretthatagricultureisanecessarilyconservativeindustry,andasaconsequence,adoptionratesfornewtechnologiesaresigni�icantlylowerthanininternetorothertechnologyindustries.Oneindustrycommentatornotedthatsuccessivegenerationsofrobotshavebeenadoptedwithtoolittletesting,leadingtodisappointment³⁷.Suchskepticismwillbeabarrierforthoseseekingtointroducenewhardwareinparticular,where,lackingineconomiesofscale,paybackperiodsarealmostalwayswellinexcessofthoseconsideredacceptablebygrowers.

Afurtherconcernissecurity,especiallyforsystemsthatrequirecloudaccess.Thismaybepartiallymitigatedbytheintegrationoftechnologiessuchasblockchain³⁸thatenablemoresecuredistributeddatabaseswithnoWiFiorcellreception.

Aswasoutlinedabove,optionsareplentifulin“traditional”areasofautomation,suchasirrigationcontrols,butfarmorelimitedinthemoreadvancedroboticsanddata�ieldssoughtbylargegrowers,andextremelycurtailedwhenitcomestohardwareanddataservicesthattargetmid-marketandsmallergrowers.Forthisendofthemarket,devicesaresometimesover-engineered;they’remadetoocomplicatedandtoofeature-rich.Asoneindustryconsultantpointedouttous:“manyofmyclientsonlyeverendupusing20%ofthefunctionsofthebettersystems”.There’sadistinctneedforsimplerdeviceswithfewerfunctions,thekindthatabeginningfarmercanpickupinafewhours,andthatincludeintuitiveuserinterfaces.

Yet,muchofthetechnology,fundingandinnovationthat’srequiredtomeettheseneedsalreadyexistsinotherindustries,andagriculturehasastoriedhistoryofrepurposingtechnology.Forexample,agroupatIBMcreated30%moreaccuratesolarenergyforecaststhanthenextbestconventionalsystembyusingadeepmachinelearningtechnologythatcombinesdatafromsensornetworks,localweatherstations,cloudmotionphysicsderivedfromskycamerasandsatelliteobservations,andmultipleweatherpredictionmodels.Thisapproachcouldequallybeadaptedtogreenhousecontrolsystems³⁹.

Perhapsthelargestbarriertotechnologycommercializationwillbeeconomics,bothoftheequipmentitselfandofthebusinessesthatwillbringthemtomarket.Ifwetakeharvestingrobots,forinstance,agenerouscalculationofthecurrentNorthAmericangreenhousepotentialmarketsizewouldbe$60mn,whichisrespectable,butinsuf�icienttosustainanindustryalone.Asageneralruleofthumb,investorstendtolookatmarketsizesofatleast$300mnasviable.Thiscalculationassumesthateachofthe325NorthAmericangreenhousesinexcessof5acreshaveoneroboticharvesteratthemaximumviablepricecalculatedbytheEuropeanCROPsprojectof$200,000perunit⁴⁰.

Consequently,weanticipatethatitwillbetoughfor“singleproduct”technologystartupstothriveinthespace,andinsteadweexpecttoseeentrepreneurspartneringwiththosewhohaveestablisheddistributionintheindustry,aretacklingnumerousindustriessimultaneously,orarealreadyusingproprietarytechnologytocreateacompetitiveadvantagebyimprovingyieldsattheirownfarms.

