124
PHILIPS RF Power Amplifier Design Using LDMOS Semiconductors Korné Vennema Philips Semiconductors 25 Forbes Boulevard, Foxborough, MA 02035

RF Power Amplifier Design Using LDMOS Semiconductors

  • Upload
    others

  • View
    11

  • Download
    1

Embed Size (px)

Citation preview

Page 1: RF Power Amplifier Design Using LDMOS Semiconductors

PHILIPSRF Power Amplifier DesignUsing LDMOS Semiconductors

Korné Vennema

Philips Semiconductors25 Forbes Boulevard, Foxborough, MA 02035

Page 2: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 2

PHILIPS

Presentation Outline• Introduction• The Market• Amplifier Concepts• PA Fundamentals• Digital Modulation Characterization• Inside The RF Power Transistor• Transistor Characteristics• Pulsed Applications• Application Circuits• Thermal Resistance• Reliability / Electro migration

Page 3: RF Power Amplifier Design Using LDMOS Semiconductors

PHILIPSMarket

Korné VennemaMarketing Application Engineer RF Power Transistors and ModulesPhilips Semiconductors25 Forbes Boulevard, Foxborough MA 02035

Page 4: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 4

PHILIPS Market

Market

The consumer wants:• Higher data rates (wireless internet/video/e-mail)

The OEM/Service Provider wants:• Higher network capacity• Higher data rates• More efficient amplifiers (electricity bill, heat generation)• More quiet amplifiers (environmental noise; “fan-less”)• Cheap solutions• Small solutions

The design community of these base stations wants/needs:• More integrated functionality / Building blocks / Easy of use• Small solutions• High efficiency / high gain / highly linear transistors• Low cost

Page 5: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 5

PHILIPS Market

Market

• Higher Subscriber Capacity– Digital Modulation Techniques

• Multiple users per carrier– Multi Carrier Applications

• Higher data rate capacity– To support wireless e-mail, wireless video, wireless

internet access etc.• More bandwidth

• All leads to digital wireless networks (GSM, Edge GSM, CDMA, UMTS/W-CDMA) which requires linear PA’s

Page 6: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 6

PHILIPS Market

Higher data rates and higher capacity

• Can be achieved by more complex modulation techniques.

• Can be achieved by “combining” or “using” multiple voice channels simultaneously.

• Higher data rates require more bandwidth.– Examples:

• GSM carrier bandwidth = 200kHz• CDMAone carrier bandwidth = 1.2288MHz• UMTS carrier bandwidth = 3.84MHz

Page 7: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 7

PHILIPS Market

Higher Subscriber CapacityHigher Data Rate Capacity

It is all about …….

Multi Carrier Applicationsand/or

Digital Modulation Techniqueswhich puts a strain on …

Amplifier Linearity

Page 8: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 8

PHILIPS Market

Higher Subscriber Capacity

System Standard

Users Per

Carrier

Modulation Channel Spacing

AMPS 1 FDMA 30 kHz GSM 8 GMSK 200 kHz NADC (IS-54) 3 π/4 DQPSK 30 kHz CDMA 15-50 QPSK 1.25 MHz W-CDMA 196 QPSK 3.84MHz

AMPS GSM NADC CDMA

1 8 3 15-50 USERS

Frequency Spectrum

Page 9: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 9

PHILIPS Market

MarketMore users per carrierDigital modulationMore carriers (multi carrier)

More bandwidthDigital modulation techniquesSoftware algorithms

More efficient transistorsAmplifier concepts

(Plastic) PackagingNovel transistor concepts

IntegrationMMICs

• Higher network capacity• Higher data rates• More efficient amplifiers

(electricity bill)• More quiet amplifiers

(environmental noise; “fan-less”)• Cheap solutions• Small solutions

Page 10: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 10

PHILIPS Market

Higher spectral efficiencyMore linear amplifiersMulti carrier amplifiers

New LDMOS generations (efficiency, gain, linearity, peak power)

Pre-distortionFeed-forwardDoherty

Improved thermal resistanceCheaper plastic packages

Doherty transistorFlexbase

MMICs in newer LDMOS technologySubstrate integrationPassive component integration

More users per carrierDigital modulationMore carriers (multi carrier)

More bandwidthDigital modulation techniquesSoftware algorithms

More efficient transistorsAmplifier concepts

(Plastic) PackagingNovel transistor concepts

IntegrationMMICs

Market

Page 11: RF Power Amplifier Design Using LDMOS Semiconductors

PHILIPSAmplifier Concepts

Korné VennemaMarketing Application Engineer RF Power Transistors and ModulesPhilips Semiconductors25 Forbes Boulevard, Foxborough MA 02035

Page 12: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 12

PHILIPS Amplifier Concepts

Single carrier amplifiers

50dBm 49.3dBm

0.7dBinsertion loss

ff

50dBm

0.2dBinsertion loss

52.8dBm

52.1dBm

f

f

Page 13: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 13

PHILIPS Amplifier Concepts

Reverse intermodulation

f2

f1

f2

f2f1

IMD products

A

B

f1

f2f1 f1

f2

Page 14: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 14

PHILIPS Amplifier Concepts

Combined single carrier amplifiers

f

f

f

f

f

• High level combining• Good isolation requiredbetween PA’s with 3dB hybrid combiners, band pass filters and isolators, to avoid IMD.

Page 15: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 15

PHILIPS Amplifier Concepts

Multi carrier power amplifiers

f

f

f

f

f

• Low level combining• High linear PA

required to avoid IMD

Page 16: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 16

PHILIPS Amplifier Concepts

Multi Carrier Power Amplifier (MCPA)

Semiconductor Content:•Hybrid RF Amplifier Modules BGFxxx•MMICs BGMxxx•LDMOS RF Power Transistors BLFxxxx•Micro Processors•Linear IC’s

Page 17: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 17

PHILIPS Amplifier Concepts

Peak Power in an MCPA

• In multi carrier amplifiers, the maximum peak power that occurs, when all carriers are phase aligned, can be expressed as:

• For instance: In case of two 10W carriers, the average power is 20W, the peak power is 40W (i.e. 3dB above Paverage of all carriers combined and 6dB above Pone-carrier)

• The above is valid for CW carriers. For digital modulated signal, the relation is much more complex and outside the scope of this training.

carriers of number the is n where

nPP combined) carriers (all averagepeak ⋅=

Page 18: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 18

PHILIPS Amplifier Concepts

Peak Power in an MCPA

Page 19: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 19

PHILIPS Amplifier Concepts

Efficiency SCPA vs. MCPA

• Theoretical example• Let’s assume we have four CW carriers with an

output power of 10W each at the antenna of a base station.

