23
RF-ZM-SL01 Low-Power 2.4 GHz IEEE 802.15.4 and ZigBee Module Version 1.0 Shenzhen RF-star Technology Co., Ltd. Jan. 19 th , 2020

RF-ZM-SL01 Low-Power 2.4 GHz IEEE 802.15.4 and ZigBee ...RF-ZM-SL01 V1.0 - Jan., 2020 Shenzhen RF-star Technology Co., Ltd. Page 3 of 22 operation - 2 × Watchdog Timer with

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

  • RF-ZM-SL01 Low-Power 2.4 GHz IEEE

    802.15.4 and ZigBee Module

    Version 1.0

    Shenzhen RF-star Technology Co., Ltd.

    Jan. 19th, 2020

  • RF-ZM-SL01

    www.szrfstar.com V1.0 - Jan., 2020

    Shenzhen RF-star Technology Co., Ltd. Page 1 of 22

    ZigBee Module List

    Chipset Core FLASH

    (KB)

    RAM

    (KB) Model Antenna

    Dimension

    (mm)

    TX

    Power

    (dBm)

    Range

    (M) Photo

    CC2530 8051 256 8

    XZZ-TIM2 PCB /

    IPEX 18 34.4 20

    PCB: 1000

    IPEX: 1500

    XZZ-TIM3 PCB /

    IPEX 16 26.2 4.5

    PCB: 400

    IPEX: 600

    XZZ-TIM4 PCB /

    IPEX 16 26.2 20

    PCB: 1000

    IPEX: 1500

    WE1005 PCB 16 22 4.5 300

    RF-ZM-1338A PCB /

    IPEX 16.8 22 3

    PCB: 300

    IPEX: 450

    RF-ZM-1738A PCB /

    IPEX 16.8 27.9 17

    PCB: 550

    IPEX: 850

    RF-ZM-TI01 PCB 15.1 22.3 4.5 300

    EFR32

    MG1B232 M4 256 32

    3B32_V102 PCB /

    IPEX 14.8 20.4 19.5

    PCB: 1000

    IPEX: 1500

    RF-ZM-SL01 PCB 14 21 19.5 1000

    Note:

    1. The communication distance is the longest distance obtained by testing the module's maximum transmission power

    in an open and interference-free environment in sunny weather.

    2. Click the picture to buy modules.

    3. All modules with PCB antenna and IPEX connector are dispatched with PCB antenna only by default. If IPEX

    connector is needed, pls check with me before quotation.

    http://www.szrfstar.com/https://www.alibaba.com/product-detail/Long-range-home-automation-TI-CC2530_62499475463.html?spm=a2747.manage.0.0.378271d2ZqnIWhhttps://www.alibaba.com/product-detail/Long-distance-smart-home-TI-CC2530_62499943816.html?spm=a2747.manage.0.0.378271d2ZqnIWhhttps://www.alibaba.com/product-detail/FCC-UART-Programmable-lower-price-CC2530_60772637694.html?spm=a2747.manage.0.0.670e71d2SCl1cnhttps://item.taobao.com/item.htm?spm=a1z10.4-c.w5003-22129378448.4.31115e8eXcePxJ&id=36060515930&scene=taobao_shophttps://item.taobao.com/item.htm?spm=a1z10.4-c.w5003-22129378448.5.31115e8eXcePxJ&id=36061147272&scene=taobao_shophttps://www.alibaba.com/product-detail/Home-automation-FCC-Programmable-zigbee-wireless_60818796410.html?spm=a2747.manage.0.0.670e71d2SCl1cnhttps://www.alibaba.com/product-detail/RF-star-long-range-long-distance_62307310286.html?spm=a2747.manage.0.0.670e71d2SCl1cn

  • RF-ZM-SL01

    www.szrfstar.com V1.0 - Jan., 2020

    Shenzhen RF-star Technology Co., Ltd. Page 2 of 22

    1 Device Overview

    1.1 Description

    RF-ZM-SL01 module is based on EFR32MG1B232F256GM32-C0 of Silicon Labs. The EFR32MG1B232F256GM32-C0

    is a true system-on-chip (SoC) solution for ZigBee, Thread and multiprotocol, and it supports the following modulation

    formats: 2/4 (G)FSK with fully configurable shaping, BPSK / DBPSK TX, OOK / ASK, shaped OQPSK / (G)MSK,

    configurable DSSS and FEC. The module enables industry-leading energy efficiency, ultra-fast wakeup times, a scalable

    power amplifier and no-compromise MCU. It integrates 32-bit ARM Cortex-M4 core with 40 MHz maximum operating

    frequency, PA with up to +19.5 dBm and balun.

