Rietveld_applications_tr.pdf

Embed Size (px)

Citation preview

  • 7/27/2019 Rietveld_applications_tr.pdf

    1/30

    Applications ofApplications of thethe RietveldRietveldmethodmethod

    Thierry Roisnel

    Laboratoire de Chimie du Solide et Inorganique Molculaire

    UMR6511 CNRS Universit de Rennes 1 (France)

  • 7/27/2019 Rietveld_applications_tr.pdf

    2/30

    Crystal structuresMagnetic structures (neutron data)

    1.1 Isomorphic or partially known structure

    structure refinement + difference Fourier maps examination

    1.2 Unknown structure

    1.1. Unit cell determination

    1.2 Space group determination1.3 Crystal structure determination:1.4 Structure refinement (Rietveld method)

    1. Structure refinement

  • 7/27/2019 Rietveld_applications_tr.pdf

    3/30

    1.1 Unit cell determination

    indexation of diffraction pattern:. Determination of cell parameters. Crystal symmetry. (hkl) Miller indices for every Bragg line

    *2 2 *2 2 *2 2 *2 * * * * * *

    2 . 2 . 2 .= = + + + + +hkl hklQ d h a k b l c klb c lhc a hka b

    Simple problem:

    Needs only a list of angular positions of Bragg lines:

    . Accuracy and precision of Bragg positions !

    !! . Single phase ?. Diffractometer zero-shift ?

  • 7/27/2019 Rietveld_applications_tr.pdf

    4/30

    1.2 Space group determination

    . Whole profile refinement of the diffraction pattern (FullProf):. No structural model. Cell parameters previously determined (1.1). Space group: Lau group

    . Detailed examination of systematic absences:. Extinctions due to Bravais lattice. Extinctions to symmetry elements

  • 7/27/2019 Rietveld_applications_tr.pdf

    5/30

    1.3 Crystal structure determination

    . Extraction of integrated intensities + Use of traditionnalmethods used in single crystal crystallography:

    . Direct methods (EXPO, SHELXS )

    . Patterson map

    . Direct space methods:. Genetic algorithm, Monte Carlo, Simulating annealing

  • 7/27/2019 Rietveld_applications_tr.pdf

    6/30

    . X-rays (conventionnal):

    . Instrumental resolution" weak cell distortions

    . Laboratory device

    . Form factor:. decrease with sin/:

    " Low diffracted intensity at high angles

    . Increase with Z" diffracted intensities dominated by heavy atoms

    1.4 Crystal structure refinement: X-rays versusneutron data

  • 7/27/2019 Rietveld_applications_tr.pdf

    7/30

    . Neutrons : interaction neutron with atom nuclei

    . Scattering power is independent of atomic number:

    " localization of light atoms (H/D, Li):" important contrast: cationic distribution (ex: Fe/Mn)

    . Low absorption:" experiments versus external parameter (temperature,

    pressure)

    . Scattering powder is independent of sin/:" accurate thermal displacement parameters

    . Gaussian profile function

  • 7/27/2019 Rietveld_applications_tr.pdf

    8/30

    . Neutron diffraction

    . Instrumental resolution

    . Need a particular installation (nuclear reactor, spallation source)

    . Large volume of powdered sample (2-3 cm3)

  • 7/27/2019 Rietveld_applications_tr.pdf

    9/30

    FullProf exercices

    (http://www-llb.cea.fr/fullweb/fp2k/fp2k_exercices.htm)

    Exercice #1: Analysis of the spinel MgAl2O4

    (ref. V. Montouillot, PhD Thesis, Univ. Orlans 1998)

    Spinel structure : cubic unit cell (space group: F d 3 m)

    AB2X4: A2+ (Mg, Ca, FeII, Zn) tetrahedral (Td) &B3+ (Al, FeIII, MnIII, ) octaedral (Oh) sitesX: O2-

  • 7/27/2019 Rietveld_applications_tr.pdf

    10/30

    AB2X4 spinel structrure

    Different ways to fill the Td (nTd=8) and Oh sites (nOh=4):

    ( ) ( )Td Oh

    2 3 2 31 x x x 2 x 4A B A B O+ + + +

    x=0

    x=1

    ( ) ( )Td Oh2 3

    1 2 4A B O+ +

    ( ) )Td Oh

    3 2 31 1 1 4B A B O+ + +

    " direct spinel

    " inverse spinel

  • 7/27/2019 Rietveld_applications_tr.pdf

    11/30

    Exercice #1: Analysis of the spinel MgAl2O4

    Space Group: F d -3 m

    Setting 1:Tetrahedral A-positions (Mg,Al) 8a (1/4,1/4,1/4)