• We can use two configurations:– four SCPA, combined with 3dB hybrids– combine the carriers at a low level, and amplify them with

an MCPA. • We’ll now calculate the overall amplifier efficiency

for both.

Page 20: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 20

PHILIPS Amplifier Concepts

SCPA solution with 3dB hybrids

4x10W, i.e. 40W avg.Ppeak=4x40=160W

40W

Total Pdc = 4x 83W = 332W

%1233240

PP

dc

outrf,amplifier ===η

Pdc=83WAt P1dB, the drain efficiencyis about 48% for a 2GHz device

Each 3dB hybrid has 3dB loss

Page 21: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 21

PHILIPS Amplifier Concepts

MCPA solution

f1f2f3f4

+

Low levelcombiner

4x10W, i.e. 40W avg.Ppeak=4x40=160W

80W Peak20W Avg.

At 6dB (factor of 4) back-offfrom P1dB, the drain efficiencyis about 25% for a 2GHz device

Pdc=80W

Total Pdc = 2x 80W = 160W

%2516040

PP

dc

outrf,amplifier ===η

Page 22: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 22

PHILIPS Amplifier Concepts

MCPA solution

• But, since we are now sending 4 carriers through an amplifier, we are generation distortion (IMD) products.

• Since we have designed the amplifier for 6dB back-off (PAR=6dB), the level of the IMD products will be about –30dBc.

• FCC requires –60dBc, so we need to fix this.• This can be done with a feed-forward

amplifier.

Page 23: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 23

PHILIPS Amplifier Concepts

Feed Forward Principle

-25dB

-5dB

MAIN AMPLIFIERCOUPLER COUPLER

PHASE SHIFTER

180°, -0.2dB

f1 f2d3 d3

f1 f2d3 d3

COUPLER

-10dB

f1 f2d3 d3

COUPLER ERROR AMPLIFIER

-0.15dB

50 ohm

f1 f2d3 d3

CIRCULATOR

180° PHASE SHIFTER

f1 f2d3 d3

f1 f2d3 d3

f1 f2d3 d3

-14.6 dB

40 dB

-25dB

-5dB

MAIN AMPLIFIERCOUPLER COUPLER

PHASE SHIFTER

180°, -0.2dB

f1 f2d3 d3

f1 f2d3 d3

COUPLER

-10dB

f1 f2d3 d3

COUPLER ERROR AMPLIFIER

-0.15dB

50 ohm

f1 f2d3 d3

CIRCULATOR

180° PHASE SHIFTER

f1 f2d3 d3

f1 f2d3 d3

f1 f2d3 d3

-14.6 dB

40 dB

Page 24: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 24

PHILIPS Amplifier Concepts

Feed Forward MCPA

• If we assume that the error amplifier consumes 40W, the overall MCPA efficiency degrades to 20%, still a significant savings.

• With a $0.10 kWh price, the annual cost to run the:– SCPA $290.83– MCPA $175.20, a 40% energy savings

• Other disadvantage is the more complex MCPA design obviously.

• But, the higher MCPA efficiency also requires less cooling (smaller heatsink, less environmental noise)

Page 25: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 25

PHILIPS Amplifier Concepts

Pre-Distortion

REAL IDEAL

Page 26: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 26

PHILIPS Amplifier Concepts

Pre-Distortion

Page 27: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 27

PHILIPS Amplifier Concepts

Pre-Distortion

11

12

13

14

15

28 30 32 34 36 38 40 42 44 46 48 50 52 54Pout (dBm)

Pow

er G

ain

(dB

)

With Pre-D

Without Pre-D

+2dB

Page 28: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 28

PHILIPS Amplifier Concepts

Pre-Distortion

0

10

20

30

40

50

60

28 30 32 34 36 38 40 42 44 46 48 50 52Pout (dBm)

Dra

in E

ffici

ency

(%)

Vds=28V, Idq=900mA, f=1960MHzContinuous wave = Th=25°C = Th=85°C

+2dB

+6%

Page 29: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 29

PHILIPS Amplifier Concepts

Doherty (Classical)

4/λ

Ω50Ω25

max

max

@5025.0@100

o

o

PP

ΩΩ

4/λ

4/λPA2

Input

Main

Peak

PA1

Ω50

Ω50

ddV

ddV

Ω35

max@50 oPΩ

max

max

@5025.0@25

o

o

PP

Ω

Ω

Page 30: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 30

PHILIPS Amplifier Concepts

Doherty

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0OPBO [dB]

P om

ax

Peak PA

Main PA

Doherty PA

Page 31: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 31

PHILIPS Amplifier Concepts

Doherty – Theoretical Efficiency

0

10

20

30

40

50

60

70

80

90

100

-20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0Output Power Backoff [dB]

Eff [

%]

Alpha= 0.5

Alpha= 0.33

Alpha= 0.25

Single Class-B PA

Page 32: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 32

PHILIPS Amplifier Concepts

2C-WCDMA Doherty Performance

Ref Lvl

-20 dBm

Ref Lvl

-20 dBm

RF Att 0 dB

A

1RM

Unit dBmSWT 2 s

RBW 30 kHz

VBW 300 kHz

3.46848 MHz/Center 2.14 GHz Span 34.6848 MHz

EXT

ExtRef

-110

-100

-90

-80

-70

-60

-50

-40

-30

-120

-20

1

Marker 1 [T1]

-70.51 dBm

2.13786000 GHz

1 [T1] -70.51 dBm

2.13786000 GHz

CH PWR -52.67 dBm

ACP Up -17.81 dBm

ACP Low -18.43 dBm

ALT1 Up -54.72 dBm

ALT1 Low -54.22 dBm

ALT2 Up -51.72 dBm

ALT2 Low -50.19 dBm

cl1cl1

C0C0cu1

cu1

cu3cu3

cu2cu2

cl2cl2

cl3cl3

Date: 17.JAN.2003 17:04:00

Vds= 28V, Idq= 825mA, Id= 5.22A,f1= 2135MHz, f2=2145MHz

Po-avg= 50W, Eff= 34.2%

ACLR5_up= -36.9dBcACLR5_low= -35.8dBc

IM3_up= -33.9dBcIM3_up= -31.8dBc

Carrier: 3GPP Testmodel1, 64 DPCH,46% Clipping

Page 33: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 33

PHILIPS Amplifier Concepts

2C WCDMA Class-AB amplifier.

