23
RISC x CISC RISC: Reduced Instruction Set Computers CISC: Complex Instruction Set Computer

RISC x CISC

  • Upload
    toyah

  • View
    39

  • Download
    0

Embed Size (px)

DESCRIPTION

RISC x CISC. RISC: Reduced Instruction Set Computers CISC: Complex Instruction Set Computer. Maiores Avanços nos ComputadoresI/II. Conceito de família Introduzido por IBM com System/360 em 1964 Seguido por DEC com PDP-8 (DEC atual HP) - PowerPoint PPT Presentation

Citation preview

Page 1: RISC x CISC

RISC x CISC

RISC: Reduced Instruction Set ComputersCISC: Complex Instruction Set Computer

Page 2: RISC x CISC

Maiores Avanços nos Computadores I/II

• Conceito de família– Introduzido por IBM com System/360 em 1964– Seguido por DEC com PDP-8 (DEC atual HP)– Arquitetura da máquina separada da

implementação– Diferentes computadores (com performance e

preços diferentes) que utilizam a mesma arquitetura com diferentes implementações

Page 3: RISC x CISC

• Unidade de controle microprogramada– Idéia de Wilkes em 1951– Produzida pela IBM com S/360 em 1964– Facilita o design e a implementação da UC

(Unidade de Controle: controla as operações da UCP, ALU, ...)

• Memória cache– Introduzido por IBM com S/360 modelo 85 em

1969– Mudou a performance drasticamente

Page 4: RISC x CISC

Maiores Avanços nos Computadores I/II

• Pipelining– Introduz paralelismo no ciclo de busca e execução

• Múltiplos processadores

• Arquitetura de computadores com conjunto de instruções reduzido (RISC)

Page 5: RISC x CISC

Desenvolvimento de Máquinas CISC

• Custos de software excedem os custos de hardware • Linguagens de alto nível cada vez mais complexas• Gap semântico: diferença entre as operações

providas pelas linguagens e aquelas computadas pela arquitetura. (aumento da complexidade dos compiladores)

• Leva a :– Grande conjunto de instruções– Implementações em hardware de instruções de

linguagem de alto nível• Exemplo, CASE no VAX

Page 6: RISC x CISC

Objetivos da Arquitetura CISC

• Facilitar o desenvolvimento de compiladores• Melhorar a eficiência de execução

– Operações complexas implementadas em microcódigo

• Suportar linguagens ainda mais complexas

Page 7: RISC x CISC

Estudo para criação da RISC

• Estudos foram realizados baseados em programas escritos em linguagens de alto nível

• Estudos dinâmicos realizados durante a execução do programa

O que foi analisado? Características da execução• Operações executadas pela UCP• Operandos utilizados

– Tipo dos operandos e a freqüência determina como a memória deve estar organizada e qual deve ser o modo de endereçamento

• Seqüência de execução– Determina o controle e a organização do pipeline

Page 8: RISC x CISC

Operações

• Maioria das operações são atribuições (A=B)– Movimento de dados

• Em seguida vêm as instruções condicionais (IF, LOOP)– Controle da seqüência é importante

• Chamada e retorno de procedimento consome muito tempo

• Algumas instruções da linguagem de alto nível levam a muitas operações de linguagem de máquina

Page 9: RISC x CISC

Freqüência Dinâmica Relativa Ponderada de Operações de Linguagens de Alto Nível

 

Ocorrência Dinâmica

Ponderada por instruçãode máquina

Ponderada por referência à memória

  Pascal C Pascal C Pascal C

ASSIGN 45% 38% 13% 13% 14% 15%

LOOP 5% 3% 42% 32% 33% 26%

CALL 15% 12% 31% 33% 44% 45%

IF 29% 43% 11% 21% 7% 13%

GOTO — 3% — — — —

OTHER 6% 1% 3% 1% 2% 1%

Page 10: RISC x CISC

Operandos

• Uso principalmente de variáveis locais• Conclusão: otimização deve se concentrar no acesso

às variáveis locais

  Pascal C Média

Constante Inteira 16% 23% 20%

Variável 58% 53% 55%

Array/Structure 26% 24% 25%

Page 11: RISC x CISC

Chamadas de Procedimentos

• Depende do número de parâmetros• Depende do nível de aninhamento• Consome muito tempo

• Maioria das variáveis são locais (poucas variáveis são passadas como parâmetro)

• Profundidade do aninhamento não costumar ser grande

Page 12: RISC x CISC

Conclusão dos Estudos

• Suporte mais eficaz para linguagens de alto nível pode ser obtido pela otimização do desempenho das características mais utilizadas e responsáveis por maior consumo de tempo

• Número grande de registradores– Otimizar a referência aos operandos

• Projeto cuidadoso dos pipelines– Devido ao grande uso de condições de desvio e

chamadas de procedimentos– Solução: Predição de desvio etc.