37AbeVanWingerdenofMetrolinaGreenhousesquotedin“What’stheNextIndustryGameChanger?”,Growertalks,July201538Typicallyassociatedwithcryptocurrencies,blockchainisadistributeddatabasethatmaintainsanexpandinglistofdatarecordsthatareprotectedagainstrevisionandsecurity,evenfromownersofportionsoftherecords,callednodes39“30%JumpinSolarEnergyForecastingAccuracyGainedbyMachineLearning”,TinaCasey,Cleantechnica,July16,201540GreenhousemarketdatafromCuestaRobleConsulting,CROPs�iguresfromDr.JochenHemmingofWageningenUR

Page 21: Robotics & Automation in Indoor Agriculture FINAL · PDF fileROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015 4 1 INTRODUCTION On August 10, 2015, American astronauts sampled

ROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015

20 WWW.INDOOR.AG

Twobrightspotsinthisevolutionaretheadoptionoftechnologyfromoutsidetheindustryforuseinindoorfarmsandtheriseofreadilyavailableplantdata.Forinstance,intraditionalhardware,VisserNAandauto�irmToyotacollaboratedonanelectricforklift,theVisserVitoy,designedspeci�icallyforgreenhouseapplications.

Historically,there’sbeenaninformationasymmetryinthatestablishedcontrolcompaniesandgrowershaveaquorumofdataonplantbehavioravailabletothemthatlessexperiencedplayersdonot.Onecontrolcompanytoldusthattheyareholdingmillionsofpiecesofdatafortheircustomers.Itisonlyinthepastfewyearsthatcheapsensorshaveallowednearlyallgrowerstoeasilycaptureplantbehaviordata.Intheshortrun,establishedgrowerswilllikelystillretainacompetitiveadvantagefromtheirbacklogofdata,andwillnaturallybeloathtoshareitwithothers.Itremainstobeseenhowfast–andwhether–plentifullyavailabledatawillleveltheplaying�ield,primarilybecausewedonotyetknowifandwhenlowcost,simpleanalyticsplatformsanduserinterfaceswillenablesmallergrowerstotranslate“bigdata”intousableinformation.

4 CONCLUSION

Weanticipatethatfutureindoorfarmswilltakeawiderangeofforms,muchastheydotoday.Forclarity,noneofthescenariosthatweexaminedinthepreparationofthisreportresultinlabor-freefarms,eveninthelongrun.Therearetasksthathumansjustdobetterthanthemostsophisticatedmachines.Instead,weexpectlargescaleautomatedcommercialfarmsthatusefeedbackfromsensorstooptimizeeverythingfromfarminputstotimingharvestwithdata-connectedgrocerystoreanddistributorcustomers.Otherswillchoosetousebasicanalyticsprogramsthattranslatedataintoactionsforthem,andalertthemonlywhenhumaninterventionisrequired,alowtechresponsetohightechprompts.Forsure,thesechangescannotbeachievedthroughtheapplicationofroboticsandautomationtechnologyalone.Plentyoftechnologyadvanceswillnotbeinautomation.Theywillinsteadbedesign-led,suchas,anelegantstackingsystemorabetterwayofhandlingheatinacontrolledenvironment.TherewillbeimportantdevelopmentsinseedsandinthewaysthatweunderstandandutilizeLEDlighting.Progressinotherdisciplines,suchas,biomanipulation–theabilitytomanipulateindividualplants,orpartsofthem–wouldreducetheneedforthinningandpruning,andrenderautomationeasiertoimplement.Giventhecapitalintensityofindooragriculture,better�inancingvehiclesandmethodswillalsoplayapart.

Whilemostcommentators,donotexpectcommercialproductsforatleastanotherdecade,historytellsusthatsuchchangeshappenagooddealfasterthanmostpredict:themeatlessstem-cellbasedhamburger,forinstance,wentfrombeinga$325,000scienti�icpipedreamin2011toa$20productby2015⁴¹.Thefuturemaybeherefasterthanweknowit.

41“HowWillWeBuyFoodin2065”,BrianHalweil,EdibleBrooklyn,December11,2014

Page 22: Robotics & Automation in Indoor Agriculture FINAL · PDF fileROBOTICS & AUTOMATION IN INDOOR AGRICULTURE OCTOBER 2015 4 1 INTRODUCTION On August 10, 2015, American astronauts sampled

For more information and todownload a .pdf of this white paper,

please visit indoor.ag/whitepaper