0

5

10

15

20

25

30

35

26 28 30 32 34 36 38 40 42 44 46 48Pout(dBm)

Gai

n(dB

); Ef

ficie

ncy(

%)

-55

-50

-45

-40

-35

-30

-25

-20

AC

PR(d

Bc)

; IM

D(d

Bc)

Vds=28V; Idq=900mA; f=2140MHzTest signal: 2x W-CDMA, 3GPP, Test Model 1, 64 DPCH PAR=8.5dB @ 0.01%ACPR @ 5MHz offset from center of carriers in 3.84MHz BWIMD @ 10MHz offset from center of carriers in 3.84MHz BW Th=25°C Th=70°C

Gp

Eff

ACPR

IMD

Page 34: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 34

PHILIPS Amplifier Concepts

Quick comparisonConventional vs. Doherty PA

• At 44.6dBm, one final stage has an efficiency of about 30% (@ -33dBc IMD). So at 47dBm (50W), two of these are needed.

• Total required DC power is therefore 192.3W. This translates into an efficiency of 26%26% for the finals only (drivers not taken into account).

• The Doherty amplifier gives 34%34%, an 8% improvement!

Page 35: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 35

PHILIPS Amplifier Concepts

Conclusions

• Higher efficiency:– reduces required power (cost)– keeps the transistor cooler (reliability)– requires less heatsink or airflow

• Other ways to improve efficiency– devices with higher gain (reduces driver size)– devices with higher peak power capability (ability to

pre-distort)

• Combinations of the amplifier concepts presented.

Page 36: RF Power Amplifier Design Using LDMOS Semiconductors

PHILIPSPA Fundamentals

Korné VennemaMarketing Application Engineer RF Power Transistors and ModulesPhilips Semiconductors25 Forbes Boulevard, Foxborough MA 02035

Page 37: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 37

PHILIPS PA Fundamentals

Power Amplifier (PA)

PARF IN RF OUT

A Power Amplifier serves one fundamental function:It amplifies the incoming signal. In an ideal caseideal case no distortion,noise or spurious is added by the PA

Page 38: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 38

PHILIPS PA Fundamentals

Ideal and Real PA (single carrier)

Ideal PA

f freq PARF IN RF OUT

f freq

PARF IN RF OUT

f 2f 3f freqf freq

Real PA

Harmonics can befiltered out

Page 39: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 39

PHILIPS PA Fundamentals

Ideal and Real PA (Multi Carrier)

PARF IN RF OUT

freqf1 f2 freqf1 f2

Ideal PA

PARF IN RF OUT

freqf1 f2 f1 f2 freq

Real PA

Distortion products cannot be filtered out

Page 40: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 40

PHILIPS PA Fundamentals

Distortion

• Multi carrier signals and every modulated signal (non constant envelope) that is amplified by a power amplifier creates distortion:– harmonics (2f0, 3f0, etc.)– intermodulation distortion (unwanted products in

close proximity to f0)• Constant envelope signals create harmonics, but

these can be filtered out.• Non-constant envelope signals create

intermodulation distortion (IMD), and can not be filtered out.

Page 41: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 41

PHILIPS PA Fundamentals

Intermodulation Distortion (IMD)

• IMD needs to be kept at a minimum to avoid interference (in neighboring channels for instance – FCC requirements).

• The amount of intermodulation distortion is determined by the power amplifier, and thus the power transistor used.

• Intermodulation is caused by non-linearity in the transfer characteristic of the RF power transistor.

Page 42: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 42

PHILIPS PA Fundamentals

The perfect amplifier

)t(VK)t(V in1out ⋅=

Page 43: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 43

PHILIPS PA Fundamentals

Square-Law Characteristic or Second Order Characteristic

2K;10K

)t(VK)t(VK)t(V

21

in2

2in1out

==

⋅+⋅=

Page 44: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 44

PHILIPS PA Fundamentals

Third Order Characteristic

3K;10K

)t(VK)t(VK)t(V

31

in3

3in1out

−==

⋅+⋅=

Page 45: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 45

PHILIPS PA Fundamentals

The complete transfer characteristic

2f

3f

Page 46: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 46

PHILIPS PA Fundamentals

Intermodulation Distortion Products

3f1-2f2 2f1-f2 f1 f2 2f2-f1 3f2-2f1

(d3)(d5) (d5)(d3)

Pcarrier

Average Power (Pavg)

Peak Envelope Power (PEP)

+3dB

+3dB

IMD in dBc

fx = fundamental2fx = second harmonic (square law)3fx = third harmonic (third order)

d3 = third order IMD productd5 = fifth order IMD product

IMD is expressed in “dBc”, which means relative to one of the twocarriers f1 or f2

Page 47: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 47

PHILIPS PA Fundamentals

Intercept Points

Intercept points are THEORETICAL power levels that

are a measure for the linearityof an amplifier (transistor)

ITO2 (2nd order intercept) is the point where fundamental and 2nd order line (2:1 slope) meet

ITO3 (3rd order intercept) is thepoint where fundamental and 3rd order line (3:1 slope) meet

ITO3 (dBm) = Pout (dBm) + 1/2 IMD3 (dBc)

Page 48: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 48

PHILIPS PA Fundamentals

How to improve linearity

• Use a linear transistor technology such as LDMOS

• Adjust the class of operation of the PA (class A, class AB, etc

• Use a feed-forward amplifier• Use (digital) pre distortion (DPD)

Page 49: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 49

PHILIPS PA Fundamentals

Id

ModulatedVgs input

Vgs

IdIdq

Classesof

Operation

Class-AClass-ABClass-BClass-C

Class-D,E,F,G,H

The class of operationis defined by the

conduction angle, i.e. thetime the transistorconducts current

Page 50: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 50

PHILIPS PA Fundamentals

Overview classes of operation

• Class A• Ultra Linear Amplifier• Extremely High Power Gain• Low Efficiency (50% max)• Conduction Angle 360°

• Class B• Non-Linear Amplifier• Low Power Gain• High Efficiency (78.5%)• Conduction Angle 180°

• Class AB• Linear Amplifier• High Power Gain• Medium Efficiency (50-78.5%)• Conduction Angle 180-360°