• Conjunto simplificado (reduzido) de instruções

Page 13: RISC x CISC

Uso de um Grande Banco de Registradores

• Solução baseada em software– Compilador responsável por otimizar uso dos

registradores– Tenta alocar, nos registradores, variáveis que serão

mais usadas durante um determinado período de tempo

– Necessita análise sofisticada dos programas• Solução baseada em hardware

– Utilizar um número maior de registradores– Permite que mais variáveis possam ser

armazenadas em registradores

Page 14: RISC x CISC

Registradores para Variáveis Locais

• Maioria das referências a variáveis locais, então:– Variáveis locais devem ser armazenadas em registradores– Reduz acesso à memória

• A definição de local muda com cada chamada a procedimento

• Quando ocorre uma chamada:– Variáveis locais devem ser armazenadas na memória – Registradores podem ser reutilizados– Parâmetros devem ser passados para procedimento

chamado– Resultados devem ser retornados para o programa pai

• Quando o controle volta ao programa pai:– Valores das variáveis salvos na memória devem ser

retornados aos registradores

Page 15: RISC x CISC

Variáveis Globais

• Alocadas pelo compilador na memória– Ineficiente para variáveis usadas freqüentemente

• Pequeno conjunto de registradores para variáveis globais

Page 16: RISC x CISC

Otimização do Uso de Registradores feita pelos Compiladores

• Suponha um pequeno número de registradores (16-32)• Otimização do uso deve ser função do compilador • Programas em linguagem de alto nível não fazem

referências explícitas a registradores • Atribui registrador simbólico ou virtual a cada variável

candidata • Mapeia número ilimitado de registradores simbólicos

em número fixo de registradores reais• Registradores simbólicos que não se sobrepõem

podem compartilhar registradores reais• Caso se esgotem os registradores reais disponíveis,

algumas variáveis são alocadas na memória

Page 17: RISC x CISC

RISC

• Reduced Instruction Set Computer

• Características importantes:– Grande número de registradores de propósito

geral– Ou uso de tecnologia para que compiladores

otimizem uso dos registradores– Conjunto limitado e simples de instruções– Ênfase na otimização de pipeline das instruções

Page 18: RISC x CISC

Porque CISC (1)?

• Simplificação do compilador?– Por um lado, mapeamento “direto” entre a instrução da

ling. de alto nível e a instrução de máquina– Por outro lado, difícil de encontrar a instrução de máquina

que se adéqüe exatamente a instrução da ling. de alto nível– Otimização mais difícil com instruções complexas

• Programas menores?– Por um lado, usam menos memória

• Porém memória se tornou mais barata– Por outro lado, podem parecer menores em forma

simbólica (tem menos instruções), mas podem ocupar muitos bits na memória

Page 19: RISC x CISC

Porque CISC (2)?

• Programas mais rápidos ?– Tendência em usar instruções mais simples– Unidade de controle mais complexa e mais memória fazem

com que aumente o tempo de execução das instruções mais simples

• Não está claro que a arquitetura CISC é a solução apropriada

Page 20: RISC x CISC

Características da RISC

• Uma instrução por ciclo de máquina – Ciclo de máquina é o tempo para buscar dois operandos

em registradores, executar uma operação de ULA e armazenar resultado em registrador

• Maioria das operações são de registrador para registrador– Exceto lw e sw

• Poucos e simples modos de endereçamento • Formato fixo das instruções• Compiladores devem despender mais tempo e

esforço

Page 21: RISC x CISC

Controvérsia (1)

• Quantitativa– Comparar tamanho dos programas e velocidades de

execução

• Qualitativa– Examinar suporte a linguagem de alto nível e uso ideal da

tecnologia VLSI (Very-Large Scale Integration: circuitos integrados)

• Problemas– Não existem duas máquinas RISC e CISC que sejam

diretamente comparáveis– Não existe um conjunto definitivo de programas para teste– Difícil separar efeitos do hardware dos efeitos do compilador

Page 22: RISC x CISC

Controvérsia (2)

• Problemas...– Maioria das comparações realizadas em máquinas

experimentais e não comerciais– Maioria das máquinas comercias possuem uma mistura de

características

• Muitos projetos atualmente incorporam características CISC e RISC

• PowerPC – RISC que incorpora características CISC • Pentium II – CISC que incorpora características RISC

Page 23: RISC x CISC

Comparação de processadores