    1.2 Key Features

    • Low Power Wireless System-on-Chip

    - High-performance 32-bit 40 MHz ARM

    Cortex®-M4 with DSP instruction and floating-

    point unit for efficient signal processing

    - Embedded Trace Macrocell (ETM) for

    advanced debugging

    - Flash: 256 KB

    - RAM: 32 KB

    - 2.4 GHz radio operation

    - Transmit power: up to 19 dBm

    • Supported Modulation Formats

    - 2/4 (G)FSK with fully configurable shaping

    - PSK / DBPSK TX

    - OOK / ASK

    - Shaped OQPSK / (G)MSK

    - Configurable DSSS and FEC

    • Supported Protocols

    - ZigBee

    - Thread

    • Wide Operation Range

    - Power supply: 1.8 V ~ 3.8 V

    - Integrated DCDC, down to 1.8 V output with

    up to 200 mA load current for system

    - Standard temperature range: -40 ℃ ~+85 ℃

    • Peripherals

    - 12-bit 1 Mbps SAR Analog to Digital

    Converter (ADC)

    - 2 × Analog Comparator (ACMP)

    - 2 × Digital to Analog Converter (VDAC)

    - 3 × Operational Amplifier (Opamp)

    - Digital to Analog Current Converter (IDAC)

    - Low-Energy Sensor Interface (LESENSE)

    - Multi-channel Capacitive Sense Interface

    (CSEN)

    - Up to 54 pins connected to analog channels

    (APORT) shared between analog peripherals

    - Up to 65 general purpose I/O pins with output

    state retention and asynchronous interrupts

    - 8 Channel DMA Controller

    - 12 Channel peripheral Reflex System (PRS)

    - 2 × 16-bit Timer / Counter

    3 or 4 Compare / Capture / PWM

    channels

    - 2 × 32-bit Timer / Counter

    3 or 4 Compare / Capture / PWM

    channels

    - 32-bit Real Time Counter and Calendar

    - 16-bit Low Energy Timer for waveform

    generation

    - 32-bit Ultra Low Energy Timer / Counter for

    periodic wake-up from any Energy Mode

    - 3 × 16-bit Pulse Counter with asynchronous

    http://www.szrfstar.com/

  • RF-ZM-SL01

    www.szrfstar.com V1.0 - Jan., 2020

    Shenzhen RF-star Technology Co., Ltd. Page 3 of 22

    operation

    - 2 × Watchdog Timer with dedicated RC

    oscillator

    - 4 × Universal Synchronous / Asynchronous

    Receiver / Transmitter (UART / SPI /

    SmartCard (ISO 7816) / IrDA / I2S)

    - Low Energy UART (LEUARTTM)

    - 2 × I2C interface with SMBus support and

    address recognition in EM3 Stop

    • Low Energy Consumption

    - RX current at 250 kbps, DSSS-OQPSK, 2.4

    GHz: 10.8 mA

    - RX current at 1 Mbps, GFSK, 2.4 GHz: 10.0

    mA

    - TX current at 0 dBm, 2.4 GHz: 8.5 mA

    - 70 μA/MHz in Active Mode (EM0)

    - 1.5 μA EM2 DeepSleep current (16 kB RAM

    retention and RTCC running from LFRCO)

    - Wake on Radio with signal strength detection,

    preamble pattern detection, frame detection

    and timeout

    • High Receiver Performance

    - -94.8 dBm sensitivity at 1 Mbit/s GFSK, 2.4

    GHz

    - -91.3 dBm sensitivity at 2 Mbit/s GFSK, 2.4

    GHz

    - -102.7 dBm sensitivity at 250 kbps DSSS-

    OQPSK, 2.4 GHz

    1.3 Applications

    • IoT multi-protocol device

    • Connected home

    • Lighting

    • Health and wellness

    • Metering

    • Home automation

    • Building automation

    • Security

    1.4 Functional Block Diagram

    Figure 1. Functional Block Diagram of RF-ZM-SL01

    12 GPIOs

    Reset

    LC Balun Antenna Matching

    38.4 MHz

    Power Filter

    EFR32 PCB Antenna

    IPEX Connector

    Power Supply 2.3 V ~ 3.6 V

    http://www.szrfstar.com/

  • RF-ZM-SL01

    www.szrfstar.com V1.0 - Jan., 2020

    Shenzhen RF-star Technology Co., Ltd. Page 4 of 22

    1.5 Part Number Conventions

    The part numbers are of the form of RF-ZM-SL01 where the fields are defined as follows:

    Figure 2. Part Number Conventions of RF-ZM-SL01

    RF ZM SL

    Company Name

    RF-STAR

    Wireless Type

    ZigBee Module

    Chipset Manufacturer

    Silicon Labs

    - - 01

    Module Version

    The First Version

    http://www.szrfstar.com/

  • RF-ZM-SL01

    www.szrfstar.com V1.0 - Jan., 2020

    Shenzhen RF-star Technology Co., Ltd. Page 5 of 22

    Table of Contents

    ZigBee Module List ............................................................................................................................................................ 1

    1 Device Overview ............................................................................................................................................................. 2

    1.1 Description ............................................................................................................................................................ 2

    1.2 Key Features ....................................................................................................................................................... 2

    1.3 Applications .......................................................................................................................................................... 3

    1.4 Functional Block Diagram .............................................................................................................................. 3

    1.5 Part Number Conventions .............................................................................................................................. 4

    Table of Contents ................................................................................................................................................................ 5

    Table of Figures ................................................................................................................................................................... 6

    Table of Tables ..................................................................................................................................................................... 6

    2 Module Configuration and Functions ...................................................................................................................... 7

    2.1 Module Parameters ........................................................................................................................................... 7

    2.2 Module Pin Diagram ......................................................................................................................................... 8

    2.3 Pin Functions ....................................................................................................................................................... 8

    3 Specifications ................................................................................................................................................................. 10

    3.1 Recommended Operating Conditions ..................................................................................................... 10

    3.2 Handling Ratings .............................................................................................................................................. 10

    3.3 Power Consumption ....................................................................................................................................... 10

    3.3.1 3.3 V without DC-DC Converter .................................................................................................... 10

    3.3.2 3.3 V with DC-DC Converter .......................................................................................................... 11

    3.4 RF Characteristics ........................................................................................................................................... 12

    3.4.1 Transmitter ............................................................................................................................................. 12

    3.4.2 Receiver ................................................................................................................................................. 13

    4 Application, Implementation, and Layout ............................................................................................................. 15

    4.1 Module Photos .................................................................................................................................................. 15

    4.2 Recommended PCB Footprint .................................................................................................................... 15

    4.3 Schematic Diagram ......................................................................................................................................... 16

    4.4 Basic Operation of Hardware Design ...................................................................................................... 16

    4.5 Trouble Shooting .............................................................................................................................................. 18

    4.5.1 Unsatisfactory Transmission Distance ........................................................................................ 18

    http://www.szrfstar.com/

  • RF-ZM-SL01

    www.szrfstar.com V1.0 - Jan., 2020

    Shenzhen RF-star Technology Co., Ltd. Page 6 of 22

    4.5.2 Vulnerable Module .............................................................................................................................. 18

    4.5.3 High Bit Error Rate ............................................................................................................................. 18

    4.6 Electrostatics Discharge Warnings ........................................................................................................... 18

    4.7 Soldering and Reflow Condition ................................................................................................................. 19

    4.8 Optional Packaging ......................................................................................................................................... 20

    6 Revision History ............................................................................................................................................................ 21

    7 Contact Us ....................................................................................................................................................................... 22

    Table of Figures

    Figure 1. Functional Block Diagram of RF-ZM-SL01 .................................................................................. 3

    Figure 2. Part Number Conventions of RF-ZM-SL01 .................................................................................. 4

    Figure 3. Pin Diagram of RF-ZM-SL01 ............................................................................................................. 8

    Figure 4. Photos of RF-ZM-SL01 ...................................................................................................................... 15

    Figure 5. Recommended PCB Footprint of RF-ZM-SL01 (mm) ............................................................ 15

    Figure 6. Schematic Diagram of RF-ZM-SL01 ............................................................................................ 16

    Figure 7. Recommendation of Antenna Layout ........................................................................................... 17

    Figure 8. Recommended Reflow for Lead Free Solder ............................................................................ 19

    Figure 9. Optional Packaging Mode ................................................................................................................. 20

    Table of Tables

    Table 1. Parameters of RF-ZM-SL01 ................................................................................................................. 7

    Table 2. Pin Functions of RF-ZM-SL01............................................................................................................. 8

    Table 3. Recommended Operating Conditions of RF-ZM-SL01 ........................................................... 10

    Table 4. Handling Ratings of RF-ZM-SL01 ................................................................................................... 10

    Table 5. Power Consumption 3.3 V without DC-DC Converter ............................................................. 10

    Table 6. Power Consumption 3.3 V with DC-DC Converter ................................................................... 11

    Table 7. Table of RF Transmitter ....................................................................................................................... 12

    Table 8. Table of RF Receiver ............................................................................................................................ 13