• Class C• Extremely Non-Linear Amplifier• Extremely Low Power Gain• Extremely High Efficiency (90%)• Conduction Angle <180°

Page 51: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 51

PHILIPS PA Fundamentals

RF Power

• Can be expressed in Watts or dBm• 0dBm = 1mW in 50Ω

• 1GW (Gigawatt)• 1MW (Megawatt)• 1kW (kilowatt)• 1W (Watt)• 1mW (milliwatt)• 1µW (microwatt)• 1nW (nanowatt)• 1pW (picowatt)

• 1 x 109 Watt• 1 x 106 Watt• 1 x 103 Watt• 1 x 100 Watt• 1 x 10-3 Watt• 1 x 10-6 Watt• 1 x 10-9 Watt• 1 x 10-12Watt

Page 52: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 52

PHILIPS PA Fundamentals

Conversion between Watts and dBm

100010]Watts[P

10

out

]dBm[outP

=

001.0]Watts[Plog10]dBm[P out

out =

dBm Watts

Watts dBm

Examples: 0 dBm = 1mW20 dBm = 100mW43 dBm = 20W100W = 50dBm

Page 53: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 53

PHILIPS PA Fundamentals

Power Gain

Pin [Watts] Pout [Watts]

Pin [dBm] Pout [dBm]

[dBm] P -[dBm] P ]dB[G

or

]Watts[P

Watts][Plog10]dB[G

inoutp

in

outp

=

=

Page 54: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 54

PHILIPS PA Fundamentals

Power Gain Conversions / Insertion Loss

]Watts in[10

Watts] in[PP10

dB] in[Gpout

in = 10]dB[G

inout

p

10]Watts[P]Watts[P ⋅=

• Insertion loss is negativenegative power gain (loss), i.e Pout is lower than Pin

Example:

1035WCirculator

1000W dB15.010351000log10Gp −==

Page 55: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 55

PHILIPS PA Fundamentals

Efficiency

PRFout [Watts]

Pdc=Vds x Id

• Efficiency (often referred to as drain efficiencydrain efficiency) is the ratio between RF output power and DC input power.

100]A[I]V[V

]Watts[P100]Watts[P]Watts[P[%]

dds

RFout

dc

RFoutD ⋅

⋅=⋅=η

Example: Vds=50V, Id=8.8A,PRFout=277W

%63100A8.8V50

W277D =⋅

⋅=η

Page 56: RF Power Amplifier Design Using LDMOS Semiconductors

PHILIPSDigital Modulation Characterization

Korné VennemaMarketing Application Engineer RF Power Transistors and ModulesPhilips Semiconductors25 Forbes Boulevard, Foxborough MA 02035

Page 57: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 57

PHILIPS

Typical RF Power Test SetupSignal Generator

ESG or SMIQ/AMIQ Power MeterE4419B

Spectrum AnalyzerFSEM20

SpinnerSwitch

Power SensorHP8481A

Power SensorHP8481A

30dB150WAttn.

Narda3002-10

DUT

Network AnalyzerHP8753D

10 10

DriverAmplifier

HP778D

Narda3002-10

Microlab FXRCA-45N

Mini CircuitsZHL-42W

3dBattn.

BLF4G20-110 PCS Test Setup

Signal GeneratorESG or SMIQ/AMIQ Power Meter

E4419BPower Meter

E4419BPower Meter

E4419B

Spectrum AnalyzerFSEM20

SpinnerSwitch

Power SensorHP8481A

Power SensorHP8481A

30dB150WAttn.

Narda3002-10

DUT

Network AnalyzerHP8753D

Network AnalyzerHP8753D

10 10

DriverAmplifier

DriverAmplifier

HP778D

Narda3002-10

Microlab FXRCA-45N

Mini CircuitsZHL-42W

3dBattn.

BLF4G20-110 PCS Test Setup

Page 58: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 58

PHILIPS Digital Modulation Characterization

Edge GSM

Drive signal

Result afteramplifier600kHz

ORFS

400kHzORFS

Amplifier Gain

Page 59: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 59

PHILIPS Digital Modulation Characterization

Edge GSM Characterization

• Modulation: 8-PSK• PAR=3.2-3.5dB• Linearity:

– EVM (Error Vector Magnitude)[%]– ORFS (Output RF spectrum)[dBc]

• at offsets with 200kHz increments.

• 400kHz and 600kHz aremost critical ones

Page 60: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 60

PHILIPS Digital Modulation Characterization

Edge GSM PAR

Page 61: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 61

PHILIPS Digital Modulation Characterization

CDMA

• Modulation: QPSK• Channel bandwidth: 1.23MHz• PAR=9.8dB (single carrier, not clipped)• Linearity:

– ACPR (Adjacent Channel Power Ratio)• at multiple offsets, 750kHz, 885kHz, 1.98MHz• in a certain integration bandwidth

(a small slice in the frequency domain)

1.23MHz

30kHz

750kHz

1.98MHz

750kHz

1.98MHz

30kHz30kHz

30kHz

Page 62: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 62

PHILIPS Digital Modulation Characterization

CDMA1.23MHz

30kHz

750kHz

1.98MHz

750kHz

1.98MHz

30kHz30kHz

30kHz

1.23MHz1.23MHz

30kHz30kHz

750kHz

1.98MHz

750kHz

1.98MHz

30kHz30kHz30kHz30kHz

30kHz30kHz

Drive signal

Result afteramplifier

Page 63: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 63

PHILIPS Digital Modulation Characterization

CDMA PAR

Page 64: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 64

PHILIPS Digital Modulation Characterization

CDMA (Multi Carrier)

• Linearity:– ACPR (Adjacent Channel Power Ratio)

• at 885kHz offset in 30kHz IBW– IMD (Intermodulation Distortion)

• at offset depending on carrier spacing in 1.2288MHz IBW1.2288MHz

2.5MHz 2.5MHz

885kHz

2.5MHz

1.2288MHz

IMD in1.2288MHz

BW ACPR in30kHz

BW

IMD in1.2288MHz

BWACPR in30kHz

BW

885kHz

Page 65: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 65

PHILIPS Digital Modulation Characterization

CDMA (Multi Carrier)

• Both ACPR and IMD are relative figures, with as reference one of the two (equal) carriers.

• Therefore, both ACPR and IMD are expressed in dBc. • The offsets are defined from the center of the carriers.• As can be seen is the IBW for the ACPR and IMD different.