    Octahedral B-positions (Mg,Al) 16d (5/8,5/8,5/8)Oxygen positions (O) 32e (x,x,x) x=0.386

    Setting 2:Tetrahedral A-positions (Mg,Al) 8a (1/8,1/8,1/8)Octahedral B-positions (Mg,Al) 16d (1/2,1/2,1/2)

    Oxygen positions (O) 32e (x,x,x) x=0.261

  • 7/27/2019 Rietveld_applications_tr.pdf

    12/30

    Exercice #1: Analysis of the spinel MgAl2O4

    Two neutron powder diffraction data files:

    MgAl2O4s.dat -> Sample obtained by conventional hightemperature solid state reaction

    neutron powder diffractometer: 3T2 (LLB, Saclay)

    . = 1.227

    . Resolution parameters: U = 0.276, V=0.340, W=0.147

  • 7/27/2019 Rietveld_applications_tr.pdf

    13/30

    MgAl2O4 exercice

    Refine the structure allowing the distribution of Mn and

    Al between the two available cationic sites. Calculate the value of the spinel structure:

    3

    3B in Td siteB total

    +

    + =

    Winplotr (mgal2o4s)

    Introduction of a structural model: Rietveld refinement

  • 7/27/2019 Rietveld_applications_tr.pdf

    14/30

    Introduction of a structural model: Rietveld refinement

    JBT=0 cristal. Structure factor

    IRF=0 automatic generation of reflections from the space group symbol!Phase 1: MgAl2O4-sharp

    !Nat Dis Ang Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth ATZ Nvk Npr More

    5 0 0 0.0 0.0 1.0 0 0 0 0 0 0.00 0 7 0

    F d 3 m

  • 7/27/2019 Rietveld_applications_tr.pdf

    15/30

    Introduction of a structural model: Rietveld refinement

    !Phase 1: MgAl2O4-sharp

    !Nat Dis Ang Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth ATZ Nvk Npr More

    5 0 0 0.0 0.0 1.0 0 0 0 0 0 0.00 0 7 0F d 3 m

  • 7/27/2019 Rietveld_applications_tr.pdf

    16/30

    Micro-structural features:

    * apparent size of coherent domains in the direction perpendicularto the diffraction planes

    * apparent strains in the direction perpendicular to the diffractionplanes:

    Origin of micro-strains: . Defaults: dislocations, vacancies

    . local fluctuations of composition (solid solutions )

    2.Micro-structure refinement

    ( ) ( ) ( )x f x g x =

    Observed profile Intrinsic profileInstrumental profile

    h l d

  • 7/27/2019 Rietveld_applications_tr.pdf

    17/30

    Diffracted intensity for a phase is proportional to the quantity of irradiatedmatter (absorption effects are not taken into account).

    3.Quantitative phase analysis and

    Rietveld method

    For a multiple phase pattern:

    1

    ( )=

    = +

    h, h,

    hci i i

    N

    b I T T S

    With:

    SScale factor for phase

  • 7/27/2019 Rietveld_applications_tr.pdf

    18/30

    3.Quantitative phase analysis

    . .

    mS

    Z V

    . . .m S M Z V

    with m

    ZV

    Mass of the phase in the sample

    Molecular weight

    Number of molecules per unit cell

    Volume of the unit cell

  • 7/27/2019 Rietveld_applications_tr.pdf

    19/30

    3.Quantitative phase analysis

    1 1

    ( )

    .( )= =

    = = N N

    i i i

    i i

    m S ZMV

    Wm S ZMV

    determination of weight fraction w of every phase present in the sample

  • 7/27/2019 Rietveld_applications_tr.pdf

    20/30

    3.Quantitative phase analysis in FullProf

    Take care of:

    . Sample preparation: homogeneity, number of particleswith random orientation (beware of preferential orientation)

    . Correct calculation of structure factors for every phase

    3 Q tit ti h l i i F llP f

  • 7/27/2019 Rietveld_applications_tr.pdf

    21/30

    3.Quantitative phase analysis in FullProf

    2

    2

    1 1

    ( ) . .

    .( ) . .= =

    = =

    i

    N N

    i i i

    i

    ii i

    i

    t AS ZMV f V S

    S

    TZ

    t

    W

    S ZMV f V ATZ

    with

    Scale factor in FullProf (refinable variable)FullProf parameter

    Brindley factor (particle absorption contrastfactor).t is tabulated as a function of (i-).RFullProf parameter

    S2= i ii iiZ MATZ f t

    it

    3 Q tit ti h l i i F llP f

  • 7/27/2019 Rietveld_applications_tr.pdf

    22/30

    3.Quantitative phase analysis in FullProf

    Used to transform the site multiplicities in PCR FullProf input file, totheir real values. For a stoichimetric phase, f= 1 if thesemultiplicities are calculated by dividing the Wyckoff multiplicity mof the site by the general multiplicity Mof the space group.Otherwise, f=occ.M/m, where occ. is the occupation number in thePCR file

    if

    In order to GET PROPER VALUES OF WEIGHT FRACTIONS LETTHE PROGRAM RE-CALCULATE ATZ by putting them to ZERO.The correct ATZ value to be rewritten in the PCR input file.