    Table 9. Temperature Table of Soldering and Reflow ................................................................................ 19

    http://www.szrfstar.com/

  • RF-ZM-SL01

    www.szrfstar.com V1.0 - Jan., 2020

    Shenzhen RF-star Technology Co., Ltd. Page 7 of 22

    2 Module Configuration and Functions

    2.1 Module Parameters

    Table 1. Parameters of RF-ZM-SL01

    Chipset Silicon Labs: EFR32MG1B232F256GM32-C0

    Supply Power Voltage 2.3 V ~ 3.6 V, recommended to 3.3 V

    Frequency 2400 MHz ~ 2483.5 MHz

    Transmit Power -30.0 dBm ~ +19.5 dBm

    Receiving Sensitivity -98 dBm

    Crystal 38.4 MHz

    RAM 32 KB

    Flash 256 KB

    Package SMT Packaging

    Frequency Error ±20 kHz

    Dimension 21.0 mm x 14.0 mm x (1.7± 0.1) mm

    Type of Antenna PCB antenna

    Operating Temperature -40 ℃ ~ +85 ℃

    Storage Temperature -40 ℃ ~ +125 ℃

    RX Current (1 Mbps GFSK) 8.7 mA

    RX Current (250 kbps 0-QPSK DSSS) 9.8 mA

    TX Current @ 0 dBm 8.2 mA

    Deep Sleep Mode 5.5 µA

    http://www.szrfstar.com/

  • RF-ZM-SL01

    www.szrfstar.com V1.0 - Jan., 2020

    Shenzhen RF-star Technology Co., Ltd. Page 8 of 22

    2.2 Module Pin Diagram

    Figure 3. Pin Diagram of RF-ZM-SL01

    2.3 Pin Functions

    Table 2. Pin Functions of RF-ZM-SL01

    Pin Name Chip Pin Pin Type Description

    1 GND GND GND Ground

    2 VCC VCC SYS_POWER Power supply: 2.3 V ~ 3.6 V. Recommended to 3.3 V.

    3 PD13 PD13 GPIO GPIO (5V)

    4 PD14 PD14 GPIO GPIO (5V)

    5 PD15 PD15 GPIO GPIO (5V)

    6 PA0 PA0 GPIO GPIO, UART_TX

    7 PA1 PA1 GPIO GPIO, UART_RX

    8 PB11 PB11 GPIO GPIO (5V), PTLDATA

    9 PB12 PB12 GPIO GPIO (5V)

    10 PB13 PB13 GPIO GPIO (5V)

    11 PB14 PB14 GPIO GPIO (5V)

    http://www.szrfstar.com/

  • RF-ZM-SL01

    www.szrfstar.com V1.0 - Jan., 2020

    Shenzhen RF-star Technology Co., Ltd. Page 9 of 22

    12 IOVDD IOVDD I/O_POWER Digital IO power supply

    13 VDCDC DVDD Internal DCDC Internal DCDC out 1.8 V

    14 PB15 PB15 GPIO GPIO (5V)

    15 PF2 PF2 GPIO GPIO (5V)

    16 PF3 PF3 GPIO GPIO (5V)

    17 PC10 PC10 GPIO GPIO (5V)

    18 PC11 PC11 GPIO GPIO (5V)

    19 SWC PF0 SWCLK Debugger SWCLK

    20 SWD PF1 SWDIO Debugger SWDIO

    21 RES RESETn RESET Reset. Active low.

    22 GND GND GND Ground

    23 EXT_ANT EXT_ANT External Antenna Connect to the external antenna

    24 GND GND GND Ground

    http://www.szrfstar.com/

  • RF-ZM-SL01

    www.szrfstar.com V1.0 - Jan., 2020

    Shenzhen RF-star Technology Co., Ltd. Page 10 of 22

    3 Specifications

    3.1 Recommended Operating Conditions

    Functional operation does not guarantee performance beyond the limits of the conditional parameter values in the table

    below. Long-term work beyond this limit will affect the reliability of the module more or less.

    Table 3. Recommended Operating Conditions of RF-ZM-SL01

    Items Condition Min. Typ. Max. Unit

    Operating Supply Voltage Battery Mode 2.3 3.3 3.6 V

    Operating Temperature / -40 +25 +85 ℃

    Environmental Hot Pendulum / -20 +20 ℃/min

    3.2 Handling Ratings

    Table 4. Handling Ratings of RF-ZM-SL01

    Items Condition Min. Typ. Max. Unit

    Storage Temperature Tstg -40 +25 +125 ℃

    Human Body Model HBM ±2000 V

    Moisture Sensitivity Level 2

    Charged Device Model ±500 V

    3.3 Power Consumption

    3.3.1 3.3 V without DC-DC Converter

    Table 5. Power Consumption 3.3 V without DC-DC Converter

    Measured on the RF-ZM-SL01 reference design with TA = 25 ℃, VDD = 3.3 V, unless otherwise noted.