The IBW is defined by the standard. • Sometimes the ACPR and/or IMD are also expressed in dBm,

an actual power level. For that purpose the spectrum analyzer needs to be calibrated to read actual power levels.

Page 66: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 66

PHILIPS Digital Modulation Characterization

UMTS (Multi Carrier)

• Modulation: QPSK• Channel bandwidth: 3.84MHz• PAR=7-10dB (single carrier, depending on clipping)• Linearity:

– ACPR (Adjacent Channel Power Ratio)• at 5MHz offset in 3.84MHz IBW

– IMD (Intermodulation Distortion)• at 10MHz offset for 10MHz carrier spacing in 3.84MHz IBW

Page 67: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 67

PHILIPS Digital Modulation Characterization

UMTS (Multi Carrier)

3.84MHz

10MHz 10MHz

5MHz

10MHz

3.84MHz

IMD in3.84MHz

BW ACPR in3.84MHz

BW

5MHz

ACPR in3.84MHz

BW

IMD in3.84MHz

BW

Page 68: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 68

PHILIPS Digital Modulation Characterization

UMTS (Multi Carrier)

10MHz 10MHz10MHz

IMD product

Drive signal

Result afteramplifier

Page 69: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 69

PHILIPS Digital Modulation Characterization

Two Tone CW

Drive signal

Result afteramplifier

d3L

d7Ld5L

d5R

d5R

d3R

Page 70: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 70

PHILIPS Digital Modulation Characterization

Two Tone PAR

Page 71: RF Power Amplifier Design Using LDMOS Semiconductors

PHILIPSInside the RF Power transistor

Korné VennemaMarketing Application Engineer RF Power Transistors and ModulesPhilips Semiconductors25 Forbes Boulevard, Foxborough MA 02035

Page 72: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 72

PHILIPS Inside the RF Power Transistor

A look inside the RF Power transistor

Drain Lead

INSHINCMOS

Capacitor

Pre-MatchCMOS

Capacitor

LDMOS Die

Gate Lead

INSHINwires

Gate wires

Drain wires

Page 73: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 73

PHILIPS Inside the RF Power Transistor

Schematic

SOURCE

DRAIN

GATE

Ld

Linshin

Lg2 Lg1

CpreDC-block

SOURCE

DRAIN

GATE

Ld

Linshin

Lg2 Lg1

CpreDC-block

Zload

Zin

D.U.T.

Zin =R±jXZload =R±jX

Page 74: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 74

PHILIPS Inside the RF Power Transistor

Why internal matching ?• Impedance levels at the die are low. Extremely low.

Internal matching brings these impedances to an acceptable level at the transistor terminals (leads) so the part can be matched more easily (also enable broadband matching) without too much insertion loss.

• To ensure a higher gain (transistor roll-off)

• The pre-match has a low pass characteristic. The output match has a high pass characteristic.

• Therefore, a transistor with pre- and output match inside has a band pass characteristic.

Page 75: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 75

PHILIPS Inside the RF Power Transistor

Input Resonance Frequency

CH1 S 11 Re 50 mU/ REF -850 mU

START 1 400.000 000 MHz STOP 2 500.000 000 MHz

Cor

Smo

SCALE 50 mUnits/div

15 Dec 2003 10:32:11

1

2

3

1_:-952.12 mU

1 842.500 000 MHz

2_:-931.98 mU

1.96 GHz

3_:-696.97 mU 2.355 GHz

CH1 S 11 Im 50 mU/ REF 0 U

START 1 400.000 000 MHz STOP 2 500.000 000 MHz

Cor

Smo

SCALE 50 mUnits/div

15 Dec 2003 10:32:25

1

2

3

1_: 99.901 mU

1 842.500 000 MHz

2_: 108.77 mU

1.96 GHz

3_: 1.8475 mU 2.355 GHz

Freq. Freq.

ReZi

ImZi

2.355GHz

1.842GHz

1.96GHz

BLF4G20-110B

Page 76: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 76

PHILIPS Inside the RF Power Transistor

Output Resonance FrequencyCH2 S 22 &M Re REF -900 mU50 mU/

START 1 000.000 000 MHz STOP 2 500.000 000 MHz

Cor

Smo

MARKER 1 1.651750001 GHz

4 Feb 2004 16:43:29

1

2

3

4

1_:-800.1 mU

1 651.750 001 MHz

2_:-890.66 mU

1.805 GHz

3_:-953.58 mU 1.9 GHz

4_:-975.46 mU 1.99 GHz

Vds=18V

Vds=28V

BLF4G20S-110B

DCS

PCS

Freq.

ReZL

1.65GHz

Typically:

Input resonancelies above the band of interest

Output resonance lies below the band of interest.

Page 77: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 77

PHILIPS Inside the RF Power Transistor

Single Ended vs. Push-Pull

SingleendedBLF4Gxx-xxx

EarlessSingle Ended

BLF4GxxS-xxxPush-Pull

BLF4Gxx-xxx

A push-pull transistor is the same as two independent single ended transistors in one package (in most cases), operated 180° out of phase.

The advantages are:• Higher impedances (between the two sections)• Matched die• 2nd harmonic suppressionThe disadvantages are• More heat in a small area• More expensive package

Page 78: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 78

PHILIPS Inside the RF Power Transistor

Thermal Resistance Push-Pull Transistor

Rth,j-c(0.9 K/W)Section A

Rth,j-c(0.9 K/W)Section B

Rth,c-h(0.15 K/W)typical forpush-pullpackage

Junction

Case

Heatsink

Junction

Case

Heatsink

Rth,c-h(0.15 K/W)typical forpush-pullpackage

Rth,j-c(0.45 K/W)

Section A+B

“Schematic” Thermal ResistancePush-Pull Transistor(split out per section)

“Schematic” Thermal ResistanceTotal Push-Pull Transistor

Definition thermal resistance push-pull transistor

Rth,j-c(0.9 K/W)Section A

Rth,j-c(0.9 K/W)Section B

Rth,c-h(0.15 K/W)typical forpush-pullpackage

Junction

Case

Heatsink

Junction

Case

Heatsink

Rth,c-h(0.15 K/W)typical forpush-pullpackage

Rth,j-c(0.45 K/W)

Section A+B

“Schematic” Thermal ResistancePush-Pull Transistor(split out per section)