    (First atom in the PCR file has to be fully occupied)

    3 Quantitative phase analysis in FullProf

  • 7/27/2019 Rietveld_applications_tr.pdf

    23/30

    3.Quantitative phase analysis in FullProf

    1. Crystal structure has to be refined:

    JBT=0 (IRF=0)

    refine the structural parameters as usually

    2. Crystal structure is well known:

    2.1 create hkl file containing hkl list with corresponding F2(JLKH=5)

    2.2 refine the pattern without entering atomic positionsJBT=-3, IRF=2 (Profile Matching mode with constantrelative intensities for the current phase, butrefinable scale factor)

    Winplotr (Si3N4)

    3 Rietveld Q P A

  • 7/27/2019 Rietveld_applications_tr.pdf

    24/30

    3.Rietveld Q.P.A.

    easy to operate (automatic analysis in FullProf) no internal standard

    non destructive method

    up to 16 phases in FullProf

    polymorphism

    neutron case: large amounts of powder analysis (real samples) industrial applications (cements, clays )

    structure model dependent: {Fhkl} have to be known

    beware of preferential orientation

    3.Quantitative phase analysis:

  • 7/27/2019 Rietveld_applications_tr.pdf

    25/30

    .Q p ydetermination of an amorphous phase

    content ?

    If an amorphous phase is present in the sample:S Cm m m=

    Sample weight

    Amorphous phase weight Crystalline partweight

    Amorphous phase weight fraction:

    1CA

    S S

    mm

    m m=

    3.Quantitative phase analysis:

  • 7/27/2019 Rietveld_applications_tr.pdf

    26/30

    Q p ydetermination of an amorphous phase

    content ?

    . . . .m k S M Z V =

    1 1

    . . . .N N

    C i i i i i

    i i

    m m k S M Z V = =

    = =

    For each crystalline phase:

    For N crystalline phase sample:

    Introduction of an internal standard in the powder:(mst

    is known)

    . . . .st st st st stm k S M Z V =

    . . .

    st

    st st st st

    mk

    S M Z V =

    3.Quantitative phase analysis:

  • 7/27/2019 Rietveld_applications_tr.pdf

    27/30

    Q p ydetermination of an amorphous phase

    content ?

    Remarks:

    same strategy can be applied for unknownstructure phase

    difficult to manage for bulk sample

    if the structure of the amorphous phase is known,a QPA can be realized through broadening linetreatment for the amorphous phase (small coherentdiffraction domains)

    3 Rietveld Q P A : -Si N4 and Si N4 mixture

  • 7/27/2019 Rietveld_applications_tr.pdf

    28/30

    3.Rietveld Q.P.A.: -Si3N4 and _Si3N4 mixture

    Neutron data: Si3N4: 93% wgtSi3N4: 7% wgt

    3 Rietveld Q P A : -Si3N4 and Si3N4 mixture

  • 7/27/2019 Rietveld_applications_tr.pdf

    29/30

    3.Rietveld Q.P.A.: Si3N4 and _Si3N4 mixture

    X-rays data: Si3N4: 91.6% wgtSi3N4: 8.4% wgt

    Some references on Q P A by Rietveld method

  • 7/27/2019 Rietveld_applications_tr.pdf

    30/30

    Some references on Q.P.A.by Rietveld method

    R.J. Hill & C.J. Howard, J. Appl. Cryst. 20, 467-476 (1987)Quantitative phase analysis from neutron powder diffraction data using the

    Rietveld method

    G.W. Brindley, Phil. Mag. 36, 347-369 (1945)The effect of grain or particle size on X-ray reflections from mixedpowders and alloys considered in relation to the quantitative determination ofcrystalline substances by X-ray methods

    D.L. Bish & S.A. Howard, J. Appl. Cryst. 21, 86-91 (1988)Quantitative phase analysis using the Rietveld method

    J.C. Taylor, Powder Diffraction 6, 2-9 (1991)Computer programs for standardless quantitative analysis of minerals

    using the full powder diffraction profile

    R.J. Hill, Powder Diffraction 6, 74-77 (1991)

    Expanded use of Rietveld method in studies of phase abundance inmultiphase mixtures