    Boldface limits apply over the entire operating range, TA = –40°C to +85°C, VDD = 2 V to 3.6 V, and fc = 2400 MHz to

    2483.5 MHz.

    Parameter Test Conditions Min. Typ. Max. Unit

    IACTIVE

    Current consumption in

    EM0 mode with all

    peripherals disabled

    38.4 MHz crystal, CPU running while

    loop from flash1 130 µA/MHz

    IEM1

    Current consumption in

    EM1 mode with all

    peripherals disabled

    38.4 MHz crystal1 65 µA/MHz

    IEM2 Current consumption in Full 32 kB RAM retention and RTCC 3.3 µA

    http://www.szrfstar.com/

  • RF-ZM-SL01

    www.szrfstar.com V1.0 - Jan., 2020

    Shenzhen RF-star Technology Co., Ltd. Page 11 of 22

    EM2 mode running from LFXO

    IEM3 Current consumption in

    EM3 mode

    Full 32 kB RAM retention and

    CRYOTIMER running from ULFRCO 2.8 6 µA

    IEM4H Current consumption in

    EM4H mode

    128 byte RAM retention, RTCC

    running from LFXO 1.1 µA

    128 byte RAM retention,

    CRYOTIMER running from ULFRCO 0.65 µA

    128 byte RAM retention, no RTCC 0.65 1.3 µA

    IEM4S Current consumption in

    EM4S mode No RAM retention, no RTCC 0.04 0.11 µA

    Note:

    1. CMU_HFXOCTRL_LOWPOWER=0.

    3.3.2 3.3 V with DC-DC Converter

    Table 6. Power Consumption 3.3 V with DC-DC Converter

    Measured on the RF-ZM-SL01 reference design with TA = 25 ℃, VDD = 3.3 V, unless otherwise noted.

    Boldface limits apply over the entire operating range, TA = –40°C to +85°C, VDD = 2 V to 3.6 V, and fc = 2400 MHz to

    2483.5 MHz.

    Parameter Test Conditions Min. Typ. Max. Unit

    IACTIVE_DCM

    Current consumption in

    EM0 mode with all

    peripherals disabled,

    DCDC in low Noise DCM

    mode2

    38.4 MHz crystal, CPU running while

    loop from flash4 88 µA/MHz

    IACTIVE_CCM

    Current consumption in

    EM0 mode with all

    peripherals disabled,

    DCDC in low Noise CCM

    mode1

    38.4 MHz crystal, CPU running while

    loop from flash4 88 µA/MHz

    IEM1_DCM

    Current consumption in

    EM1 mode with all

    peripherals disabled,

    DCDC in low Noise DCM

    38.4 MHz crystal1 49 µA/MHz

    http://www.szrfstar.com/

  • RF-ZM-SL01

    www.szrfstar.com V1.0 - Jan., 2020

    Shenzhen RF-star Technology Co., Ltd. Page 12 of 22

    mode2

    IEM2

    Current consumption in

    EM2 mode, DCDC in LP

    mode3

    Full 32 kB RAM retention and RTCC

    running from LFXO 1.4 µA

    IEM3 Current consumption in

    EM3 mode

    Full 32 kB RAM retention and

    CRYOTIMER running from ULFRCO 1.1 µA

    IEM4H Current consumption in

    EM4H mode

    128 byte RAM retention, RTCC

    running from LFXO 0.86 µA

    128 byte RAM retention,

    CRYOTIMER running from ULFRCO 0.58 µA

    128 byte RAM retention, no RTCC 0.58 µA

    IEM4S Current consumption in

    EM4S mode No RAM retention, no RTCC 0.04 µA

    Note:

    1. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD.

    2. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=4), ANASW=DVDD.

    3. DCDC Low Power Mode = Medium Drive (PFETCNT=NFETCNT=7), LPOSCDIV=1, LPCMPBIAS=0,

    LPCLIMILIMSEL=1.

    4. CMU_HFXOCTRL_LOWPOWER=0.

    3.4 RF Characteristics

    3.4.1 Transmitter

    Table 7. Table of RF Transmitter

    Measured on the RF-ZM-SL01 reference design with TA = 25 ℃, VDD = 3.3 V, unless otherwise noted.