“Schematic” Thermal ResistanceTotal Push-Pull Transistor

Rth,j-c(0.9 K/W)Section A

Rth,j-c(0.9 K/W)Section B

Rth,c-h(0.15 K/W)typical forpush-pullpackage

Junction

Case

Heatsink

Junction

Case

Heatsink

Junction

Case

Heatsink

Junction

Case

Heatsink

Rth,c-h(0.15 K/W)typical forpush-pullpackage

Rth,j-c(0.45 K/W)

Section A+B

“Schematic” Thermal ResistancePush-Pull Transistor(split out per section)

“Schematic” Thermal ResistanceTotal Push-Pull Transistor

Definition thermal resistance push-pull transistor

Page 79: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 79

PHILIPS Inside the RF Power Transistor

LDMOS Structure

Page 80: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 80

PHILIPS Inside the RF Power Transistor

LDMOS Cross Section

• Drain extension sets:– Idq drift– Breakdown voltage– Rds-on (doping amount)– Idsx (saturation current / peak power capability)

• Shield sets:– Feedback capacitance– Field distribution in drain extension (Idq-drift)

Page 81: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 81

PHILIPS Inside the RF Power Transistor

Packaging • Focus– lower thermal resistance

• the package• the die layout

– cheaper• plastic• cheaper package

2004 Q1 Q2 Q3 2005 Q1

20%

10%

RthFase 1

Fase 3

0.76

0.60

0.50

At Tc = 80 C

GEN 4 BLF4G20-110carrier

[K/W]

Page 82: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 82

PHILIPS Inside the RF Power Transistor

Packaging

Cu - CuMO - Cu

CuW - Cu on top

Page 83: RF Power Amplifier Design Using LDMOS Semiconductors

PHILIPSTransistor Characteristics

Korné VennemaMarketing Application Engineer RF Power Transistors and ModulesPhilips Semiconductors25 Forbes Boulevard, Foxborough MA 02035

Page 84: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 84

PHILIPS Transistor Characteristics

Typical LDMOS Characteristics

G

S S

D

CossCiss

Cgd or CrsId= gfs x Vgs

Vgs

Rout

RinG

S S

D

CossCiss

Cgd or CrsId= gfs x Vgs

Vgs

Rout

Rin

Page 85: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 85

PHILIPS Transistor Characteristics

LDMOS DC Characteristics

• V(BR)DSS = break down voltage DS-junction• Vgsth = GS-voltage at which the device starts drawing current• Vgsq = GS-voltage for a typical Idq (quiescent current)• Idss = Leakage current due to imperfections in epi-payer with no

GS-voltage applied

Page 86: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 86

PHILIPS Transistor Characteristics

LDMOS DC Characteristics

• Idss = Leakage current due to imperfections in epi-payer with no GS-voltage applied

• Idsx = Maximum saturatedsaturated drain current with high Vgs

• Igss = Gate leakage current (oxide and other imperfections)• Gfs = Forward transconductance in Siemens (S = A/V)• Rds-on = Drain source on-resistance (substrate / doping / wire bonds)• Crs = Feedback capacitance

Page 87: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 87

PHILIPS Transistor Characteristics

Typical RF Power Characteristics

11

12

13

14

15

28 30 32 34 36 38 40 42 44 46 48 50 52Pout (dBm)

Pow

er G

ain

(dB

)

Vds=28V, Idq=900mA, f=1960MHzContinuous wave = Th=25°C = Th=85°C

0

10

20

30

40

50

60

28 30 32 34 36 38 40 42 44 46 48 50 52Pout (dBm)

Dra

in E

ffici

ency

(%)

Vds=28V, Idq=900mA, f=1960MHzContinuous wave = Th=25°C = Th=85°C

Linear regionSaturation region Power gain vs. Pout

&Efficiency vs. Poutat different Th

Continuous Wave (CW)

Page 88: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 88

PHILIPS Transistor Characteristics

Typical RF Power Characteristics

• P1dB is the output power level where the power gain is 1dB compressed.

• The saturation power (Psat) is the output power level where ∆Pout: ∆Pin=1

• P1dB and Psat are (die) temperature dependent, which is the reason why the real Psat is often determined under pulsed conditions to keep the average Pout –and thus the die temperature- low

Page 89: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 89

PHILIPS Transistor Characteristics

Typical RF Power Characteristics

11

12

13

14

15

28 30 32 34 36 38 40 42 44 46 48 50 52Pout (dBm)

Pow

er G

ain

(dB

)

Vds=28V, Idq=900mA, f=1960MHzContinuous wave = Th=25°C = Th=85°C

P1dB@

25°C

P1dB@

85°C

P1dB @ 25°C = 50.7dBm (117.5W)P1dB @ 85°C = 50.0dBm (100.0W)0.8dB gain drop

at high temperature

Page 90: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 90

PHILIPS Transistor Characteristics

Considerations at high temperature

• The following transistor characteristics have to be accounted for during amplifier design:– The gain of a transistor is lower (ca. 0.8dB) at Th=85°C.

This requires a more powerful driver transistor.– The P1dB and Psat are lower at Th=85°C. This has a negative

effect on linearity.– The transistor life time reduces at higher temperatures.– The transistor efficiency does not change a lot at higher

temperatures.

Page 91: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 91

PHILIPS Transistor Characteristics

RF Power Characteristics

10

11

12

13

14

15

28 30 32 34 36 38 40 42 44 46 48 50 52Pout-avg (dBm)

Pow

er G

ain

(dB

)

1100mA

1000mA

900mA

800mA

700mA

Vds=28V, f1=1958.75MHz, f2=1961.25MHzTwo tone CW measurement, 2.5MHz carrier spacing

-60

-50

-40

-30

-20

-10

28 30 32 34 36 38 40 42 44 46 48 50 52Pout-avg (dBm)

IMD

3 (d

Bc)

700mA

1100mA

900mA800mA

1000mA

Vds=28V, f1=1958.75MHz, f2=1961.25MHzTwo tone CW measurement, 2.5MHz carrier spacing

3f1-2f2 2f1-f2 f1 f2 2f2-f1 3f2-2f1

(d3)(d5) (d5)(d3)

Pcarrier

Average Power (Pavg)

Peak Envelope Power (PEP)

+3dB

+3dB

IMD in dBc

3f1-2f2 2f1-f2 f1 f2 2f2-f1 3f2-2f1

(d3)(d5) (d5)(d3)

Pcarrier

Average Power (Pavg)

Peak Envelope Power (PEP)

+3dB

+3dB

IMD in dBc

3f1-2f2 2f1-f2 f1 f2 2f2-f1 3f2-2f1

(d3)(d5) (d5)(d3)