    Boldface limits apply over the entire operating range, TA = –40°C to +85°C, VDD = 2 V to 3.6 V, and fc = 2400 MHz to

    2483.5 MHz.

    Parameter Test Conditions Min. Typ. Max. Unit

    POUTMAX Maximum TX power PAVDD connected directly to

    external 3.3 V supply 19.5 dBm

    POUTMIN Minimum active TX

    power CW -30 dBm

    POUTSTEP Output power step size -5 dBm output power 0 dBm 1 dB

    0 dBm output power 0.5 dB

    http://www.szrfstar.com/

  • RF-ZM-SL01

    www.szrfstar.com V1.0 - Jan., 2020

    Shenzhen RF-star Technology Co., Ltd. Page 13 of 22

    POUTMAX

    POUTVAR-V Output power variation

    vs supply at POUTMAX

    1.85 V VVREGVDD 3.3 V

    PAVDD connected directly to

    external supply, for output

    power > 10.5 dBm

    4.5 dB

    1.85 V VVREGVDD 3.3 V using

    DCDC converter

    2.2 dB

    POUTVAR_T

    Output power variation

    vs temperature at

    POUTMAX

    From 40 ℃ to +85 ℃, PAVDD

    connected to DCDC output 1.5 dB

    From 40 ℃ to +125 ℃, PAVDD

    connected to DCDC output 2.2 dB

    From 40 ℃ to +85 ℃, PAVDD

    connected to external supply 1.5 dB

    From 40 ℃ to +125 ℃, PAVDD

    connected to DCDC external

    supply

    3.4 dB

    POUTVAR_F

    Output power variation

    vs RF frequency at

    POUTMAX

    -over RF tuning frequency range 0.4 dB

    FRANGE RF tuning frequency

    range 2400 2483.5 MHz

    3.4.2 Receiver

    Table 8. Table of RF Receiver

    Parameter Test Conditions Min. Typ. Max. Unit

    FRANGE RF tuning frequency

    range 2400 2483.5 MHz

    SPURRX Receive mode maximum

    spurious emission

    30 MHz to 1 GHz -57 dBm

    1 GHz to 12 GHz -47 dBm

    SPURRX_FCC

    Max spurious emissions

    during active receive

    mode, per FCC Part

    216 MHz to 960 MHz, conducted

    measurement -55.2 dBm

    Above 960 MHz, conducted -47.2 dBm

    http://www.szrfstar.com/

  • RF-ZM-SL01

    www.szrfstar.com V1.0 - Jan., 2020

    Shenzhen RF-star Technology Co., Ltd. Page 14 of 22

    15.109 (a) measurement

    RFSENSETRIG Level above which

    RFSENSE will trigger2 CW at 2.45 GHz -24 dBm

    RFSENSETHRES Level below which

    RFSENSE will trigger2 CW at 2.45 GHz -50 dBm

    SENS2GFSK 1 % PER sensitivity 2 Mbps 2GFSK signal1 -89.2 dBm

    250 kbps 2GFSK signal -99.1 dBm

    Note:

    1. Channel at 2420 MHz will have degraded sensitivity. Sensitivity could be as high as -83 dBm on this channel.

    2. RFSENSE performance is only valid from 0 ℃ to 85 ℃. RFSENSE should be disabled outside this temperature

    range.

    http://www.szrfstar.com/

  • RF-ZM-SL01

    www.szrfstar.com V1.0 - Jan., 2020

    Shenzhen RF-star Technology Co., Ltd. Page 15 of 22

    4 Application, Implementation, and Layout

    4.1 Module Photos

    Figure 4. Photos of RF-ZM-SL01

    4.2 Recommended PCB Footprint

    Figure 5. Recommended PCB Footprint of RF-ZM-SL01 (mm)

    http://www.szrfstar.com/

  • RF-ZM-SL01

    www.szrfstar.com V1.0 - Jan., 2020

    Shenzhen RF-star Technology Co., Ltd. Page 16 of 22

    4.3 Schematic Diagram

    Figure 6. Schematic Diagram of RF-ZM-SL01

    4.4 Basic Operation of Hardware Design

    1. It is recommended to offer the module with a DC stabilized power supply, a tiny power supply ripple coefficient and

    the reliable ground. Please pay attention to the correct connection between the positive and negative poles of the

    power supply. Otherwise, the reverse connection may cause permanent damage to the module;

    2. Please ensure the supply voltage is between the recommended values. The module will be permanently damaged

    if the voltage exceeds the maximum value. Please ensure the stable power supply and no frequently fluctuated

    voltage.

    3. When designing the power supply circuit for the module, it is recommended to reserve more than 30% of the margin,

    which is beneficial to the long-term stable operation of the whole machine. The module should be far away from the

    power electromagnetic, transformer, high-frequency wiring and other parts with large electromagnetic interference.

    4. The bottom of module should avoid high-frequency digital routing, high-frequency analog routing and power routing.

    If it has to route the wire on the bottom of module, for example, it is assumed that the module is soldered to the Top

    Layer, the copper must be spread on the connection part of the top layer and the module, and be close to the digital

    http://www.szrfstar.com/

  • RF-ZM-SL01

    www.szrfstar.com V1.0 - Jan., 2020

    Shenzhen RF-star Technology Co., Ltd. Page 17 of 22

    part of module and routed in the Bottom Layer (all copper is well grounded).

    5. Assuming that the module is soldered or placed in the Top Layer, it is also wrong to randomly route the Bottom Layer

    or other layers, which will affect the spurs and receiving sensitivity of the module to some degrees;

    6. Assuming that there are devices with large electromagnetic interference around the module, which will greatly affect

    the module performance. It is recommended to stay away from the module according to the strength of the

    interference. If circumstances permit, appropriate isolation and shielding can be done.

    7. Assuming that there are routings of large electromagnetic interference around the module (high-frequency digital,

    high-frequency analog, power routings), which will also greatly affect the module performance. It is recommended

    to stay away from the module according to the strength of the interference. If circumstances permit, appropriate

    isolation and shielding can be done.

    8. It is recommended to stay away from the devices whose TTL protocol is the same 2.4 GHz physical layer, for

    example: USB 3.0.

    9. The antenna installation structure has a great influence on the module performance. It is necessary to ensure the

    antenna is exposed and preferably vertically upward. When the module is installed inside of the case, a high-quality

    antenna extension wire can be used to extend the antenna to the outside of the case.

    10. The antenna must not be installed inside the metal case, which will cause the transmission distance to be greatly

    weakened.

    11. The recommendation of antenna layout.

    The inverted-F antenna and IPEX connector position on PCB is free space electromagnetic radiation. The location

    and layout of antenna is a key factor to increase the data rate and transmission range.

    Therefore, the layout of the module antenna location and routing is recommended as follows:

    (1) Place the antenna on the edge (corner) of the PCB.

    (2) Make sure that there is no signal line or copper foil in each layer below the antenna.

    (3) It is the best to hollow out the red part of the antenna position in the following figure so as to ensure that S11

    of the module is minimally affected.

    Figure 7. Recommendation of Antenna Layout

    Note: The hollow-out position is based on the antenna used.

    http://www.szrfstar.com/

  • RF-ZM-SL01

    www.szrfstar.com V1.0 - Jan., 2020

    Shenzhen RF-star Technology Co., Ltd. Page 18 of 22

    4.5 Trouble Shooting

    4.5.1 Unsatisfactory Transmission Distance

    1. When there is a linear communication obstacle, the communication distance will be correspondingly weakened.

    Temperature, humidity, and co-channel interference will lead to an increase in communication packet loss rate. The

    performances of ground absorption and reflection of radio waves will be poor, when the module is tested close to

    the ground.

    2. Seawater has a strong ability to absorb radio waves, so the test results by seaside are poor.

    3. The signal attenuation will be very obvious, if there is a metal near the antenna or the module is placed inside of the

    metal shell.

    4. The incorrect power register set or the high data rate in an open air may shorten the communication distance. The

    higher the data rate, the closer the distance.

    5. The low voltage of the power supply is lower than the recommended value at ambient temperature, and the lower

    the voltage, the smaller the power is.

    6. The unmatchable antennas and module or the poor quality of antenna will affect the communication distance.

    4.5.2 Vulnerable Module

    1. Please ensure the supply voltage is between the recommended values. The module will be permanently damaged

    if the voltage exceeds the maximum value. Please ensure the stable power supply and no frequently fluctuated

    voltage.

    2. Please ensure the anti-static installation and the electrostatic sensitivity of high-frequency devices.

    3. Due to some humidity sensitive components, please ensure the suitable humidity during installation and application.

    If there is no special demand, it is not recommended to use at too high or too low temperature.

    4.5.3 High Bit Error Rate

    1. There are co-channel signal interferences nearby. It is recommended to be away from the interference sources or

    modify the frequency and channel to avoid interferences.

    2. The unsatisfactory power supply may also cause garbled. It is necessary to ensure the power supply reliability.

    3. If the extension wire or feeder wire is of poor quality or too long, the bit error rate will be high.

    4.6 Electrostatics Discharge Warnings

    The module will be damaged for the discharge of static. RF-star suggest that all modules should follow the 3 precautions

    below:

    1. According to the anti-static measures, bare hands are not allowed to touch modules.

    2. Modules must be placed in anti- static areas.

    3. Take the anti-static circuitry (when inputting HV or VHF) into consideration in product design.

    Static may result in the degradation in performance of module, even causing the failure.