Pcarrier

Average Power (Pavg)

Peak Envelope Power (PEP)

+3dB

+3dB

IMD in dBc

Power gain vs. Pout&

IMD3 vs. Pout Two Tone CW

Page 92: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 92

PHILIPS Transistor Characteristics

P1dB and 2T CW linearity

11

12

13

14

15

28 30 32 34 36 38 40 42 44 46 48 50 52Pout (dBm)

Pow

er G

ain

(dB

)

Vds=28V, Idq=900mA, f=1960MHzContinuous wave = Th=25°C = Th=85°C

-60

-50

-40

-30

-20

-10

28 30 32 34 36 38 40 42 44 46 48 50 52Pout-avg (dBm)

IMD

3 (d

Bc)

700mA

1100mA

900mA800mA

1000mA

Vds=28V, f1=1958.75MHz, f2=1961.25MHzTwo tone CW measurement, 2.5MHz carrier spacing

P1dB correspondsapproximatelyapproximately

to –30dBc IMD3power level (add the3dB between average

and peak power)

Page 93: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 93

PHILIPS Transistor Characteristics

Two Tone Linearity & Multi Stage Amplifiers

Circulator

Pr Pf

Double junction circulator

Driver Final

• The overall (2T) linearity of an amplifier is determined by the linearity of both the final and driver stage. In this case we’llassume circulators don’t degrade linearity which is not true.

• The degradation in IMD3 can be expressed as follows:

+=

−20

)Final(3IMD)Driver(IMD

101log10]dB[nDegradatio IMD3

Page 94: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 94

PHILIPS Transistor Characteristics

Two Tone Linearity & Multi Stage Amplifiers

If the driver stage is 10dBmore linear than the final, the overall linearity will be1.2dB worse compared tothe linearity of the final.

Page 95: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 95

PHILIPS Transistor Characteristics

Notes on Peak-to-Average ratio (PAR)

• Peak-to-Average Ratio (PAR) is defined as the ratioratio of the peak power to averageaverage power.

• When the PAR=2, one also says often: The PAR=3dB (10log2).

][Power Average

Power PeakPAR −=

Page 96: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 96

PHILIPS Transistor Characteristics

Notes on PARThe PAR for a 2-toneCW signal is alwaysalways 2 (or 3dB)

3f1-2f2 2f1-f2 f1 f2 2f2-f1 3f2-2f1

(d3)(d5) (d5)(d3)

Pcarrier

Average Power (Pavg)

Peak Envelope Power (PEP)

+3dB

+3dB

IMD in dBc

3f1-2f2 2f1-f2 f1 f2 2f2-f1 3f2-2f1

(d3)(d5) (d5)(d3)

Pcarrier

Average Power (Pavg)

Peak Envelope Power (PEP)

+3dB

+3dB

IMD in dBc

3f1-2f2 2f1-f2 f1 f2 2f2-f1 3f2-2f1

(d3)(d5) (d5)(d3)

Pcarrier

Average Power (Pavg)

Peak Envelope Power (PEP)

+3dB

+3dB

IMD in dBc

Page 97: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 97

PHILIPS Transistor Characteristics

Notes on PAR

• For complex digital modulation schemes, the story is different.

• The PAR is specified at a certain level (in dB), with a certain probability (the chance a certain PAR is reached).

• This probability as a function of PAR is expressed in a Cumulative Distribution FunctionCumulative Distribution Function (CDF), often called CCDF (Complementary Cumulative Distribution Function). The probability is expressed in %.

• For instance, the PAR for an IS-95 signal (pilot, paging, sync and 6 traffic channels with Walsh codes 8-13) is: 9.8dB at 0.01% probability

Page 98: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 98

PHILIPS Transistor Characteristics

CDF for an IS-95 and 2-tone CW signal

IS-95

2T CW

9.8dB @ 0.01%

Page 99: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 99

PHILIPS Transistor Characteristics

P1dB, Psat and Ppeak

• In the previous slides it was shown that P1dBand Psat are (die)temperature dependent, i.e.:– when the heatsink temperature is high– when the device is operating at a high output

power, i.e. large current draw, and high dissipation• That is the reason why the real peak power

often is determined under pulsed conditions or at a low average power with spikes on top of that (for instance a CDMA signal).

Page 100: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 100

PHILIPS Transistor Characteristics

Peak Power Capability

40

42

44

46

48

50

52

54

56

27 29 31 33 35 37 39 41 43 45Pin (dBm)

Pout

(dB

m)

P1dB=51.8dBm (151.4W)

P3dB=52.8dBm (190.5W)

Vds=28V, Idq=900mA, f=1960MHzPulsed CW: 8µsec on, 1ms off

1msec8µsec

1msec8µsec

1msec8µsec

Compare:P1dB CW=117.5WP1dB pulsed=151.4W

Page 101: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 101

PHILIPS Transistor Characteristics

The Importance Of Peak Power Capability

• Peak power capability is of particular interest when the amplifier is used with complex digital modulation signals with a high PAR.

• In that case, the average output power is relatively low, but high peaks can occur in the signal.

• If the high peaks exceed the peak power capability of the device, distortion is introduced.

• A 100W (P1dB, CW) transistor, can typically be used at 20-25W (depending on linearity requirements) average CDMA power with a PAR=9.8dB @ 0.01%.

• Peak power capability is also a measure for how well one can apply pre-distortion (discussed later).

Page 102: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 102

PHILIPS Transistor Characteristics

BLF4G20-110B for CDMA (approximation)BLF4G20-110Ppeak=52.8dBm

52.8

50.7

43.0

0 dBm

PAR CDMAsignal 9.8dB

43dBm CDMAavg. Pout

Power(dBm)

BLF4G20-110approx. 50.7dBmCW P1dB

43dBm + 9.8dB=52.8dBm

Page 103: RF Power Amplifier Design Using LDMOS Semiconductors

PHILIPSPulsed Applications

Korné VennemaMarketing Application Engineer RF Power Transistors and ModulesPhilips Semiconductors25 Forbes Boulevard, Foxborough MA 02035

Page 104: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 104

PHILIPS Pulsed Applications

LDMOS for Pulsed Applications

Main advantages over bipolar• High gain• High efficiency• Good linearity

Page 105: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 105

PHILIPS Pulsed Applications

LDMOS vs. Bipolar (Pulsed)

• Excellent thermal stability: due to negative temperature coefficient

• Excellent ruggedness due to high breakdown voltage of die technology and its good thermal stability

• Pulse shaping easy compared to bipolars by modulating Vgs

• Package does not contain BeO, source mounted direct to flange – also better thermal properties.