    http://www.szrfstar.com/

  • RF-ZM-SL01

    www.szrfstar.com V1.0 - Jan., 2020

    Shenzhen RF-star Technology Co., Ltd. Page 19 of 22

    4.7 Soldering and Reflow Condition

    1. Heating method: Conventional Convection or IR/convection.

    2. Solder paste composition: Sn96.5 / Ag3.0 / Cu0.5

    3. Allowable reflow soldering times: 2 times based on the following reflow soldering profile.

    4. Temperature profile: Reflow soldering shall be done according to the following temperature profile.

    5. Peak temperature: 245 ℃.

    Table 9. Temperature Table of Soldering and Reflow

    Profile Feature Sn-Pb Assembly Pb-Free Assembly

    Solder Paste Sn63 / Pb37 Sn96.5 / Ag3.0 /

    Cu0.5

    Min. Preheating Temperature (Tmin) 100 ℃ 150 ℃

    Max. Preheating Temperature (Tmax) 150 ℃ 200 ℃

    Preheating Time (Tmin to Tmax) (t1) 60 s ~ 120 s 60 s ~ 120 s

    Average Ascend Rate (Tmax to Tp) Max. 3 ℃/s Max. 3 ℃/s

    Liquid Temperature (TL) 183 ℃ 217 ℃

    Time above Liquidus (tL) 60 s ~ 90 s 30 s ~ 90 s

    Peak Temperature (Tp) 220 ℃ ~ 235 ℃ 230 ℃ ~ 250 ℃

    Average Descend Rate (Tp to Tmax) Max. 6 ℃/s Max. 6 ℃/s

    Time from 25 ℃ to Peak Temperature (t2) Max. 6 minutes Max. 8 minutes

    Time of Soldering Zone (tP) 20±10 s 20±10 s

    Figure 8. Recommended Reflow for Lead Free Solder

    http://www.szrfstar.com/

  • RF-ZM-SL01

    www.szrfstar.com V1.0 - Jan., 2020

    Shenzhen RF-star Technology Co., Ltd. Page 20 of 22

    4.8 Optional Packaging

    Figure 9. Optional Packaging Mode

    Note: Default tray packaging.

    http://www.szrfstar.com/

  • RF-ZM-SL01

    www.szrfstar.com V1.0 - Jan., 2020

    Shenzhen RF-star Technology Co., Ltd. Page 21 of 22

    6 Revision History

    Date Version No. Description Author

    2016.09.27 V1.0 The initial version is released. Aroo Wang

    2018.08.02 V1.0 Update company address. Aroo Wang

    2020.01.19 V1.0 Add ZigBee module list. Sunny Li

    Note:

    1. The document will be optimized and updated from time to time. Before using this document, please make sure it is

    the latest version.

    2. To obtain the latest document, please download it from the official website: www.szrfstar.com.

    http://www.szrfstar.com/

  • RF-ZM-SL01

    www.szrfstar.com V1.0 - Jan., 2020

    Shenzhen RF-star Technology Co., Ltd. Page 22 of 22

    7 Contact Us

    SHENZHEN RF-STAR TECHNOLOGY CO., LTD.

    Shenzhen HQ:

    Add.: Room 601, Block C, Skyworth Building, High-tech Park, Nanshan District, Shenzhen, Guangdong, China

    Tel.: 86-755-3695 3756

    Chengdu Branch:

    Add.: No. B3-03, Building No.1, Incubation Park, High-Tech District, Chengdu, Sichuan, China, 610000

    Tel.: 86-28-6577 5970

    Email: [email protected], [email protected]

    Web.: www.szrfstar.com

    http://www.szrfstar.com/mailto:[email protected]://www.szrfstar.com/

    ZigBee Module List1 Device Overview1.1 Description1.2 Key Features1.3 Applications1.4 Functional Block Diagram1.5 Part Number Conventions

    Table of ContentsTable of FiguresTable of Tables2 Module Configuration and Functions2.1 Module Parameters2.2 Module Pin Diagram2.3 Pin Functions

    3 Specifications3.1 Recommended Operating Conditions3.2 Handling Ratings3.3 Power Consumption3.3.1 3.3 V without DC-DC Converter3.3.2 3.3 V with DC-DC Converter

    3.4 RF Characteristics3.4.1 Transmitter3.4.2 Receiver

    4 Application, Implementation, and Layout4.1 Module Photos4.2 Recommended PCB Footprint4.3 Schematic Diagram4.4 Basic Operation of Hardware Design4.5 Trouble Shooting4.5.1 Unsatisfactory Transmission Distance4.5.2 Vulnerable Module4.5.3 High Bit Error Rate

    4.6 Electrostatics Discharge Warnings4.7 Soldering and Reflow Condition4.8 Optional Packaging

    6 Revision History7 Contact Us