Page 106: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 106

PHILIPS Pulsed Applications

Thermal Characteristics LDMOS (Pulsed)

Page 107: RF Power Amplifier Design Using LDMOS Semiconductors

PHILIPSApplication Circuits

Korné VennemaMarketing Application Engineer RF Power Transistors and ModulesPhilips Semiconductors25 Forbes Boulevard, Foxborough MA 02035

Page 108: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 108

PHILIPS Application Circuits

UMTS Application Circuit

C11

Vbias(15-28V)

Vsupply(28V)

Q1 C2

C3

R1 R2

R3

R4

R5

R6

R7

R8

Q2

R9

R10 + R11

L3

C5C3

L2 L4

L1

C5L10

R12

C4

L7

L6

C9

L8

C10

C7

L9

C6

50 ohmoutput

Q3

50 ohminput

C1

L5 C8

BLC6G22LS-100: 2110- 2170MHz – 100W

Page 109: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 109

PHILIPS Application Circuits

Application Circuit BLC6G22LS-100

BLC6G22-100 Input-Rev1

BLC6G22-100Output-Rev1

Page 110: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 110

PHILIPS Application Circuits

Application Circuit BLA1011-200

Page 111: RF Power Amplifier Design Using LDMOS Semiconductors

PHILIPSThermal Resistance

Korné VennemaMarketing Application Engineer RF Power Transistors and ModulesPhilips Semiconductors25 Forbes Boulevard, Foxborough MA 02035

Page 112: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 112

PHILIPS Thermal Resistance

Transistor thermal resistance

Rth, j-c

Rth, c-h

Die (Xtal))

Heatsink

EutecticSolder Joint

Flange or Case

Heatsink Compoundor solder joint

Page 113: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 113

PHILIPS Thermal Resistance

Transistor thermal resistance

C] or [KPR∆T orC/W] or K/W[P

TR dissthdiss

th °⋅=°=∆

• Rth is thermal resistance, often also called θ• ∆T is temperature rise due to thermal

interface in K or °C• Pdiss is the dissipated power in Watts

Example: If a transistor dissipates 100W, and the Rth is 0.35K/W, the temperature rise is 35°C

Page 114: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 114

PHILIPS Thermal Resistance

Transistor thermal resistance

Rth, j-c

Rth, c-h

Die (Xtal))

Heatsink

EutecticSolder Joint

Flange or Case

Heatsink Compoundor solder joint

Rth, j-c

Rth, c-h

Die (Xtal))

Heatsink

EutecticSolder Joint

Flange or Case

Heatsink Compoundor solder joint

• One can define different thermal interfaces:– Rth,j-c : Junction to Case– Rth,c-h : Case to Heatsink

• In case of a solder joint, the Rth,c-h can be (almost) ignored

Page 115: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 115

PHILIPS Thermal Resistance

Infra Red Scanner Setup

Thermo couple

Base plate

Soldering

CuW Package case

Die

Water CoolingCase temperature: 80 C

IR Scanner

Page 116: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 116

PHILIPS Thermal Resistance

Typical IR-scanner data

IR - 5195AR.IMG

24/09/03 1:37:39 PM 50.0

150.0 °C

60

80

100

120

140

60

80

100

120

140

Tj,max

Rth figures are determined based on maximummaximum junction temperatures, not average junction temperatures, thus truly reflecting the worse case situation.

Page 117: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 117

PHILIPS Thermal Resistance

Rth calculations

[Watts]P [dB],G ,dimension] [noη

]Watts[P10

111P

]Watts[PPP

PP

PPP

[Watts]IVP

]Watts[PPPP

outrf,pD

outrf,10Gp

Ddiss

outrf,outrf,

in

outrf,

outrf,

outrf,

dcdiss

dsdsdc

inrf,outrf,dcdiss

+−=

+−=

⋅=

+−=

η

Page 118: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 118

PHILIPS Thermal Resistance

Rth

]Watts[P10

111P

R PT

outrf,10Gp

Ddiss

thdiss

+−=

⋅=

η

• Looking at the formulas above, one can conclude:– In order to minimize the temperature rise:

• Rth should be as low as possible• ηD should be as high as possible• Gp should be as high as possible

• And that is exactly why our customers want:– An LDMOS technology with higher gain and efficiency– A die layout that ensures a low Rth– Thinner die to minimize Rth– Improved transistor packaging to lower the Rth

Page 119: RF Power Amplifier Design Using LDMOS Semiconductors

PHILIPSReliability / Electromigration

Korné VennemaMarketing Application Engineer RF Power Transistors and ModulesPhilips Semiconductors25 Forbes Boulevard, Foxborough MA 02035

Page 120: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 120

PHILIPS Reliability/Electromigration

LDMOS ReliabilityElectromigrationElectromigration

Electron flow due to DC currentElectron flow due to DC current

Electromigration is the dominantware-out mechanism in LDMOS

Page 121: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 121

PHILIPS Reliability/Electromigration

Acceleration ModelT

E

n

a

JCailureFtoimeTedianM Bke)()()( =Black’s equation:

TECJMTFor an

Bk)ln()ln(, +=⋅

J : Current density

n : Current density exponent (n=2)

C : Constant

Ea : Activation energy (Ea=1.0eV)

kB : Boltzmann’s constant

T : Temperature

Page 122: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 122

PHILIPS Reliability/Electromigration

MTF for Generation 4 LDMOS

Ids=3.5AIds=3.7AIds=6.2A

Page 123: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 123

PHILIPS Reliability/Electromigration

Safe operating temperature GEN4

• There is not one single opinion in the industry about the safe operating temperature of LDMOS devices.

• Some customers want to stay around 150°C, some around 160°C.

• It is completely safe to use Philips LDMOS in excess of 170°, and even then the reliability of our parts is excellent.

Page 124: RF Power Amplifier Design Using LDMOS Semiconductors

Semiconductors 124

PHILIPS

Summary

Today, LDMOS is the technology of choice for any RF power amplifier design up to 3.5GHz. LDMOS is the cheap, it is

(re) producible, mature and offers state-of-the-art performancecharacteristics. Further refinement and performance improvementsare possible in this technology, however the theoretical limits are

being approached.